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The present study sought to characterize dysarthric speech in terms of acoustic land-
marks. Landmark analysis provides a means to relate acoustic events to underlying artic-
ulatory behavior thereby allowing for comparisons between highly intelligible speech and
dysarthric speech along a set of distinct acoustic parameters. Automatic landmark detec-
tion algorithms were utilized to extract acoustic landmarks from recordings produced by
nine speakers with dysarthria and one control. Findings indicated that speakers with dys-
arthria not only produced expected acoustic targets at lower rates than the control, they
also inserted unexpected landmarks at higher rates. Thus the dysarthric speech stream
not only contains noisy acoustic information but also additional acoustic cues that may
serve to confuse listeners. Additionally, these data highlight the notion that intelligibility
is more than merely the result of accurate production of acoustic-phonetic targets. Rather,
intelligibility scores resulted from the cumulative effects of precise, imprecise, absent, and
superfluous articulation. The present study suggests the utility of automatic landmark
analysis in developing personalized dysarthria treatment by specifying the acoustic cues
that a speaker produces accurately while also identifying cues that a speaker fails to
produce or inserts unnecessarily. Implications of this work on designing semiautomatic
diagnostic tools and computer-assisted interventions are discussed.

Dysarthria is a motor speech disorder character-
ized by weak, slow, and/or uncoordinated move-
ments of the musculature involved in speech
production (Duffy, 2005; Yorkston, Beukelman,
Strand, & Bell, 1999). Severely dysarthric speech
commonly appears unintelligible to unfamiliar lis-
teners; however, those familiar with the speaker
are often able to comprehend with high accura-
cy (Deller, Hsu, & Ferrier, 1991). This observa-
tion implies that the speaker is producing acous-
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tic cues that, while seemingly unintelligible to the
unfamiliar listener, are capable of conveying infor-
mation. Deller et al. (1991) hypothesized that the
dysarthric speech stream not only contains noisy
acoustic information but also additional acoustic
cues that serve to confuse the listener. The current
study sought to provide quantitative evidence for
this hypothesis.

Stevens’ Lexical Access from Features (LAFF)
paradigm (Liu, 1995, 1996; Slifka, Stevens, Man-
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uel, & Shattuck-Hufnagel, 2004; Stevens, 1992,
2002; Stevens, Manuel, Shattuck-Hufnagel, & Liu,
1992) was applied to perform automatic landmark
detection. Based on distinctive feature theory, Ste-
vens’ model provides explicit definitions for land-
marks, the acoustic correlates of articulator-free
features (Chomsky & Halle, 1968; Jakobson, Fant,
& Halle, 1952). Articulator-free features, which
are also referred to as manner features, do not de-
pend upon the position of the speech articulators.
Instead, they provide a description of vocal tract
constriction by classifying a speech segment as a
vowel, glide, or consonant (sonorant or obstruent).
Landmark detection provides a metric for compar-
ing highly intelligible speech to dysarthric speech
along a set of empirically derived acoustic features,
thus serving as a lens for identifying accurate as
well as inserted acoustic cues. Characterizing the
differences between healthy and dysarthric speech
in terms of vocal tract constriction also has clinical
utility in that it relates acoustic events to underly-
ing classes of articulatory behaviors.

METHODS

Nemours Database

Recordings used in this study consisted of produc-
tions from the Nemours Database of Dysarthric
Speech (Menéndez-Pidal, Polikoff, Peters, Le-
onzio, & Bunnell, 1996; Polikoff & Bunnell, 1999).
This database contained recordings from 11 young
males (in their twenties and thirties; exact ages
were not documented) with dysarthria of varying
severities secondary to either cerebral palsy (Ngp
= 7) or head trauma (Nyr = 4), and a single control
speaker. Prior to data collection, individuals with
dysarthria were examined by a speech-language
pathologist using the Frenchay Dysarthria Assess-
ment (Enderby, 1983). While diagnostic classifi-
cation of motor control was noted, the dysarthria
subtype was not documented in the original da-
tabase. For each speaker, the clinician assigned
an intelligibility rating on a scale of 0—-8 (where 8
corresponded to highest intelligibility). Mean sen-
tence intelligibility of the speakers with dysarthria
was reported to be 2.9 (SD = 2.4). Nine speakers
with dysarthria (Nqp = 6; Ny = 3) who had com-
plete data sets were included in the analysis.

The database contained 74 nonsense utteranc-
es of the form “The nounl is verb-ing the noun2”
produced by each speaker. The lexicon consisted
of 74 monosyllabic nouns and 37 disyllabic verbs

(counting the ing). The combinations of nouns and
verbs were unique to each speaker with dysarthria
(SWD). A single control speaker produced a cor-
responding set of utterances for each SWD. The
database included time-aligned phonetic labels of
the recordings produced by each SWD. Labeling
was performed using a discrete Hidden Markov
Model (HMM) labeler, followed by manual correc-
tion when necessary. The phonetic sequence was
specified by the underlying text. Phonetic labeling
of the utterances produced by the control speaker
was performed using a similar procedure. Interla-
beler reliability, in terms of time alignments, was
not measured. Therefore, there may have been in-
terlabeler variation in terms of time localization
of phonetic boundaries but the phonetic sequenc-
es across dysarthric and control productions was
the same.

Landmark Analysis

Speech sounds can be classified into one of three
broad articulator-free classes: vowel, glide, or con-
sonant (Stevens, 2002). The consonant class is fur-
ther divided into sonorant and obstruent. Each
broad class is associated with a set of correspond-
ing acoustic correlates known as landmarks. Vow-
els and glides each have only one landmark. Vowel
landmarks (V) are characterized by local maxima
in the first formant (F';) and waveform amplitude.
Conversely, glide landmarks (G) are character-
ized by decreases in F; and waveform amplitude.
For the consonantal class there are three land-
mark types: glottis (g), sonorant (s), and burst (b);
and associated with each type is a sign (+). Glottis
landmarks indicate a transition to (+g) or cessa-
tion (—g) of free vocal fold vibration. Sonorant land-
marks occur during a voiced region in which there
is a closure (+s) or release (—s) of a nasal or /U/.
Burst landmarks denote the presence of a constric-
tion resulting in acoustic discontinuity. A stop or
affricate burst is denoted by +b landmarks, while
—-b landmarks signify cessation of frication or as-
piration noise. In the present study, we extracted
only vowel (Howitt, 2000a, 2000b) and consonan-
tal landmarks (Liu, 1995, 1996). Glide landmarks
were not examined because a reliable automatic
glide landmark detector has not yet been imple-
mented and validated.

A software implementation of the Lexical Access
from Features (LAFF) paradigm (Howitt, 2000a,
2000b; Liu, 1995, 1996; Stevens, 2002) was used
to automatically extract landmarks from record-
ings of the nine speakers with dysarthria and the
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corresponding utterances produced by the control
speaker. For all recordings the detection process
was the same: consonantal landmark detection
was performed first, followed by vowel landmark
detection.

Consonantal landmark extraction followed a
multistep process. The speech waveform of an ut-
terance was preemphasized by 3 dB, and a broad-
band (6 ms Hanning window) spectrogram was
taken every 1 ms (Liu, 1995). This short window
provided good temporal resolution, and the high
frame rate allowed for accurate tracking of rapid
acoustic changes. Next, the spectrogram was di-
vided into six frequency bands (Band 1: 0-0.4 kHz,
Band 2: 0.8-1.5 kHz, Band 3: 1.2-2 kHz, Band 4:
2-3.5 kHz, Band 5: 3.5-5 kHz, and Band 6: 5-8
kHz) and the energy waveform in each band was
constructed. The temporal derivative of the energy
waveforms was computed and peaks in these de-
rivate waveforms were extracted using a peak de-
tection algorithm (Mermelstein, 1975). A +g was
associated with an abrupt (6 dB or more) increase
in Band 1 energy, while a —g corresponded to an
abrupt decrease in Band 1 energy (i.e., frequen-
cies below 400 Hz). Within a voiced region (i.e., be-
tween a +g —g pair), increases or decreases, on the
order of 9 dB, in Bands 2-5 were labeled as so-
norant landmarks. In voiceless regions, increases
or decreases, on the order of + 9 dB, in Bands 26
were labeled as burst landmarks.

Automatic vowel landmark detection involved
monitoring only one energy band, spanning 0-650
Hz (Howitt, 2000). In order to extract vowel land-
marks, syllable boundaries were first localized.
Syllable boundaries were identified as local min-
ima in the energy waveform according to inten-
sity (more than 2 dB difference between syllable
boundary and peak) and durational (at least 80
ms between syllable boundaries) constraints (Mer-
melstein, 1975). A maximum within a pair of sylla-
ble boundaries was labeled as a vowel landmark if
the peak was less than 25 dB below the utterance’s
maximum energy within the 0—650 Hz band.

Hypothetical Landmark Sequences

A phoneme-to-landmark mapping algorithm was
used to automatically define expected sequences of
landmarks. For each utterance, the mapping algo-

LDetection rate = 1009 — Deletion rate — Substitution rate

rithm utilized the time-aligned phonetic transcrip-
tions to hypothesize the corresponding sequence
and timing of acoustic landmarks. The hypotheti-
cal landmark sequences allowed for the calculation
of the detection, deletion, substitution, and inser-
tion rates. If an observed landmark was the same
type (and if applicable sign) and within 30 ms of
a hypothesized landmark, then the hypothesized
landmark was judged a detection. Previous work
has shown that a 30 ms analysis window is suf-
ficiently long for allowing a majority of automat-
ically extracted landmarks to be associated with
corresponding hand-labeled landmarks while be-
ing succinct enough that observed landmarks were
not paired with hand-labeled landmarks from
neighboring acoustic-phonetic events (Liu, 1995).
A hypothesized landmark for which no landmark
of the same type (and if applicable sign) was ex-
tracted within the acceptable analysis window was
marked a deletion. If an observed landmark was
the same sign but different type and within the
analysis window of a hypothesized landmark, then
the hypothesized landmark was judged a substi-
tution. Note that substitutions are only applicable
for consonantal landmarks. Finally, if a landmark
was extracted from the waveform but did not cor-
respond to a hypothesized landmark then it was
marked an insertion.

RESULTS

Landmark detection, substitution, deletion, and
insertion rates for the group with dysarthria and
the control speaker are provided in Figure 1. De-
tection and error rates were calculated by divid-
ing event counts by total number of hypothesized
landmarks.1? Speakers with dysarthria (SWDs)
produced the expected acoustic targets 57% of the
time, nearly one-third less often than the control
(80%). SWDs also produced more than double the
number of substitutions (15% vs. to 7%) and de-
letions (29% vs. 13%) and, most notably, inserted
more than six times as many unexpected landmarks
(113% vs. 19%) compared to the control. Analyzing
the results by landmark type (right side of Figure
1) revealed similar trends. For all landmark types,
the detection rate was lower, while the substitu-
tion, deletion, and insertion rates were higher for

’Insertion rate was not bounded at 100% because it was possible to extract more insertions than number of hypothesized landmarks.
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Figure 1. Landmark detection, substitution, deletion, and insertion rates for the control and the speakers with dysar-
thria. A breakdown of error rates by landmark type is provided on the right side.

the SWDs compared to the control. Burst (b) land- dividual cross-correlations between detection rate
marks were deleted at the highest rate (42%) while and each of the error rates (deletion, substitution,
sonorant (s) landmarks, corresponding to the clo- and insertion rates) were all negative and ranged
sure or release of a nasal or /l/, were most frequent- between —0.99 and —0.81. Thus, in general as de-
ly inserted (301%) by SWDs. tection rates decreased, error rates increased.

Given the heterogeneity of dysarthria etiology The cross-correlations among the deletion, substi-
and severity within the Nemours Database, we tution, and insertion rates were all positive and
also investigated the relationship between land- ranged between 0.77 and 0.90, implying that the
mark rates and intelligibility. Since the database direction of change in these error rates was the
included a sentence production task, we utilized same. All cross-correlations were significant (p <
sentence intelligibilities from the Frenchay Dys- 0.01). To better account for the relationship be-
arthria Assessment to establish this relationship. tween landmark rates and intelligibility, multi-
Scatter and regression plots of the landmark rates ple linear regressions using all possible subsets
as functions of speaker intelligibility are shown of landmark rates were performed (Table 1, right
in Figure 2. For regression analysis, the control side). When all four event rates served as depen-
speaker’s intelligibility was assumed to be 8. De- dent variables the coefficient of determination, r2,
tection rate showed a positive correlation with in- was 0.63. A majority of this variation (98%) can be
telligibility while substitution, deletion, and in- explained by the combination of detection and in-
sertion rates all showed a negative correlation. sertion rates alone.

The coefficients of determination, r2, were similar
for all landmark rates, ranging between 0.54 and

0.58. For all landmark rates the correlation with DISCUSSION

intelligibility was found to be statistically signifi-

cant (p < 0.05).3 Landmark analysis provided a means to relate
There were large cross-correlations between acoustic-phonetic events to underlying articulatory

landmark event rates (Table 1, left side). The in- behavior. A summary of the relationships between

“Due to the small sample size, correlations between intelligibility and substitutions as well as intelligibility and insertions were not

statistically significant (p = 0.08 and 0.07, respectively) after the data from the control speaker was removed. However, correlations

between intelligibility and detection and deletion rates remained significant (p < 0.05).
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Figure 2. Landmark detection, substitution, deletion, and insertion rates as functions of
speaker intelligibility. Linear regressions and coefficients of determination, r2s, are included.

Insertion rate 1s shown separately because it was not bounded at 100%.

TABLE 1. Cross-correlations (o;;) between landmark event rates (left) and the r2 and adjusted r2 val-
ues from multiple linear regressions using intelligibility as the independent variable and the specified

landmark event rates as the sets of independent variables (right).

Sr— —

Cross-Correlations Multiple Linear Regressions

Landmark Event Rates T Landmark Event Rates r? r2,4;
_D-e-tectinn-Substitutinn —0.94  Detection, Substitution, Deletion, Insertion 0.63 0.45
Detection-Deletion —0.99  Substitution, Deletion, Insertion 0.62 0.51
Detection-Insertion -0.81 Detection, Substitution, Insertion 062 0.51
Substitution-Deletion 0.90  Detection, Deletion, Insertion 062 0.51
Substitution-Insertion 0.77 Detection, Insertion 0.62 0.57
Deletion-Insertion 0.80  Deletion, Insertion 0.61 0.57
Detection, Substitution, Deletion 0.61 0.50
Substitution, Insertion 0.61 0.56
Substitution, Deletion 0.59 0.54
Detection, Substitution 0.58 0.53
Detection, Deletion 0.58 0.53
Detection 0.58 0.58
Deletion 0.57  0.57
Substitution 0.54 0.54
Insertion 0.53 0.53

landmark events and underlying articulatory behav-
ior is shown in Table 2. Accurately detected land-
marks signified production of expected acoustic tar-
gets, while acoustic-phonetic events that occurred at
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the expected time but were imprecisely articulated
were considered substitutions. Deletions were fail-
ures to signal acoustic-phonetic events and insertions
indicated excessive or poorly timed articulation.
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TABLE 2. Relationship between landmark events and underlying articulatory behavior.

e

Landmark

Type Deletion Insertion

+g Hypoadduction Hyperadduction

—g Hypoabduction Hyperabduction

+8 Fither reduced velopharyngeal opening Either hypernasality or unintended nasal or liquid
or failure to create an oral constriction production
associated with a nasal or a liquid

—8 FKither inability to close the velopharyngeal Either nasal emission or excessive oral constriction
port or failure to release an oral constriction
associated with a nasal or a liquid

+b Failure to initiate frication or aspiration Unexpected turbulent noise production
noise production

~b Failure to cease frication or aspiration noise Unexpected cessation of noise production
production

V Failure to achieve an open configuration of Either a failure to produce a consonantal constriction

the vocal tract during voicing

or unexpected open vacal tract configuration

— ————

Findings from the present study provide quanti-
tative support for Deller et al.’s (1991) hypothesis
that dysarthric speech contains not only malformed
or missing acoustic cues but also erroneously in-
serted cues that may mislead or confuse listeners.
SWDs produced expected acoustic targets at low-
er rates than the control speaker and also insert-
ed more unexpected acoustic targets (see Figure
1). The lower the intelligibility of the speaker, the
larger the magnitude of this phenomenon, as ev-
idenced by the fact that the clinician-based intel-
ligibility ratings and each of the landmark rates
were significantly correlated (see Figure 2). Cross-
correlations between landmark rates and results
from the linear and multiple linear regressions
suggest that intelligibility is more than merely the
result of accurate production of acoustic-phonetic
targets (see Table 1). Decreased sentence intelligi-
bility resulted from the cumulative effects of im-
precise (substitution), absent/failed (deletion), and
superfluous articulation (insertion).

Linear regressions between landmark rates and
intelligibility only accounted for 53 to 63% of varia-
tion. An additional source of variability may be as-
sociated with production of acoustic cues associated
with articulator-bound or place features. Articula-
tor-bound features describe the state of the lips,
tongue blade, tongue body, soft palate, pharynx,
glottis, and/or vocal folds. For example, a speak-
er with a detection rate located above the regres-
sion line (see Figure 2) may have been producing

the broad manner classes of articulator-free fea-
tures but was failing to achieve accurate articula-
tory placements associated with articulator-bound
features. The failure to convey articulator-bound
features may then have contributed to a decrease
in overall perceptual intelligibility. While analyses
based on articulator-bound features would, for in-
stance, associate consistently substituted alveolar
stops for velar stops with poor intelligibility, artic-
ulator-free analyses are not sensitive to this place
of articulation error.

In summary, landmark analysis specifies the
set of acoustic cues that a speaker produces ac-
curately while also highlighting the cues that a
speaker fails to produce or inserts unnecessarily.
We envision using this information to drive per-
sonalized dysarthria treatment or in the develop-
ment of computer-assisted interventions that ac-
count for speaker- or disorder-specific acoustic
patterns. Further research aimed at characteriz-
Ing dysarthric speech in terms of the articulato-
ry-to-acoustic mapping 18 warranted. We are cur-
rently performing landmark analysis on a larger
dataset of dysarthric speech (data from Patel,
2004, and Patel & Campellone, in review). This
database contains a broader range of dysarthria
severity than the current analysis in which eight
of the nine speakers with dysarthria had sentence
intelligibilities of four or lower. Also, in addition
to relating landmark detection and error rates to
standardized intelligibility ratings, we plan to ex-
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amine the relationship between landmark event
rates and intelligibility scores ascertained directly
from the materials being analyzed. Finally, future
efforts will concentrate on extracting articulator-
bound features in order to account for addition-
al sources of variation, and to provide a more de-
tailed characterization of the dysarthric speech
stream in terms of articulatory behaviors. The
Lexical Access from Features paradigm currently
does not support articulator-bound feature detec-
tion, and there 1s poor agreement among linguists
on the acoustic parameters that robustly define
these features. Thus, we plan to use more statisti-
cally driven methods that rely on machine classifi-
cation algorithms to extract articulator-bound and

articulator-free features (Juneja, 2004; Juneja &
Espy-Wilson, 2003).
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