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Abstract—Player decision modeling can provide useful guid-
ance to understand player performance in serious games. How-
ever, current player modeling focuses on high-level abstraction of
player behavior rather than decision-level player modeling, and
is predominantly applied to entertainment games. In this paper,
we describe an approach from game design to data mining and
data analysis to determine detailed player decision patterns. We
illustrate this approach with VistaLights, a supply chain game
we developed based on a recent oil spill event in Houston. With
this game, we set up a within-subjects experiment to study
decision making under varying circumstances, specifically to
consider whether/how a recommendation system can improve
human decisions. Using a series of data analysis techniques we
built a coarse-grained decision model as well as a fine-grained
model to compare players’ actions on the game outcomes. The
results confirm the need for decision-level modeling and show
an ability of our approach to both identify the good and bad
decision patterns among players.

I. Introduction

Player modeling has become more popular and essential for
game design to appeal to a broad audience. Player modeling
techniques aim to abstract player behavior patterns and have
been successfully applied to game development [1], [2], self-
adaptive games [3], [4], and agent design [5]. These techniques
would be useful for serious games too; however, thus far
applications have been rather limited [6], [7].

Unfortunately, the existing work in player modeling typ-
ically classify players based on their high-level behavioral
statistics. No matter which machine learning or data mining
approaches are used, aggregate properties such as play time or
number of actions tend to be used to categorize players into a
limited number of classes. Although general clustering based
on player features can be useful, this likely does not provide
the depth and accuracy needed to understand the dynamics
of any game, whether a serious or entertainment game. For
example, with this high-level approach it is difficult to deter-
mine what the key decisions are that lead to a poor or good
performance. Exactly this kind of information is critical for
improving the effectiveness of serious games. Therefore, we
argue that the existing work needs to be complemented with
decision-level modeling and decision-by-decision evaluation.
The motivation for this paper is to demonstrate the usefulness
of this low-level approach for serious games.

In order to explore how to study human decision-making
behaviors in serious games, including how player decisions
can be improved by providing help in the form of decision
aids, we have developed a supply chain game from scratch

called VistaLights. In this simplified but realistic simulation
game, players manage a port by prioritizing ships and dealing
with disruptions, specifically oil spills. The game is inspired
by the recent oil spill event at the Port of Houston [8].
Although a simplification of reality, this game provides a
complex dynamic decision making environment where opti-
mization techniques cannot find the optimal solution strategy
and simple analytical techniques do not reveal why certain
players performed as they did. By developing it ourselves,
we have complete control over what happens in the game,
allowing us to systematically study player decisions. In this
paper we report the findings of our initial pilot study, where we
set up a within-subjects experiment with three levels that vary
in the use of a recommendation system (no recommendation,
recommendation, and recommendation with justification).

Our contributions are threefold. First, we illustrate through
a detailed description of designing and evaluating VistaLights
how to develop and study a serious game for decision making,
and demonstrate how to assess a well balanced design, which
is needed to analyze player performance. Second, we detail a
generalized approach not limited to VistaLights to understand
the impact of player decisions on game outcomes from a high-
level and decision-level perspective, and highlight the limita-
tions of clustering techniques. Third, we report our findings
from analyzing player behavior in VistaLights, including how
players engaged with the recommendation systems.

II. Background
A. Serious Games

Serious games, games with a non-entertainment purpose,
are increasingly used in various fields, from health to business,
to study and improve human behavior [9]. As all games are
essentially about making decisions, it is key to identify how
players make decisions to increase the effectiveness of serious
games. First, by identifying player behavior the design can
be adjusted accordingly to maximize the impact the game is
attempting to achieve. For example, when players make poor
decisions, the game can recognize this and provide personal-
ized feedback or adjustments. Second, players themselves can
then identify which types of players they are and how they
need to improve their decision making.

Typically, player decisions are evaluated according to a nor-
mative model, and then players receive feedback accordingly
to improve their behavior. Such evaluations would still benefit
from player modeling to be able to personalize the game,



and the limited work where player modeling has been applied
to serious games has exactly done this, by modeling players
according to normative models [6], [7]. However, in complex
dynamic games such as VistaLights this typical approach will
not be sufficient because it is difficult to determine upfront
what the key decisions are. But even in simpler games un-
expected behavior may happen—actions not identified by the
normative models—and identifying how these actions impact
the game outcomes will be beneficial. We argue that this
type of identification requires a different approach to player
modeling, one that considers decision-level analysis.

B. Player Modeling

In terms of player modeling approaches, machine learning
and data mining techniques, especially clustering techniques,
have been widely accepted [10], [11]. For example, Drachen
et al. [1] use Emergent Self-Organizing Maps to cluster high-
level player behavior features, such as completion time and
number of deaths. The clustering result is used to improve the
game and determine whether the player is following the game
designer’s intention. However, even with advanced machine
learning algorithms, modeling human player decisions can be
difficult due to the large data dimensions and the uncertainty of
human behavior [12]. Other approaches have also been applied
to better understand player decisions. Holmgård et al. [2] use
generative agents as personas to characterize and discriminate
human players. They show that a high-level abstraction of
human decisions is possible. In our research, we use similar
approaches to cluster human decisions, as well as some novel
solutions to identify a more fine-grained analysis, and apply
these in the context of a serious game.

III. Design

In this section, we describe the design of VistaLights1, which
we use as a research environment to study player decisions
and the role of decisions aids. We discuss the context for the
development, how to play it, and how the scores are calculated.

A. Context

We modeled the game after the Port of Houston. Based
on discussions with stakeholders, we understood that when a
disruption occurs, representatives from different industries in
addition to several authorities discuss what actions to take. The
different industries concern: breakbulk, dry bulk, and liquid
bulk. The port authority takes care of container ships but
also of special ships such as cruise ships. Actions basically
involve prioritizing certain ships and implementing mitigation
strategies. The resiliency to bounce back from a disruption is
of interest to everyone involved because the port is a shared
infrastructure on which everyone’s productivity depends.

In building the first game version, we focused on disruptions
caused by oil spills. Specifically, we used the oil spill that
happened in March 22, 2014 as an example. At that date, a
collision occurred between an oil barge and a ship at a critical
node in the network (blocking the Houston Ship Channel

1For game and source code, see http://hdl.handle.net/2047/D20213074

Fig. 1: A screen shot of VistaLights. The main screen shows
the map of the port with the ships; on the right are the
messages; at the bottom is the priority queue and control panel.

where all ships must pass to enter and exit the port), causing
an almost complete standstill in the port. Interestingly, a cruise
ship was required to wait right outside of the port and could
not enter due to the spill. The decision was made to let the
cruise ship go through the oil spill before cleaning it up. We
were also inspired by a decision aid and monitoring system
that is used to schedule ships. This system is essentially a
combination of a visualization of the entire port as well as
priority queue of ships and their characteristics. It formed the
basis for the game’s interface and gameplay.

B. Gameplay

Like any simulation game, in representing the object of
interest we made simplifications. For example, the current
version is a single player game where the player single-
handedly decides what actions to take. The player’s goal is
to manage the port by prioritizing ships and dealing with
disruptions when they occur. In managing the port there are
two benchmarks to consider: earnings and welfare. Earnings is
a quantitative economic score based on the efficient use of the
port’s infrastructure; welfare is a qualitative composite score
that considers the environment and reputation.

In the game, players see a map of the Port of Houston
with a network of channels that ships use to navigate to the
docks to unload their cargo. Players cannot directly control the
ships; they can only change the priorities in the priority queue,
which lists all of the ships with their names, current status,
industry type, cargo amount and value, due time, and estimated
time of unloading (Fig. 1). Each ship is assigned a unique
priority value and ships with higher priority will be scheduled
first. Lower priorities will be scheduled when no conflicts
exist. In prioritizing ships, players will need to maximize
the occupancy rate of the shipping lanes and docks while
minimizing penalties that result from ships being overdue.

Players must further decide how to respond to the oil spill
when it occurs. Other than the null-option (leaving the oil spill
alone), players have three options to clean up the oil: burning,



dispersants, and skimmers. Each option varies in cost, clean up
time, impact on traffic, and impact on welfare. Additionally,
with burning and skimmers the traffic can only resume after the
spill has been cleaned up; with the null-option and dispersants
the traffic can continue at a lower speed. Players can postpone
their decision to allow time-critical ships to go into port but
at the cost of a welfare penalty.

The game is divided into two phases: the decision and
simulation phase. During decision phases, players can take
actions. Although the simulation time is paused during these
phases, players need to submit their decisions within a certain
time. During the simulation phases players cannot take action;
however, they can retrieve information about the ships that
would be useful to make informed decisions during the next
decision phase. The game spans several days in the port and
decision phases occur every six hours of port operation (i.e.,
one simulation phase covers six hours of port operation). To
help players be aware of what is happening in the port, they
receive messages categorized on events throughout (Fig. 1).
Players can change the speed of the simulation time during
the simulation phases with a control panel.

C. Score Calculation
The player’s goal is to maximize the economic score without

reducing the overall welfare. The economic score is increased
by unloading cargo, and calculated by multiplying the amount
of cargo by the cargo value. It is decreased by due time
penalties if ships fail to unload on time in addition to cargo
maintenance costs: the longer the cargo stays on the ship, the
higher the cargo maintenance cost will be. The cost for oil
cleaning will also be subtracted from the earnings made. We
express the economic score as the total earnings generated
after a number of days and as the average earnings per hour.

Welfare is a qualitative score with a value between zero
and five (represented as stars). It is negatively affected by
overdue cruise ships and how the oil spill is handled. When a
cruise ship is overdue, it continues to decrease proportionate
to the number of passengers until all passengers have left the
ship. With the oil spill, it continues to decrease proportionate
to the amount of oil until it is cleaned up. An additional
penalty is applied for the chosen solution because solutions
such as burning and dispersants have further implications for
the environment. The welfare score recovers at a constant but
slow rate; however, if it becomes zero, players lose the game.

IV. Methods
Our goal for the pilot study with VistaLights was to explore

decision making in a serious game. For the study we imple-
mented a within-subjects experimental design; however, the
scope of this paper is specific to evaluating modeling player
behavior within this space, not to evaluate the manipulations
themselves, which were intentionally implemented to observe
decision making under varying circumstances.

A. Participants
Participants were recruited at Northeastern University and

University of Houston-Clear Lake. At the first University

primarily students in Computer Engineering volunteered to
participate (N = 26); at the second University it concerned
solely students in Psychology who participated for credit (N
= 11). No demographic information was collected.

B. Materials

The game VistaLights that is provided as the material for the
study has four levels. The first level is a tutorial that explains
step by step how to play the game with a pop-up screen. The
level itself is a short level that ends in two days of simulation
time. The other three levels have been designed according to
the experimental design described in detail in the following
section. These levels end in five days of simulation time. Based
on playtests we roughly estimated that it would take an hour
to play all levels if players would make use of increasing the
simulation speed at times. We set the maximum time during
the decision phases at two minutes. In the remainder of the
paper we refer to the first level as the tutorial and to the other
three levels as Challenge 1, 2, and 3, respectively.

We varied the four levels in terms of a number of level
characteristics and manipulations, both which we discuss in
detail below. These controlled variation allow us to maintain
some consistency over the types of decisions the players
must make and to identify how players learn to modify their
decisions across the game, while allowing enough variability
to isolate the impact of specific variables on player decisions.

1) Level Characteristics: We varied the levels in terms of
ships, oil spill location, and goals. First, we populated each
level with 30 different ships. We randomized all the ship values
between realistic values for one level first. For example, we
calculated the arrival time by multiplying a random number
between zero and one and multiplying this by three days. For
the other levels we kept the same values except for industry
type, arrival time, and due time. For those characteristics we
calculated a new random value. We made these variations
to make sure players experience different scenarios, and are
therefore not inclined to take the exact same decisions.

Second, we varied the location of the oil spill between three
locations for Challenge 1, 2, and 3; no oil spill occurred during
the tutorial. The three locations were chosen such that they
would have the same impact on the game; however, it gives
players the illusion that there is variation and that they cannot
predict what will happen. Every oil spill happens around the
same time, after two days, with a few hours difference between
each level. Unlike the oil spill, we used the exact same network
with the same number and type of docks for all four levels.
For each industry type (breakbulk, dry bulk, liquid bulk, and
cruise ships) we included two docks and mapped them to how
these industry types are located in the Port of Houston.

Third, we varied the earnings and welfare goals between
levels. At the start of each level, players receive a message
that specify the earnings and welfare targets that they have
to obtain. We determined realistic target goals for both the
revenue and welfare based on prior playtests. For example,
the first level is much harder and so we set the target goals
lower than for the subsequent levels.



2) Level Manipulations: Our manipulations pertaining to
the levels are related to the provision of a decision aid that
provides recommendations regarding how to prioritize the
ships. In addition to a level where no decision aid is provided,
we settled for this initial study on two variations: a recom-
mendation without and with justification. These manipulations
allowed us to explore how players make decisions when
confronted with a complex, unfamiliar task under varying
circumstances. This manipulation resulted in the following:
players received no recommendations for Challenge 1; they
received recommendations regarding prioritizing ships with
no justification for the recommendation for Challenge 2; and
they received recommendations regarding ship prioritization
and justifications for those recommendations for Challenge 3.

In both recommendation systems, the player receives up
to three recommendations in each decision phase. For each
level (other than the tutorial) there are 20 decision phases
across the five days. Recommendations are based on the ships
that are at the time of the decision phase waiting outside of
the port; ships that are moving and unloading are ignored.
Both systems will first check if any cruise ship is going to
be overdue or is already overdue. Then they will check on
overdue or nearly overdue ships. From there recommendations
involve prioritizing ships with the highest total cargo value.

Recommendations with suggested priority values are made
in the order described above and in the format of “Consider to
prioritize ship <ship name> to priority <x>.” We decided for
both systems to recommend a specific priority because in that
way we can determine whether players comply with the ad-
vice. The difference between the two recommendation systems
concerns the justification. Justifications are short explanations
such as ”Because this ship has a high cargo value.”

The three recommendations are provided but only after
players requested the advice. As players cannot progress
without requesting advice, we essentially required them to do
this. This seems unnatural but was implemented to ensure that
players would consider the recommendations, which is the ma-
nipulation they are exposed to, and not play the game without
the recommendations provided. Once the recommendations are
requested, players then need to accept or reject each one of
them before they can progress to the priority queue to make
their changes. In this priority queue, they see the old value as
well as the suggested value by the recommendation system.

We designed the recommendation system to be imperfect
and purposely did not inform players about its logic. For
example, players could prioritize moving ships whereas the
recommendation system does not include these. Therefore, a
better performance is possible by not completely relying on
the recommendations.

C. Procedure

We implemented a within-subjects experiment where every
participant experiences every condition. There are three con-
ditions: • Challenge 1 (no recommendation), • Challenge 2
(recommendation), and • Challenge 3 (recommendation with
justification). The tutorial level was included to make sure

that players first learn how to play the game before starting
the experiment and to minimize the practice effect from
Challenge 1 to Challenge 2. We did not vary in the order of
the conditions because seeing the recommendation, and most
certainly the recommendation with justification, would likely
affect further play. A consideration for just three conditions
was a possible fatigue effect. We requested that all players
finish the experiment in one session to minimize any possible
bias from contextual factors for when and how players engage
with the game. Although the within-subjects design creates the
possibility of learning effects and behavior constancy, it was
necessary to determine whether prior performance in the game
predicted future compliance with the recommendations.

The implementation was different at both Universities. At
the first University the game was distributed with instructions
to play over e-mail. Participants were requested to take an hour
and complete all levels in one sitting. At the second University
players participated in person in a lab setting. After the
facilitator briefed them about the purpose of the study and how
to play, they were assigned to a computer where the game was
installed. This variation in play context was not intentional. It
was pragmatic and based on the infrastructures in place for the
researchers involved. For both locations selected participants
were contacted for a debriefing interview to understand what
strategies they used in the game.

D. Data Analysis

We applied several different data analysis techniques to
evaluate player behavior. We first analyzed the distribution of
the players’ earnings and welfare results to examine if the
game is well balanced. If the game is too difficult or too easy,
it becomes harder to distinguish players, and what decisions
can be considered good or bad. We then examined the role of
the recommendation systems by considering the relationship
between compliance rates with player performance. We also
compared a typical poor and top player from our sample with
a hypothetical player who does not take any actions (“No
Action Player”) and one who complies with everything that
the recommendation systems suggest but does nothing else
(“Compliance Player”). We performed these analyses to show
if the recommendation systems are useful and if players can
perform better than the imperfect recommendation systems.

To discover the decision patterns, we performed a coarse-
grained analysis and a fine-grained analysis. For the coarse-
grained analysis, we linked the players’ decisions on the oil
cleaning solutions and the ship priorities with their results on
earnings and welfare. For the ship priorities we categorized
different groups of priority level changes and counted the
changes per group. We then performed a clustering analysis
and used the resulting clusters of player decisions to predict
players’ win/lose probability. The clustering was done by first
whitening [13] the number of actions of each priority group
category, and then using Ward method [14] as the criterion to
perform hierarchical clustering [15] analysis.

For each of the above analyses, all 37 players’ data are
considered; however, for the fine-grained analysis we focused



on only two players to illustrate our proposed method of
analyzing specific player decisions in serious games. By com-
paring the cycle-by-cycle decisions of two similar players, we
explored how individual decisions impacted the performance
trajectory of each player, and tried to infer what strategies the
players had used. To complement our strategy inferences, and
see if players intentionally took certain actions, we compared
this analysis with our interview notes of selected players who
articulated their strategies to us.

V. Results

In this section, we discuss first the overall player per-
formance and then the role of the recommendation system,
followed by the influence of the oil cleaning decisions and
the priority change decisions. Finally, we illustrate the play
trajectories of two players and show how making similar
decisions can still lead to drastically different results in a
dynamic environment such as VistaLights.

A. Player Performance

The final results on earnings and welfare are depicted for
each player in each level in Figure 2. The horizontal lines
represent the earnings target in each subfigure; the vertical
lines represent the welfare target. The resulting quadrants show
if players won the game (upper right quadrant), lost because
they failed to meet the earnings goal (lower right quadrant),
lost because they failed to meet the welfare goal (upper left
quadrant), or lost because they failed to meet both earnings
and welfare goals (lower left quadrant). Except for Challenge
3, where few players lost on both earnings and welfare, players
were well-distributed over the quadrants, suggesting that the
targets were fair and that the game had a reasonable difficulty.

There was no immediate clear pattern for previous player
performance predicting future performance. A player who did
well in Challenge 1 did not necessarily do well in Challenges
2 and 3. The likelihood that a player got the same result in
Challenges 1 and 2, Challenges 1 and 3, and Challenges 2 and
3 were 51%, 62%, 48%, respectively. This finding was also
illustrated by the win percentage: the percentages of players
who won were 58% (21 of 36), 29% (10 of 34), and 60% (18
of 30) for Challenges 1, 2, and 3, respectively, suggesting that
Challenge 2 may have been been more difficult than the other
challenges. Of the 30 participants who completed all levels,
five players won every challenge and five lost every challenge.
Losing two or winning two was split almost equally as well.

B. Recommendation System

In Challenges 2 and 3, we provided players with an imper-
fect recommendation system. However, this recommendation
system was most certainly beneficial. Table I illustrates the
performance of the recommendation system by modeling a
player who complies with all provided recommendations and
does not do anything else. We compared this performance by
modeling a player who does not take any action at all and a
typical poor and top player from our sample. This table shows
that even the poorest players made some good decisions but
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(a) Players’ final earnings and welfare for Challenge 1.
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(b) Players’ final earnings and welfare for Challenge 2.
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(c) Players’ final earnings and welfare for Challenge 3.

Fig. 2: Distribution of the players’ final results. The blue lines
are the target earnings and welfare. The shapes represent the
oil spill solutions players chose.

that if they only complied with the recommendation system,
doing nothing else, their final results would have been better. In
fact, if a player simply accepted all the recommendations and
chose dispersants or burning as their oil spill solution, they
would have exceeded the targets and won both challenges.
The table also shows that players can outperform the recom-
mendation system. The system only suggested three priority
changes and only for ships that were waiting outside of the
port. Therefore, room existed for human decision making to
outperform simple recommendation compliance in the game.

In terms of the usage of the recommendation systems, we
calculated the rate with which players accepted the recom-
mendations and then the rate that they complied by actually
implementing the advice. A strong correlation existed between
the acceptance rate and the compliance rate for both Challenge
2, r = .96, p < .001, and Challenge 3, r = .93, p <



TABLE I: The performance comparison between a hypothet-
ical player not taking any action, a typical poor player, a
hypothetical player who complies with every recommendation
and nothing else, and a typical top player. For the hypothetical
players we chose dispersants when an oil spilling happens.

Player Item C2 C3

No Action Player Earnings -3.89M -0.76M
Welfare 0.00 1.98

Poor Player Earnings -1.87M 1.45M
Welfare 0.00 0.00

Targets for Players Earnings 2.60M 2.50M
Welfare 0.50 1.50

Compliance Player Earnings 3.13M 3.15M
Welfare 1.48 2.30

Top Player Earnings 4.60M 5.33M
Welfare 1.42 2.93

.001. Therefore, when players accepted the advice, they also
complied by implementing the advice. The actual acceptance
rates were similar across challenges: in both challenges, a
small majority of the advice was implemented (M2 = .55,
SD2 = .29; M3 = .55, SD3 = .33). The rates were, in fact,
similar because reliance on the recommendation system in
Challenge 2 was a strong predictor of reliance in Challenge 3,
accounting for 81% of the variability (R2 = .81). Knowing that
the recommendations do help, it seems that more players could
have benefited from an increased reliance. However, we did not
find any relationship in the data between the compliance rates
and performance, suggesting that any differences we found
between the challenges in terms of performance could not be
explained by the use of the recommendation systems. There-
fore, other factors determined how well players performed.

Additionally, performance on previous challenges (earnings,
welfare, and whether or not the player won the challenge) did
not predict whether players would rely on the recommenda-
tions for later challenges. It should be expected that players
who had seen that they were unsuccessful would have been
more likely to comply with the recommendations, but this was
not the case. Because compliance did not predict performance
and previous performance did not predict future compliance,
despite the fact that simply following the recommendations
and doing nothing else would lead to success, we argue
that players were not able to effectively decide when the
recommendations were beneficial and when they were not.
This result may have been due to players not having received
immediate feedback about their decisions to comply. The sum
of their decisions was reflected as a final score at the end of
the challenge, making it difficult to identify which decisions
should be changed.

C. Oil Cleaning Decisions

The response to the oil spill was one of the key player
decisions, and our results confirmed this. Figure 3 shows the
distribution of the earnings and welfare for each challenge by
different oil cleaning solutions. The trend of how solutions
impacted earnings was clear and similar from challenge to
challenge. The null-option did not cost anything and did not
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(a) Distribution of earnings of different oil cleaning solutions in each
challenge.
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Fig. 3: Oil cleaning solution impact on the final result.

cause traffic to stop. Burning did stop traffic but had the
advantage that it cleared the oil relatively quickly. Few players
chose skimmers and the figure highlights that it may not have
been the best solution for earnings. Its advantages were likely
overruled by the penalties for overdue cargo.

The solutions were also related to welfare. The null-option
was a guarantee for losing the game. However, the patterns
for the effects across the challenges were dissimilar. Further
investigation revealed that this had to do with the arrival of
the cruise ships around the oil spill. With Challenge 2, two
cruise ships arrived shortly after the oil spill, explaining why
so many players lost that challenge due to welfare. In contrast,
there was little variation in Challenge 3 because no cruise
ship arrived during the oil cleaning period. The variance of
burning was also a result of cruise ship scheduling. Those
that implemented burning after letting the cruise ships pass
first, did better on welfare.

D. Priority Change Decisions

In addition to the one-time oil-cleaning decision, players
were tasked with changing the ship priorities. As shown in
Figure 4a, we counted the number of priority change actions
and what kind of priority changes players made in Challenge
1. We divided priority changes into the following groups:
priority 1, priorities 2 and 3, priorities 4 to 8, priorities 9 to 20,
and priorities higher than 21. In this figure we further placed
those who won to the left side of the vertical line and those
who lost to the right side. This figure shows that players who
won Challenge 1 made more changes, and that the number of



(a) The number of actions for assigning new priorities in Challenge
1, categorized by type of priority change. To the left of the vertical
line are the players that won. In both the win and lose groups, players
are sorted by their earnings in descending order.
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(b) Cluster analysis on the player’s priority changes

Fig. 4: Analysis of players decision pattern

actions predicted performance earnings with 26% variability
(R2 = .26). This prediction was not evident in Challenges 2
and 3, and the number of actions did not increase due to the
recommendation systems. Therefore, it may be that players
who put in more effort in Challenge 1 were able to change the
priorities of critical ships, whether intentionally or by chance.

To better understand player decision patterns, we conducted
a cluster analysis, and the result is depicted in Figure 4b. There
were three major clusters, and from the top to bottom, they can
be characterized as the medium amount of priority change, the
low amount of priority change, and the high amount of priority
change. An outlier was player 31 who had a large amount of
actions that set priority to 1 and to a value of higher than 20.
A related subgroup included Players 2 and 6 who also moved
ships to a priority higher than 20. By explicitly moving the
ship to the end of the priority queue, they freed up the main
channel and let more urgent ships enter.

E. Detailed Play Trajectories

From these results we were unable to get a fine-grained
decision evaluation, such as determining if a particular deci-
sion was good or bad. For example, Players 12 and 15 made
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(a) The actions and status of each decision phase of Player 2.
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(b) The action and the status of each decision phase of Player 34.

Fig. 5: Analysis of individual play trajectories. The trajectory
includes the scores on earnings and welfare across the decision
phases as well as the priority changes for all 30 ships. The
priority changes are color coded with the priority groups.

almost the same number of priority changes and they both used
dispersants as oil cleaning solutions. However, they ended up
with different results. To perform a more fine-grained decision
evaluation we selected two seemingly similar players, Players
2 and 34, and analyzed their play trajectories. Their trajectories
are illustrated in Figure 5. This figure shows their earnings and
welfare over time, in addition to what changes they made to
the 30 ships over the 20 decision phases.

According to the earnings curve, there was a turning point at
decision Phase 9. After Phase 9, the earnings of Player 2 kept
increasing while the earnings of Player 34 sharply plunged
until the end of the game. Player 34 must have made some
critical decision just before or during this phase that caused the
avalanche effect. The first difference was that player 34 moved
Ship 3 to Priority 1 at Phase 9 and this ship was a breakbulk
ship. When we recreated the game according to the player’s
log file, we noticed that by that time, the breakbulk docks were
already heavily overloaded and Ship 3 was going to be overdue
according to the system estimation. During that decision phase,
Player 34 made the natural decision to move Ship 3 to a higher



priority. As a consequence, ships at breakbulk docks and ships
that were already in the port had to wait for Ship 3 to move in.
Dock utilization was then significantly reduced by this action,
and other ships may have, as a result, become overdue. Similar
actions were made by Player 34 repeatedly throughout the
game, including prioritizing another breakbulk ship, Ship 26,
at Phase 9. We consider such decisions to be bad decisions.

Another key difference between Player 2 and Player 34 was
that Player 2 moved Ships 4 and 19 to a low priority. By
explicitly moving ships to the end of the priority queue, Player
2 let the ships that had already unloaded wait close to the
dock before moving out of the port, which prevented outgoing
ships to occupy the channel. We consider such actions as good
decisions and Player 34 did not take these.

An interview with Player 2 confirmed that the strategy
was intentional. He stated: “I gave lower priority to the
unloading ships and higher priority to cruise and cargo with
high value.” Others also articulated this strategy. However,
Player 14 did not use that strategy and still outperformed
Player 2 in Challenge 1. From the interview it becomes clear
that this player has a well thought out strategy for playing,
and is not a top player by chance: “First, I usually set high
priority to the overdue cargo or cargo that is going to be due.
Second, I watched the docks closely, each color represents a
particular type of industry and I always tried to keep the docks
busy all the time and if I see any dock is empty, I will give
higher priority to a proper ship to enter that dock. Third, I
will also keep an eye on the values. The more expensive the
ship’s cargo, the higher priority the cargo will have.” Player
14’s strategy of watching the under utilized docks was only
used by the high-performing players.

VI. Conclusion
In this paper we presented a supply chain game called

VistaLights that we developed to model human decisions.
The results from a within-subjects experimental pilot study
with 37 participants highlighted that this is a fair and valid
environment to study decision making: the participants were
reasonably well distributed in terms of their performance
and participants had to make the right decisions to perform
well. Our results illustrate that straightforward analyses do not
illuminate what happens in these complex dynamic decision-
making environments and that fine-grained decision models
are needed in addition to data mining techniques.

Key insights are that certain critical bad decisions can
negatively impact the outcomes. Therefore, it is of importance
to identify when people are about to make such bad decisions.
Likewise, critical good decisions can positively impact the
outcomes. Identification and recommendation of such good
decisions would help improve the effectiveness of serious
games for training, and may even impact the actual workplace.
The results also highlight that participants may need to rely
more on recommendation systems, even if they are imperfect,
especially when their own performance suggests an inability
to succeed. Finally, when it comes to the recommendation

systems we show that some people are simply more willing
to rely on these than others, as illustrated by the only signif-
icant predictor of future recommendation compliance having
been past compliance. This signifies the importance of player
modeling as it identifies individual differences.

Our work can serve as an example of how to design for
games to model player decisions and then how to analyze
these decisions. We acknowledge there are limitations to our
game and our analysis approach. To understand how the rec-
ommendation system can help in the decision making process,
we plan to perform studies with more players, and compare
the performance with additional players that do not have
recommendations in any challenge. We plan to expand this
pilot work with additional design variations and by developing
analytical techniques that will help to analyze fine-grained
decisions on a larger scale. The analytical model should also
be implemented together with the game to give players real-
time guidance as part of the recommendation system.
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