Algebraic Geometry I

Here are some more problems on cubics! Assume everywhere that \(\text{char } \mathbb{k} \neq 2, 3 \).

1. (The group law on cubics.) Consider the cubic curve
 \[E_\lambda : \ y^2 z = x(x - z)(x - \lambda z). \]
 (i) Consider two points \(P = [x_1, y_1, 1] \) and \(Q = [x_2, y_2, 1] \) on \(E_\lambda \). Prove that the sum \(P \oplus Q \) is \([0, 1, 0] \) if \(x_1 = x_2, y_1 \neq y_2 \), and \([x_3, y_3, 1] \) if \(x_1 \neq x_2 \), where:
 \[x_3 = \left(\frac{y_1 - y_2}{x_1 - x_2} \right)^2 + 1 + \lambda - x_1 - x_2, \]
 \[y_3 = \left(\frac{y_1 - y_2}{x_1 - x_2} \right)x_3 + \left(\frac{x_1 y_2 - y_1 x_2}{x_1 - x_2} \right). \]
 What are the corresponding formulas for \(P = Q \)?
 (ii) Show that if \(\lambda \in \mathbb{Q} \), then the set of points on the cubic curve with rational coordinates form an abelian group. You only need to check that if \(P, Q \) have rational coordinates, then so do \(-P \) and \(P \oplus Q \). (Note: The Mordell-Weil theorem states that this abelian group is finitely generated.)

2. Let \(C \subset \mathbb{P}^2 \) be a smooth cubic curve. Let \(P \in C \) be an inflection point. Show that there are exactly 4 tangents of \(C \) that pass through \(P \). Related question: How many torsion points of order 2 does a cubic have? (You may answer this also using problem 4.)

3. (Hesse configuration of points is unique up to the action of \(\text{PGL}_2 \).) Prove that if \(C, C' \subset \mathbb{P}^2 \) are smooth cubic curves, then there is an automorphism of \(\mathbb{P}^2 \) that takes the inflection points of \(C \) to the inflection points of \(C' \). (Hint: use problem 6 on Problem set 8.)

4. (Elliptic functions, the Weierstrass function and the parametrization of cubics. (This problem requires some background in complex analysis.)
 Let
 \[L = \mathbb{Z} \omega_1 + \mathbb{Z} \omega_2 \subset \mathbb{C} \]
 be a complex lattice, i.e., let \(\omega_1, \omega_2 \in \mathbb{C} \) be complex numbers with \(\omega_1/\omega_2 \notin \mathbb{R} \) and let
 \[L = \{ m \omega_1 + n \omega_2 : \ m, n \in \mathbb{Z} \}. \]
 (i) Prove that the infinite series
 \[\wp(z) = \frac{1}{z} + \sum_{\omega \in L \setminus \{0\}} \left(\frac{1}{(z - w)^2} - \frac{1}{\omega^2} \right) \]
 converges to a meromorphic function in \(z \) with poles of order 2 at the points of \(L \). This is called the Weierstrass function.
(ii) Prove that \wp is an even function

$$\wp(-z) = \wp(z),$$

hence, its Laurent expansion near 0 contains only even powers of z. Prove that its derivative

$$\wp'(z) = -\sum_{\omega \in L} \frac{2}{(z-\omega)^3}$$

is an odd function.

(iii) Prove that \wp is a meromorphic elliptic function:

$$\wp(z + w) = \wp(z)$$

for all $\omega \in L$, i.e., doubly periodic, with periods ω_1 and ω_2.

(iv) Use Liouville’s theorem to conclude that holomorphic doubly periodic functions are constant.

(v) Prove that \wp satisfies a differential equation:

$$\wp'(z)^2 = c_3 \wp^3(z) + c_2 \wp(z)^2 + c_1 \wp(z) + c_0$$

for some constants c_i that depend on L.

Hint: consider the meromorphic function

$$f(z) = \wp'(z)^2 - c_3 \wp^3(z) - c_2 \wp(z)^2 - c_1 \wp(z) - c_0.$$

Observe that $f(z)$ has a pole of order at most 6 at the origin, and only even powers of z appear in the Laurent expansion. Prove that you can pick c_0, c_1, c_2, c_3 such that the Laurent coefficients of $z^{-6}, z^{-4}, z^{-2}, z^0$ in f vanish. Conclude that f is a holomorphic doubly periodic function. Then show that $f = 0$.

Note that one can actually show that $c_3 = 4, c_2 = 0$ and c_1, c_0 are given by the Eisenstein series

$$c_1 = -60 \sum_{\omega \in L \backslash \{0\}} \frac{1}{\omega^4}, \quad c_1 = -140 \sum_{\omega \in L \backslash \{0\}} \frac{1}{\omega^6}.$$

(vi) From (v) conclude that the point $(\wp(z), \wp'(z))$ lies on the cubic curve

$$y^2 = c_3 x^3 + c_2 x^2 + c_1 x + c_0$$

for all values of z. In fact, it turns out that any point on the cubic curve above can be written as $(\wp(z), \wp'(z))$. Therefore, $z \mapsto (\wp(z), \wp'(z))$ gives a parametrization by elliptic functions. Note that we have seen that a cubic curve does not admit a parametrization by rational functions. It can be shown that the argument can be reversed, i.e., that any cubic can be parametrized by the Weierstrass function of some lattice L. Moreover, the group structure on C arises from the group structure of \mathbb{C}.