Algebraic Geometry I - Problem Set 8

Write up solutions to three of the problems (write as legibly and clearly as you can, preferably in LaTeX).

1. (Intersection Multiplicities.) Let \(C = V(f) \) and \(D = V(g) \) be two distinct curves in \(\mathbb{A}^2 \). Recall that the multiplicity of intersection \(m_p(C, D) \) of \(C \) and \(D \) at \(p \) is defined as the dimension of the \(k \)-vector space \(\mathcal{O}_{\mathbb{A}^2, p}/<f, g> \). Prove that:
 (a) \(m_p(C, D) \geq m_p(C) \cdot m_p(D) \).
 (b) If \(p \in C \), for all but finitely many lines \(L \) through \(p \), \(m_p(C, L) = m_p(C) \).
 (c) If \(C = C_1 \cup \ldots \cup C_r \) and \(D = D_1 \cup \ldots \cup D_s \) are decompositions into irreducible components, then
 \[
 m_p(C, D) = \sum_{i,j} m_p(C_i, D_j)
 \]

2. Consider the space \(\mathbb{P}^5 \) parametrizing all conics in \(\mathbb{P}^2 \) as follows: to any \([a, b, c, d, e, f] \in \mathbb{P}^5 \) we associate the symmetric quadratic form whose matrix of coefficients in given by:
 \[
 \begin{pmatrix}
 a & b & c \\
 b & d & e \\
 c & e & f
 \end{pmatrix}
 \]
 In other words, it corresponds to the conic with equation:
 \[
 ax_0^2 + 2bx_0x_1 + 2cx_0x_2 + dx_1^2 + 2ex_1x_2 + fx_2^2 = 0
 \]
 (Assume that the characteristic is not 2.)
 Let \(\Sigma \), respectively \(\Gamma \), be the locus parametrizing conics for which the corresponding quadratic polynomial is reducible, respectively the square of a linear form (i.e., this is the locus of matrices of rank \(\leq 2 \), resp. rank \(\leq 1 \)).
 (a) Prove that \(\Gamma \) is the image of the Veronese map \(v_2 : \mathbb{P}^2 \to \mathbb{P}^5 \), where \(\mathbb{P}^2 \) denotes the dual \(\mathbb{P}^2 \), i.e., the space \(G(1, 2) \) of lines in \(\mathbb{P}^2 \) (a line \(ax_0 + bx_1 + cx_2 = 0 \) corresponds in \(\mathbb{P}^2 \) to the point \([a, b, c] \)).
 (b) Prove that \(\Sigma \) is a cubic hypersurface.
 (c) Prove that \(\Sigma \) is the secant variety to \(\Gamma \), i.e., the closure of the union of all the lines in \(\mathbb{P}^5 \) that intersect \(\Gamma \) in at least 2 points.

3. Let \(C = V_+(F) \subset \mathbb{P}^2 \) be a smooth curve (\(F \) is a homogeneous polynomial in \(k[X, Y, Z] \)). Consider the morphism:
 \[
 \phi_C : C \to \mathbb{P}^2, \quad p \mapsto (\frac{\partial f}{\partial x_0}(p), \frac{\partial f}{\partial x_1}(p), \frac{\partial f}{\partial x_2}(p)).
 \]
 The image \(\phi(C) \) is called the dual curve of \(C \).
 (a) Find a geometric description of \(\phi \). What does it mean geometrically that \(\phi(p) = \phi(q) \) for two distinct points \(p, q \in C \)?
 (b) If \(C \) is a conic, prove that its dual \(\phi(C) \) is also a conic.
 (c) For any five lines in \(\mathbb{P}^2 \) in general position (what does this mean?) show that there is a unique conic in \(\mathbb{P}^2 \) that is tangent to these five lines.
4. Assume $\text{char } \overline{k} \neq 2,3$. Prove that a smooth plane cubic C has nine distinct inflection points. Equivalently prove that $m_p(C, \text{Hess}(C)) = 1$ for every inflection point p of C. (Hint: you may assume that the inflection point p is $[0,0,1]$ and the tangent line to C at p is $y = 0$. Then prove that if $f = f(x,y)$ is the local equation of C then in the local ring $\mathcal{O}_{k^2,p}$, we have $\langle f, H(x,y,1) \rangle = \langle x, y \rangle$. Note that $H(x,y,1) = yp(x,y) + H(x,0,1)$ and $H(x,0,1) = xv$, where v is a unit in $\mathcal{O}_{k^2,p}$. Alternatively, you may use the Weierstrass normal form of the cubic to prove this.)

5. (*The j-invariant.*) Prove that $j(\lambda) = j(\mu)$ if and only if $E_\lambda \cong E_\mu$.
 Hint: prove that $j(\lambda) = j(\mu)$ if and only if
 \[\mu \in \{ \lambda, \frac{1}{\lambda}, 1 - \lambda, \frac{1}{1 - \lambda}, \frac{\lambda}{\lambda - 1}, \frac{\lambda - 1}{\lambda} \} . \]

6. Let C be a smooth cubic and let $O \in C$. Consider the group structure (C, \oplus) that has O as the identity. Prove that:
 (i) The inflection points of C correspond to the torsion points of order 3.
 (ii) If P, Q are inflection points and R is the third point of intersection of the line \overline{PQ} with C, then R is an inflection point.
 (iii) Prove that if $O \in C$ is an inflection point, then the nine inflection points form a subgroup of C that is isomorphic to $(\mathbb{Z}/3\mathbb{Z})^2$.