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Recent studies suggest that speakers with dysarthria may be able to manipulate pro-
sodic features sufficiently to convey information. Leveraging prosodic cues as an alter-
native or augmentative communication (AAC) signal may allow some individuals with
dysarthria to use their vocalizations to engage in richer and more efficient interactions.
As an initial step towards building voice-driven communication aids, the performance of
three machine classification algorithms was compared to determine which algorithm(s)
was most accurate and efficient for classifying a dataset of prosodic manipulations.
QOur findings suggest that machine classification of dysarthric productions is feasible
using preexisting machine learners and rather minimal training data. Highly accu-
rate classification of categorical duration control was achieved for all speakers with
dysarthria; however, classification of pitch categories and simultaneous duration-pitch
control varied widely across speakers. These findings have implications for harnessing
the residual vocal abilities of individuals with dysarthria for machine-mediated AAC

interactions.

MACHINE CLASSIFICATION OF
PROSODIC CONTROL IN DYSARTHRIA

Individuals with severe motor speech impairment
are often unable to rely on speech as their primary
communication modality. In such instances alter-
native and augmentative communication (AAC)
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aids are used to supplement communication. Cur-
rent state-of-the-art AAC devices rely on pointing
and/or scanning input to select icons or words and
phrases from graphical interfaces in order to con-
struct messages which are displayed on a screen
and/or produced by a speech synthesizer. AAC aids
enable communication that would otherwise be
limited; however, they fail to afford users the natu-
ral, complex, and efficient exchange that speech-
based communication provides (Beukelman &
Mirenda, 1998: Mathy-Laikko, West, & Jones, 1993;
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Shein, Brownlow, Treviranus, & Parnes, 1990; Van-
derheiden, 1985). Utilizing residual vocal control
as an input modality has the potential to improve
the quality and efficiency of communication.

In this study, we focused on building and evalu-
ating machine classifiers capable of identifying
distinct prosodic categories produced by speakers
with dysarthria. While speakers with severe dys-
arthria may exhibit inadequate articulatory con-
trol for producing speech sound segments, recent
studies suggest many individuals have preserved
ability to manipulate prosodic features as a means
of conveying information (Ciocca, Whitehill, & Yin
Joan, 2004; Le Dorze, Ouellet, & Ryalls, 1994;
Patel, 2002, 2003, 2004; Patel & Campellone,
2009; Patel & Salata, 2006; Patel & Schroeder,
2007; Vance, 1994). Controlling duration and pitch
requires less complex motor control with slower
changes in the speech musculature occurring
over a wider temporal frame (Patel, 2002, 2004 ).
[f speakers with dysarthria can consistently and
precisely control prosodic features, these cues
could be leveraged as an AAC signal serving as a
rapid and more natural means to access and ma-
neuver through options and menus on AAC aids
(Patel, 2002; Patel & Roy, 1998).

In order to use prosodic vocalizations to control
an AAC aid, accurate and efficient methods to
categorize prosodic manipulations are needed. In
this study we chose three popular machine learn-
ing methods: k-nearest neighbor (2-NN), support
vector machines (SVMs), and a supervised clus-
tering (SC) scheme, in order to determine the
algorithm(s) with the highest accuracy. These al-
gorithms were chosen because they span a range
of complexity and computational/data demands.
k-NN assigns an unseen data point the label as-
sociated with a majority of the £ closest known
(training) points (Cover & Hart, 1967). £-NN
1s simple to implement and does not require re-
training with the addition of new training exam-
ples. SVMs map a data set to a higher non-linear
dimension with the goal of discovering a separa-
tor within that space (Burges, 1998). SVMs have
proven extremely powerful for a variety of clas-
sification tasks but training can prove computa-
tionally demanding and require retraining with
additional training exemplars. Finally, SC is a
clustering technique that allows for novel visu-
alization of data and lies in between £-NN and
SVM in terms of computational complexity (Eick
& Zeidat, 2005). Traditional unsupervised clus-
tering involves grouping data so that the distance

between clusters is minimized. Alternatively, SC
maximizes the number of cluster members with
the same class label.

METHOD

Prosodic Control Dataset

The present study utilized speech recordings from
a database of 5 children with severe dysarthria
(2 males and 3 females; ages 6-13 years old, mean
age = 9 years, 7 months) secondary to cerebral
palsy and 5 gender-matched healthy children (ages
7-8 years old, mean age = 7 years, 7 months), that
were collected in a previous study (Patel & Salata,
2006). The children with dysarthria were severely
impaired or essentially non-verbal and most relied
on a combination of communication modalities in-
cluding two speakers who used AAC devices. The
healthy controls were included in the analysis to
provide a baseline measure for comparison.

Spoken utterances in the database consisted of
three different experimental tasks, each involving
sustained production of the vowel /a/. The dura-
tion control task required speakers to produce a
short, medium, or long duration /a/ while trying
to maintain a constant pitch. In the pitch control
task, speakers produced the vowel at a low, me-
dium, or high pitch while maintaining a constant
duration. Lastly, in the simultaneous control task,
speakers manipulated the duration and pitch of
the vowel simultaneously (for a total of 9 possi-
ble distinctions). In each task, prosodic categories
were requested using a computer game interface
in which animated characters were used to elicit a
given distinction. For each speaker, 15 repetitions
of each category from each of the duration and
pitch protocols and 8 repetitions of each distinc-
tion from the simultaneous control protocol were
utilized. The Praat speech analysis software pack-
age (Boersma & Weenink, 2007) was used to ex-
tract the appropriate acoustic features (duration
and/or average fundamental frequency (F)) from
the recordings.

Machine Learners

This study sought to build computationally ef-
ficient machine learners capable of recognizing
prosodic manipulations as an initial step towards
developing assistive communication technologies
that utilize prosodic control as an input signal.
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The duration and/or average F, values extracted
from the recordings of the Patel-Salata Database
were classified using three different machine
learning algorithms: k-nearest neighbor (2-NN),
support vector machines (SVMs), and a supervised
clustering (SC) scheme. Given large individual
differences in vocal abilities among the speakers
with dysarthria, machine classifiers were built
for each individual speaker. Recognition error for
each classifier was estimated using leave-one-
out cross-validation. For each speaker, the aver-
age test error of each classifier type (2-NN, SVM,
SC) was calculated for each feature set (duration,
pitch, duration and pitch).

k-nearest neighbor. The R-NN rule assigns an
unseen data item a class label based on the “ma-
jority vote” of the £ closest (according to a given
distance metric) prototypes, i.e. training examples
whose labels are known (Duda, Hart, & Stork,
2001). In this case, the squared Euclidean distance
was used as the distance metric. The optimal

Duration Protocol

1 [][]ﬂfl’ﬂ —l

S
S

80%

60% —

“ua il . o C
S e W Y T T T T e A
e P

40% —

20% -

Average Test Accuracy

0%

D1 D2 D3 D4 D5

value for 2 was found using an additional round of
cross-validation.

Support vector machines. In SVM analysis,
input data are transformed into a higher dimen-
sional space via a non-linear mapping function. An
SVM then finds the separating linear hyperplane
with maximal margin in this new dimensionality
(Burges, 1998).

Supervised clustering. Clustering is a knowl-
edge discovery technique that attempts to group
similar objects based on a given metric. Whereas
unsupervised clustering ignores classifications
of data items, SC focuses on maximizing cluster
purity (i.e. cluster members with the same class
label) (Eick & Zeidat, 2005). SC aids in building
a classifier that can assign an unseen, unclassi-
fied data point the label of the cluster that best
shares its attributes. This classification scheme is

a 1-nearest neighbor classifier where the cluster
representatives serve as the known prototypes.
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Figure 1. Per-Speaker, Average Test Accuracies of Each Optimized Classifier for the Duration (Upper Left-Hand
Panel), Average Pitch (Upper Right-Hand Panel), and Simultaneous (Bottom Panel) Protocols
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RESULTS

The performance of three classification algorithms
was compared to determine which was most ac-
curate and efficient for classifying prosodic cat-
egories produced by speakers with dysarthria.
Average test accuracies for each of the three clas-
sifier types per speaker and feature set are shown
in Figure 1. For the duration protocol (Figure 1,
upper left-hand panel), the best performing clas-
sifier (BPC, defined as the classifier type that
achieved maximum test accuracy for each speaker-
feature set pair) was always 100% accurate for the
HC group and ranged from 93% to 100% accurate
for the DYS group. For all five DYS speakers the
test accuracies were within a range of 5 percent-
age points for all three classifier types. For the
pitch protocol (Figure 1, upper right-hand panel),
BPC accuracy ranged from 80% to 100% for HC
and 40% to 100% for DYS speakers. For speak-
ers D1, D2, and D4 all classifier types produced
similar (within 5 percentage points) average test
accuracies. For speakers D3 and D5, depending
upon classifier type, the average test accuracies
ranged 10 and 18 percentage points, respectively.
For four of five DYS speakers, the 2-NN classifier
was the BPC. For the simultaneous control task
(Figure 1, bottom panel), BPC accuracy ranged
from 68% to 90% for HC and 36% to 79% for DYS.
The BPC accuracy was greater than 50% for only
one speaker with dysarthria (D4). Compared to
the previous two tasks, there was more variabil-
ity between classifier types with no classifier type
serving as the BPC for more than two speakers
with dysarthria.

DISCUSSION

Results indicate that machine classification of
DYS duration manipulations may be highly reli-
able and thus could be explored as a viable input
modality for navigating through AAC interfaces.
For all DYS speakers, all classifier types per-
formed similarly well with limited variability in
test accuracy. Classification accuracies of pitch
adjustments were typically much lower than rec-
ognition rates of duration-controlled vocalizations,
suggesting that further research into the feasibil-
ity of using pitch manipulation as an AAC input
is required. Degraded classification was likely
due to reduced separation between pitch produc-
tion categories (Patel & Salata, 2006). While all

DYS speakers were able to produce three non-
overlapping (as observed using the mean and stan-
dard deviation) duration categories, only three of
the five speakers (D1, D2, and D4) were able to
produce three non-overlapping F, (pitch) catego-
ries. The remaining two speakers, D2 and D5,
were able to produce only two categories. It should
be noted that the two speakers with the high-
est recognition rates (D1 and D4) each produced
three categories. For four of the five speakers with
dysarthria the £-NN classifier was the BPC. For
speaker D5, the accuracy of the 2-NN classifier
was within 2 percentage points of the BPC. These
findings suggest that for average F classification,
k-NN may be the best classifier type to implement
in a voice driven AAC device.

While the simultaneous control paradigm was
the most difficult production task for both groups,
the difference in performance between HC and
DYS speakers was also largest. Additional data
are required to determine whether paired adjust-
ment of pitch and duration is too motorically com-
plex, or whether it can be trained over time. It is
encouraging, however, that for all DYS speakers
BPC accuracies were at least 2.5 times higher
than chance performance despite a highly re-
stricted number of training tokens (15 for dura-
tion and pitch tasks, 8 for simultaneous control).
Utilizing additional training tokens and/or reduc-
ing the number of prosodic categories could prove
beneficial in increasing recognition accuracy in fu-
ture research efforts.

CLINICAL IMPLICATIONS

The present findings suggest that machine clas-
sification of prosodic manipulations in dysarthric
speech is feasible using preexisting algorithms
that require minimal training data. Given the
high classification accuracies, duration appears
to be the most reliable prosodic cue to incorporate
into voice-driven AAC interfaces. Furthermore,
some speakers may be able to utilize both pitch
and duration cues as input modalities. Although
simultaneous control of pitch and duration may
require additional speaker training, these initial
findings are encouraging.

This study serves as an initial step towards de-
veloping assistive communication technologies
that utilize prosody as an input signal. We envi-
sion utilizing prosodic control as a quasi voice-
driven mouse for AAC interfaces. Such a control
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strategy has the potential to reduce fatigue in ac-
cessing menu items and to accelerate communica-
tion rate.
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