Socio-Emotional Reward Design for Intrinsically Motivated Learning Agents

Thesis Defense
Ph.D. Program in Information Systems and Computer Engineering

Pedro Sequeira
September 18, 2013
Outline

Problem
Approach
Emotion-based Intrinsic Rewards
Emerging Emotions
Socially-Aware Learning Agents
Conclusions
Outline

Problem

Approach

Emotion-based Intrinsic Rewards

Emerging Emotions

Socially-Aware Learning Agents

Conclusions
Problem

Reinforcement Learning (1/2)

- Simple navigation problem
 - *State*: agent location
 - *Actions*: movement
Reinforcement Learning (2/2)

- **RL main ideas** (Sutton & Barto, 1998; Kaelbling et al., 1996)
 - Objective: maximize the reward throughout time
 - Task: discover which actions maximize reward in each state
 - *e.g.*, using *Q*-learning (Watkins, 1989)
Problem

Challenges in RL

- **Assumptions** (Sutton & Barto, 1998; Kaelbling et al., 1996)
 - Fully observable environments
 - Infinite visits to all states and actions
 - Stationary environments

- **Agent limitations**
 - Limited perception and computational resources
 - Dynamic, unpredictable and unreliable environment
 - Demand for manual adjustments

- **Design assumptions too restrictive**
 (Littman, 1994; Loch and Singh, 1998; Singh et al., 1994)
Rewards are fundamental (Sutton & Barto, 1998; Kaelbling et al., 1996)

- Implicitly defines the agent’s task
- Impact on the learning time
- Impact on what is learned

Major challenge (Abbeel and Ng, 2004; Ng and Russell, 2000; Sorg et al., 2010a)

- Build reward mechanisms so the task is learned efficiently
- Flexible and robust
- Enhance agent’s autonomy
“Design reward mechanisms for RL agents that are able to alleviate their inherent perceptual limitations and make them operate in a wide variety of domains without the explicit intervention of others or relying on expert or domain knowledge about a particular task.”
Outline

Problem

Approach

Emotion-based Intrinsic Rewards

Emerging Emotions

Socially-Aware Learning Agents

Conclusions
Sources of Information

- Agent has access to several sources of information
 - Perception, reasoning, learning, etc.
Intrinsic Motivation

- Intrinsically Motivated RL (Singh et al. 2009, 2010; Sorg et al. 2010)
 - Agent learns with intrinsic rewards
 - Fitness: measures performance
 - Mitigates computational limitations of learning agents
Approach

Inspiration

- Parallel with biological organisms
 - Limited perception and resources
 - Dynamic, unpredictable and unreliable environment

- Natural motivational mechanisms
 - Shaped by evolution
 - Provide adaptive advantages

- Social mechanisms
 - Cooperation in inherently competitive environments
“We focus on the **role of emotions** and also on the way **individuals interact and cooperate** with each other as a social group to **design more flexible and robust reward mechanisms** that **enhance the autonomy** of RL agents in both single and multiagent settings.”
Contributions

- Emotion-based Intrinsic Rewards
 - Role of emotions in decision-making
 - 4 emotion-based domain-independent reward features

- Emerging Emotions
 - Emergence of useful sources of information
 - Discuss relation with emotions

- Socially-Aware Learning Agents
 - Extend IMRL to multiagent scenarios
 - Socially-aware behaviors
Outline

Problem

Approach

Emotion-based Intrinsic Rewards

Emerging Emotions

Socially-Aware Learning Agents

Conclusions
Emotion-based Intrinsic Rewards

The Role of Emotions

- Studies show that emotions:
 - Basic and ancient survival mechanism
 - Beneficial adaptive mechanism for decision-making
 - Elicit physiological signals

- Absence of emotions
 - Impairs taking advantageous decisions

- How to provide emotion-based motivation?
Emotion-based Intrinsic Rewards

Appraisal Theories of Emotions

- Evaluation through appraisal
Emotion-based Reward Design

- **Major dimensions of appraisal** (Ellsworth & Scherer 2003, Leventhal & Scherer, 1987)
 - 4 domain-independent reward features
 - Evaluate agent’s history of interaction with environment
Emotion-based Intrinsic Rewards

Experiments

- Foraging scenarios
 - Each presents distinct challenge
 - Partially-observable
 - Compare performance emotion-based vs. fitness-based

Results
- Emotional agents outperform standard agents
- Careful consideration of emotional aspects
- Learn the intended task
- Overcome perceptual limitations
4 emotion-based reward features

- Novelty, Valence, Goal relevance and Control
- Domain-independent
- General-purpose guiding system for RL agents
- Mitigation of perceptual limitations

Departs from previous works within Affective Computing

- Domain-independent appraisal-based
- Does not alter RL algorithm
- Does not focus on a set of basic emotions
Outline

Problem

Approach

Emotion-based Intrinsic Rewards

Emerging Emotions

Socially-Aware Learning Agents

Conclusions
Answer the question:

"Are emotions the best candidate to complement the agents’ information processing mechanism?"
Emerging Emotions

Optimal Sources of Information

- Reward optimization using Genetic Programming (Niekum et al. 2010)
 - Population of reward functions
 - Evolved and evaluated according to agent’s performance
Emerging Emotions

Foraging Experiments

- Same foraging scenarios as before
 - Observe resulting evolved optimal rewards
 - Discover patterns in the reward functions’ expressions

- Results
 - Set of 5 informative signals
 - Fitness, relevance, advantage, prediction, frequency
 - Each signal can be used as an intrinsic reward feature
Emerging Emotions

PacMan Experiments

• Scenarios based on PacMan
 • Objective: validate emerged optimal sources of information
 • Different and much more complex scenarios
 • Limited perception

Results

GP-based agent outperformed standard agents
Learn the intended task
Overcome perceptual limitations
Emerging Emotions

Analysis

• Analyze emerged information signals
 • Compare the “kinds” of evaluation
 • According to appraisal theories of emotion

• Results
 • Informative signals provide similar evaluation
 • Share structural and dynamical properties
Emerging Emotions

Contributions

- Information-processing reward mechanism
 - Emerged by means of genetic programming
 - Domain-independent
 - Mitigation of perceptual limitations
- Relation with natural agents and emotions
 - Dynamic and structural connections with appraisal dimensions
 - Adaptive mechanism that allows for higher fitness
 - Reinforce the role of emotions in agents adaptation
Outline

Problem

Approach

Emotion-based Intrinsic Rewards

Emerging Emotions

Socially-Aware Learning Agents

Conclusions
Socially-Aware Learning Agents

Motivation

- Extend previous research into multiagent settings
 - Shared environment
 - Each agent has its own goals
 - May be conflicting
 - Achieve cooperation

- Inspiration from social mechanisms
 - Living in group augments survival chances
 - Still there is competition for resources and power
 - Communicate intentions and evaluate each others actions
Socially-Aware Learning Agents

Cooperation in Nature

- Cooperation in competitive contexts

 - Need for affiliation
 - Altruistic behaviors despite momentary losses

 - Legitimacy signals
 - Signal socially-aware behaviors

 - Reciprocation mechanism
 - Evaluates “kindness” of others’ actions
Socially-Aware Learning Agents

Social Intrinsic Motivation

- Limited resource sharing scenarios
 - Internal and external social rewards
 - Evaluate appropriateness of behaviors towards social group
Socially-Aware Learning Agents

Social Experiments

- Limited resource and mutual dependency scenarios
 - 2 or 3 agents interact in the same environment
 - Limited perception
 - Agents learn and act individually, fitness is measured of the social group

Results

- Socially motivated agents outperformed "greedy" group
- Mostly homogeneous populations
- Emergence of "socially-aware" behaviors
Socially-Aware Learning Agents

Contributions

- Extend IMRL to multiagent scenarios
 - Social intrinsic motivation
 - Based on affiliation, social signaling and reciprocity
 - Emergence of “socially aware” behaviors
 - Trade-off immediate gains for future collaboration
 - Learned behaviors benefit whole group
 - Accordance with how cooperation thrives in nature
 - Existence of signaling mechanism
 - Reciprocation opportunities
 - Future interactions
Outline

Problem

Approach

Emotion-based Intrinsic Rewards

Emerging Emotions

Socially-Aware Learning Agents

Conclusions
“We focus on the role of emotions and also on the way individuals interact and cooperate with each other as a social group to design more flexible and robust reward mechanisms that enhance the autonomy of RL agents in both single and multiagent settings.”
Conclusions

Implications (1/2)

- RL and IMRL
 - Alleviate perceptual limitations and modeling effort
 - More autonomous, robust and flexible mechanisms
 - Novel approach for multiagent IMRL

- Affective Computing
 - Show the importance of emotion-based reward design
 - Independent of algorithm, not focused on set of basic emotions
 - Parallel with natural organisms
 - Importance of emotion-related information
Conclusions

Implications (2/2)

- Multiagent Systems
 - Relation with evolutionary game theory
 - Emergence of cooperation with relatedness and reciprocation
 - Signaling mechanism according to internal social standards
 - Emergence of cooperation by means of
 - Social pressures
 - Pure altruism
The End