FACTORIZATION HOMOLOGY OF PUNCTURED SURFACES

DMYTRO MATVIEIEVSKYI

Abstract

These are the notes of a talk given on the RTG Graduate Research Seminar on factorization homology along surfaces and quantum groups in Fall 2019. We use the Barr-Beck theory explained by Vasya Krylov in Kry to compute the factorization homology of a punctured surface. We mostly follow the exposition of BBJ18.

1. Consequences of Barr-Beck theorem

1.1. Rigid abelian tensor categories. Recall the following important theorem that was explained in Vasily's talk Kry.

Theorem 1.1. Let \mathcal{A} be a rigid abelian tensor category in Rex, and let $\mathcal{M} \in \operatorname{Rex}$ be an abelian \mathcal{A}-module category with an \mathcal{A}-progenerator $m \in \mathcal{M}$. Let $\operatorname{act}_{m}: \mathcal{A} \rightarrow \mathcal{M}$ be the functor corresponding to \mathcal{A} action on m, and act $_{m}^{R}$ be its right adjoint. Set $T=\operatorname{act}_{m}^{R} \circ \operatorname{act}_{m}$. Then act ${ }_{m}^{R}$ induces an equivalence of \mathcal{A}-module categories $\mathcal{M} \simeq \underline{\operatorname{End}}(m)-\bmod _{\mathcal{A}}$, where \mathcal{A} acts on the right by multiplication.

The following theorem was stated by Matej in the end of his talk.
Theorem 1.2. Let \mathcal{A} be a rigid abelian tensor category, and let \mathcal{M}, \mathcal{N} be right and left module categories, respectively, with \mathcal{A}-progenerators $m \in M$ and $n \in N$. Then we have an equivalence of categories

$$
\mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{N} \simeq \underline{\operatorname{End}}(m)-\bmod _{\mathcal{N}} \simeq(\underline{\operatorname{End}}(m)-\underline{\operatorname{End}}(n))-\operatorname{bimod}_{\mathcal{A}} .
$$

Proof. The second assertion directly follows from Theorem 1.1, so we will focus on th first one.
Consider the category $\mathcal{M}^{\vee} \simeq \bmod _{\mathcal{A}}-\underline{\operatorname{End}}(m)$. We have a natural evaluation functor $\mathcal{M}^{\vee} \boxtimes \mathcal{M} \rightarrow$ \mathcal{A} given by the relative tensor product of right and left End (m)-modules in \mathcal{A}. In addition, we
 Therefore we get a coevaluation functor Vect $\simeq \operatorname{Vect} \boxtimes$ Vect $\rightarrow \mathcal{M} \boxtimes \mathcal{M}^{\vee} \rightarrow \mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{M}^{\vee}$.

The evaluation map $\mathcal{M}^{\vee} \boxtimes \mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{N} \rightarrow \mathcal{N}$ induces an equivalence $\mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{N} \simeq \operatorname{Fun}_{\mathcal{A}}\left(\mathcal{M}^{\vee}, \mathcal{N}\right)$. Composing with the evaluation ev_{m} at m we get a functor $G: \mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{N} \rightarrow \mathcal{N}$. Since m is a pro-generator, if $\operatorname{ev}_{m}(f)=0$ for some $f \in \operatorname{Fun}_{\mathcal{A}}\left(\mathcal{M}^{\vee}, \mathcal{N}\right)$, then $f \equiv 0$. Since \mathcal{N} is abelian, [Kry, Lemma 3.62] implies that ev_{m} is conservative, and therefore G is conservative. Since m is projective, G preserves coequalizers. Therefore, by Barr-Beck theorem Kry, Theorem 3.59], $\mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{N} \simeq \underline{\operatorname{End}}(m)-\bmod _{\mathcal{N}}$.

In this section we will apply the monadicity theorem stated above to braided tensor categories, tensor products and dominant functors.
Definition 1.3. A functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is called dominant if every object of \mathcal{B} appears as a sub-object (equivalently using rigidity, quotient) of an object in the image of F.
Lemma 1.4. BN11, Lemma 2.1] A tensor functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is dominant if, and only if, its right adjoint F^{R} is faithful. i.e. \mathcal{B} should be generated under colimits by the image of \mathcal{A}.

Lemma 1.5. Let \mathcal{M}, \mathcal{N} be the categories with a structure of \mathcal{A}-module, and $F: \mathcal{M} \rightarrow \mathcal{N}$ be an \mathcal{A}-module dominant functor. Suppose that $m \in \mathcal{M}$ is an \mathcal{A}-generator of \mathcal{M}. Then $F(m)$ is an \mathcal{A}-generator of \mathcal{N}.

Proof. Since F is an \mathcal{A}-module functor, we have $F \circ \operatorname{act}_{m}(a)=F(m \otimes a)=F(m) \otimes a=\operatorname{act}_{F(m)}(a)$. The isomorphism proven above implies that act ${ }_{F(m)}^{R}=F^{R}$ oact ${ }_{m}^{R}$. Since m is an \mathcal{A}-generator of \mathcal{M}, $\operatorname{act}_{m}^{R}$ is faithful. Since F is dominant, by Lemma 1.4. F^{R} is faithful. Therefore $\operatorname{act}_{F(m)}^{R}$ is faithful, and $F(m)$ is an \mathcal{A}-generator of \mathcal{N}.

Proposition 1.6. Let \mathcal{M} be an abelian \mathcal{A}-module category, $F: \mathcal{A} \rightarrow \mathcal{B}$ a dominant tensor functor, and $m \in \mathcal{M}$ a \mathcal{A}-progenerator. Then $m \boxtimes_{\mathcal{A}} 1_{\mathcal{B}}$ is a \mathcal{B}-progenerator of $\mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{B}$, and we have an equivalence of \mathcal{B}-module categories,

$$
\mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{B} \simeq F(\underline{\operatorname{End}}(m))-\bmod _{\mathcal{B}} .
$$

Proof. We apply Theorem 1.2 for $\mathcal{N}=\mathcal{B}$, where the structure of \mathcal{A}-module on \mathcal{B} is given using F.
1.2. Braided monoidal categories. From now on, suppose that \mathcal{A} is a rigid braded tensor category. Then the multiplication functor $\mathcal{A}^{\boxtimes n} \rightarrow \mathcal{A}$ is a tensor functor.

Proposition 1.7. For any n, the tensor unit $1_{\mathcal{A}}$ is a progenerator for the n-fold right regular action on \mathcal{A}.
Proof. 1) To show that $1_{\mathcal{A}}$ is a progenerator, we need to show that act $1_{1_{\mathcal{A}}}^{R}$ is faithfull or, equivalently, that act $1_{\mathcal{A}}$ is dominant. Indeed, $X \simeq X \otimes 1_{\mathcal{A}}$, so act $1_{\mathcal{A}}$ is dominant.
2) To show that $1_{\mathcal{A}}$ is \mathcal{A}-projective, we need to show that act ${ }_{1}{ }_{\mathcal{A}}$ preserves colimits. We refer for this fact to BBJ18, Proposition 3.12].

For $n=2$, consider $\mathfrak{T}_{\mathcal{A}}:=T\left(\operatorname{End}_{\mathcal{A}}{ }^{\boxtimes 2}\left(1_{\mathcal{A}}\right)\right)$, where $T: \mathcal{A} \boxtimes \mathcal{A} \rightarrow \mathcal{A}$ is the tensor product. We have the following description of this object.

Proposition 1.8.

The composition $\left(V^{*} \otimes V\right) \otimes\left(W^{*} \otimes W\right) \xrightarrow{\sigma_{V^{*}} \otimes V, W^{*}}\left(W^{*} \otimes V^{*}\right) \otimes(V \otimes W) \xrightarrow{\iota_{V} W} \mathfrak{T}_{\mathcal{A}}$ induces a multiplication structure on $\mathfrak{T}_{\mathcal{A}}$.

2. Factorization homology of punctured surfaces

2.1. Moduli algebra. Let S be a punctured surface, together with a choice of an interval along the boundary.

Recall that the embedding $\emptyset \rightarrow S$ induces a functor Vect $\rightarrow \int_{S} \mathcal{A}$, and we defined the quantum structure sheaf $\mathcal{O}_{S, \mathcal{A}}$ to be the image of $k \in$ Vect.
Definition 2.1. The moduli algebra of S is $A_{S}=\underline{\operatorname{End}}_{\mathcal{A}}\left(\mathcal{O}_{S, \mathcal{A}}\right)$, where the \mathcal{A}-action on $\int_{S} \mathcal{A}$ is given by the chosen interval.

The following proposition underlines the importance of A_{S}.
Proposition 2.2. 1) The quantum structure sheaf $\mathcal{O}_{S, \mathcal{A}}$ is an \mathcal{A}-progenerator of $\int_{S} \mathcal{A}$.
2) We have an equivalence of categories $\int_{S} \mathcal{A} \simeq A_{S}-\bmod _{\mathcal{A}}$.

Proof. First, we note that 2) follows from 1) immediately using Theorem 1.1. To prove 1) we will first need a lemma.

Lemma 2.3. Let S be a punctured surface, and $i: D^{2} \rightarrow S$ be an embedding of a disk. Then the induced functor $i_{*}: \mathcal{A}=\int_{D^{2}} \mathcal{A} \rightarrow \int_{S} \mathcal{A}$ is dominant.

Proof. The factorization homology $\int_{S} \mathcal{A}$ is defined as a colimit over all embeddings of a disjoint union of disks in S. Let Γ stand for the corresponding diagram, so that $\int_{S} \mathcal{A}=\lim _{\longrightarrow} \mathcal{A}^{\boxtimes k}$. Any such embedding $\sqcup_{i} D_{i}^{2} \hookrightarrow S$ can be factored through a bigger disk $\sqcup_{i} D_{i}^{2} \hookrightarrow D^{2} \hookrightarrow S$, and any two such embeddings give rise to isomorphic functors on the level of factorization homology, cause S is path connected. Therefore $\int_{S} \mathcal{A}$ is generated under colimits by the image of i_{*}.

Since the functor Vect $\rightarrow \int_{S} \mathcal{A}$ factors through \mathcal{A}, corresponding to the embedding $i: D^{2} \rightarrow S$ of a small disk, we have $i_{*}\left(1_{\mathcal{A}}\right)=\mathcal{O}_{S, \mathcal{A}}$. Lemma 2.3, Lemma 1.5 and Proposition 1.7 imply that $\mathcal{O}_{S, \mathcal{A}}$ is an \mathcal{A}-generator of $\int_{S} \mathcal{A}$.

Analogously to the proof of Lemma 1.5, to show that $\mathcal{O}_{S, \mathcal{A}}$ is an \mathcal{A}-projective, it is enough to show that i_{*}^{R} preserves finite colimits. By construction, $i_{*}^{R} \in \operatorname{Fun}\left(\int_{S} \mathcal{A}, \mathcal{A}\right)=\operatorname{Fun}\left(\lim _{\Gamma} \mathcal{A}^{\boxtimes k}, \mathcal{A}\right)=$ $\lim _{\Gamma}\left(\mathcal{A}^{\boxtimes k}, \mathcal{A}\right)$. Filtered limits commute with finite colimits, so it is enough to check that each of the corresponding functors $\mathcal{A}^{\boxtimes k} \rightarrow \mathcal{A}$ is cocontinious. Every such map factors through the tensor product $\mathcal{A}^{\boxtimes k} \rightarrow \mathcal{A}$, so it is enough to check it for each map $\mathcal{A} \rightarrow \mathcal{A}$, where it easily follows from the construction of that map.

The main goal of the section is to give an explicit description of \mathcal{A}_{S}. To do that, we will first fix some data determining the surface S, namely, gluing pattern P.

2.2. Gluing pattern and the algebra a_{P}.

Definition 2.4. A gluing pattern is a bijection $P:\left(1,1^{\prime}, 2,2^{\prime}, \ldots, g, g^{\prime}\right) \leftrightarrow(1,2, \ldots, 2 g)$, such that $P(i)<P\left(i^{\prime}\right)$ for all i.

Given a gluing pattern P, we can construct a punctured surface $\Sigma(P)$ with a marked boundary interval in the following way.

We begin with a disk D^{2} with a $2 g+1$ boundary intervals numbered from 0 to $2 g$, and then glue g handles by gluing marked intervals of the i-th handle H_{i} with $P(i)$ and $P\left(i^{\prime}\right)$-th intervals of the disk.

Plan:

1) To define an algebra structure a_{P} on $\mathfrak{T}_{\mathcal{A}}^{\otimes g}$ depending on the gluing pattern P;
2) To show a Morita equivalence between a_{P} and $\mathcal{A}_{\Sigma(P)}$ by computing the factorization homology.

Definition 2.5. We say that the handles H_{i} and H_{j} for $i<j$ are

- positively linked if $P(i)<P(j)<P\left(i^{\prime}\right)<P\left(j^{\prime}\right)$;
- negatively linked if $P(j)<P(i)<P\left(j^{\prime}\right)<P\left(i^{\prime}\right)$;
- positively nested if $P(j)<P(i)<P\left(i^{\prime}\right)<P\left(j^{\prime}\right)$;
- negatively nested if $P(i)<P(j)<P\left(j^{\prime}\right)<P\left(i^{\prime}\right)$;
- positively unlinked if $P(i)<P\left(i^{\prime}\right)<P(j)<P\left(j^{\prime}\right)$;
- negatively unlinked if $P(j)<P\left(j^{\prime}\right)<P(i)<P\left(i^{\prime}\right)$.

Example 2.6. Suppose that $P=\left(1,3,1^{\prime}, 2,2^{\prime}, 3\right)$. Then

- H_{1} and H_{2} are positively unlinked;
- H_{1} and H_{3} are positively linked;
- H_{2} and H_{3} are negatively nested.

Definition 2.7. We define the crossing morphisms $L, N, U: \mathfrak{T}_{\mathcal{A}} \otimes \mathfrak{T}_{\mathcal{A}} \rightarrow \mathfrak{T}_{\mathcal{A}} \otimes \mathfrak{T}_{\mathcal{A}}$ as the following compositions:

Remark 2.8. Since $\mathfrak{T}_{\mathcal{A}} \in \mathcal{A}$, we have a natural braiding $\mathfrak{T}_{\mathcal{A}} \otimes \mathfrak{T}_{\mathcal{A}} \rightarrow \mathfrak{T}_{\mathcal{A}} \otimes \mathfrak{T}_{\mathcal{A}}$. It coincides with the constructed morphism U.

No we are ready to define the algebra a_{P}. We set $a_{P}=\mathfrak{T}_{\mathcal{A}}^{\otimes g}$, and will endow it with an algebra structure. Let $\mathfrak{T}_{\mathcal{A}}^{(i)}$ denote the i-th copy of $\mathfrak{T}_{\mathcal{A}}$ in $\mathfrak{T}_{\mathcal{A}}^{\otimes g}$. Then we have $a_{P} \otimes a_{P}=\mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes$ $\ldots \mathfrak{T}_{\mathcal{A}}^{(g)} \otimes \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \ldots \mathfrak{T}_{\mathcal{A}}^{(g)}$. We have a well defined product on each copy, $m^{(i)}: \mathfrak{T}_{\mathcal{A}}^{(i)} \otimes \mathfrak{T}_{\mathcal{A}}^{(i)} \rightarrow \mathfrak{T}_{\mathcal{A}}^{(i)}$. The algebra structure is given by "braiding", i.e. a orphism $\mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \ldots \mathfrak{T}_{\mathcal{A}}^{(g)} \otimes \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \ldots \mathfrak{T}_{\mathcal{A}}^{(g)} \rightarrow$ $\mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \ldots \mathfrak{T}_{\mathcal{A}}^{(g)} \otimes \mathfrak{T}_{\mathcal{A}}^{(g)}$. To construct such orphism, it is enough to construct a morphism $\mathfrak{T}_{\mathcal{A}}^{(j)} \otimes \mathfrak{T}_{\mathcal{A}}^{(i)} \rightarrow \mathfrak{T}_{\mathcal{A}}^{(i)} \otimes \mathfrak{T}_{\mathcal{A}}^{(j)}$ for all $1 \leq i<j \leq g$. We define it as $L^{ \pm 1}$ if the handles H_{i},
H_{j} are \pm linked, $N^{ \pm 1}$ if the handles H_{i}, H_{j} are \pm nested and $U^{ \pm 1}$ if the handles H_{i}, H_{j} are \pm unlinked.

Example 2.9. Suppose that $P=\left(1,3,1^{\prime}, 2,2^{\prime}, 3\right)$. Then the algebra structure on a_{P} is given in the following way.

$$
\begin{aligned}
& \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} \otimes \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} \xrightarrow{1 \otimes 1 \otimes L \otimes 1 \otimes 1} \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} \\
& \downarrow^{1 \otimes U \otimes 1 \otimes 1 \otimes 1} \\
& \begin{aligned}
\mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)}<\frac{1 \otimes 1 \otimes N^{-1} \otimes 1 \otimes 1}{} \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} \\
{ }^{m^{(1)} \otimes m^{(2)} \otimes m^{(3)}}
\end{aligned} \\
& \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)}
\end{aligned}
$$

2.3. The main result. The following is the main result of the talk.

Theorem 2.10. Let \mathcal{A} be an abelian rigid balanced braided tensor category in Pr_{c}. We have a Morita equivalence between algebras $A_{\Sigma(P)}$ and a_{P}, and an equivalence of categories,

$$
\int_{S} \mathcal{A} \simeq a_{P}-\bmod _{\mathcal{A}} \simeq A_{\Sigma(P)}-\bmod _{\mathcal{A}}
$$

Remark 2.11. In fact, we have an equivalence of the algebras a_{P} and $A_{\Sigma(P)}$. To prove it one has to use the pointing on the categories $a_{P}-\bmod _{\mathcal{A}}$ and $A_{\Sigma(P)}-\bmod _{\mathcal{A}}$ given by the quantum structure sheaf.

Proof. We want to compute the factorization homology over $\Sigma(P)$. We will use the excision for the disk with marked intervals D^{2} and the union of handles $\bigsqcup H_{i}$.

For the disk, we have $\int_{D^{2}} \mathcal{A} \simeq \mathcal{A}$, but the markings on D induce the structure of $\mathcal{A}^{\boxtimes 2 g}-\mathcal{A}$ bimodule on $\int_{D^{2}} \mathcal{A}$, where we assume that 0 -th interval is on the right, and $2 g$ others on the left. Note that the action of $\mathcal{A}^{\boxtimes 2 g}$ naturally factors through the tensor functor $\mathcal{A}^{\boxtimes 2 g} \rightarrow \mathcal{A}$. We denote the category \mathcal{A} together with a structure of $\mathcal{A}^{\boxtimes 2 g}-\mathcal{A}$ bimodule by ${ }_{2 g} \mathcal{A}_{\mathcal{A}}$.

For every handle H_{i}, we have $\int_{H_{i}} \mathcal{A} \simeq \mathcal{A}$, and the two marked intervals give $\int_{H_{i}} \mathcal{A}$ a structure of a right $\mathcal{A} \boxtimes \mathcal{A}$-module. Then $\int_{\sqcup_{i} H_{i}} \mathcal{A} \simeq \mathcal{A}^{\boxtimes g}$ with a structure of a right $\mathcal{A}^{\boxtimes 2 g}$ module. Note that on the i-th copy of $\mathcal{A}^{(i)}$ in $\mathcal{A}^{\boxtimes g}$ there is an action of $\mathcal{A}^{P(i)} \boxtimes \mathcal{A}^{P\left(i^{\prime}\right)}$ inside $\mathcal{A}^{\boxtimes 2 g}$. We denote the resulting category by \mathcal{A}^{P}. In other words, we have $\left(a_{1} \boxtimes a_{2} \boxtimes \ldots \boxtimes a_{g}\right) \boxtimes\left(b_{1} \boxtimes b_{2} \boxtimes \ldots \boxtimes b_{2 g}\right)=$ $\left(a_{1} \otimes b_{P(1)} \otimes b_{P\left(1^{\prime}\right)}\right) \boxtimes \ldots \boxtimes\left(a_{g} \otimes b_{P(g)} \otimes b_{P\left(g^{\prime}\right)}\right)$.

The excision property implies that

$$
\begin{equation*}
\int_{S} \mathcal{A} \simeq \mathcal{A}^{P} \boxtimes_{\mathcal{A}^{\boxtimes 2 g} 2 g} \mathcal{A}_{\mathcal{A}} \tag{}
\end{equation*}
$$

Let $\tau_{P} \in S_{2 g}$ be the permutation obtained by the precomposing P with the map $\{1,2, \ldots, 2 g\} \rightarrow$ $\left\{1,1^{\prime}, 2,2^{\prime}, \ldots, g, g^{\prime}\right\}$ given by $2 k \rightarrow k, 2 k-1 \rightarrow k^{\prime}$. Applying the corresponding functor (defined by braiding) τ_{P} to an object End $\left(1_{\mathcal{A}}\right)^{\boxtimes g} \in \mathcal{A}^{\boxtimes 2 n}$, we get an algebra denoted by End $\left(1_{\mathcal{A} \mathcal{A}}\right)^{P}$.

Note that Proposition 1.7 and Theorem 1.1 imply that $\int_{H_{i}} \mathcal{A} \simeq \underline{\operatorname{End}}\left(1_{\mathcal{A} \mathcal{A}}\right)-\bmod _{\mathcal{A}^{\boxtimes 2}}$. And therefore $\mathcal{A}^{P}=\int_{\bigcup_{j} H_{i}} \mathcal{A} \simeq \operatorname{End}\left(1_{\mathcal{A} \mathcal{A}}\right)^{P}-\bmod _{\mathcal{A}^{\boxtimes 2 g}}$, and $\operatorname{End}\left(1_{\mathcal{A} \mathcal{A}}\right)^{P}$ is an $\mathcal{A}^{\boxtimes 2 g}$-progenerator of \mathcal{A}^{P}.

We apply Theorem 1.2 for the dominant tensor functor $T: \mathcal{A}^{\boxtimes 2 g} \rightarrow \mathcal{A}$ to * 路d get

$$
\begin{equation*}
\int_{S} \mathcal{A} \simeq T\left(\underline{\operatorname{End}}\left(1_{\mathcal{A} \mathcal{A}}\right)^{P}\right)-\bmod _{\mathcal{A}} \tag{**}
\end{equation*}
$$

By Proposition 2.2, we get a Morita equivalence between A_{S} and $T\left(\operatorname{End}\left(1_{\mathcal{A} \mathcal{A}}\right)^{P}\right)$. It remains to show the isomorphism $T\left(\operatorname{End}\left(1_{\mathcal{A A}}\right)^{P}\right) \simeq a_{P}$, where a_{P} is the algebra constructed in Section 2.2.

Let us denote the subalgebra $\underline{\operatorname{End}}\left(1_{\mathcal{A}_{P(i)} \mathcal{A}_{P\left(i^{\prime}\right)}}\right.$ of $T\left(\underline{\operatorname{End}}\left(1_{\mathcal{A} \mathcal{A}}\right)^{P}\right)$ by $\mathfrak{T}_{\mathcal{A}}^{\left(i, i^{\prime}\right)}$, and set $\mathfrak{T}_{\mathcal{A}}^{(i)}=T\left(\mathfrak{T}_{\mathcal{A}}^{\left(i, i^{\prime}\right)}\right)$. Note that by construction we have $\mathfrak{T}_{\mathcal{A}}^{(i)} \simeq \mathfrak{T}_{\mathcal{A}}$, where $\mathfrak{T}_{\mathcal{A}}=T\left(\underline{\text { End }}_{\mathcal{A}^{\boxtimes 2}}\left(1_{\mathcal{A}}\right)\right.$ as in Section 1.2 The multiplication map $m: \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \ldots \otimes \mathfrak{T}_{\mathcal{A}}^{(g)} \rightarrow T\left(\underline{\operatorname{End}}\left(1_{\mathcal{A} \mathcal{A}}\right)^{P}\right)$ is an isomorphism on objects. Therefore it is enough to compute the pairwise cross relations between factors in a_{P} and $T\left(\underline{\operatorname{End}}\left(1_{\mathcal{A} \mathcal{A}}\right)^{P}\right)$.

Suppose that $i<j$. Note that $\mathfrak{T}_{\mathcal{A}}^{\left(i, i^{\prime}\right)} \otimes \mathfrak{T}_{\mathcal{A}}^{\left(j, j^{\prime}\right)}=\mathfrak{T}_{\mathcal{A}}^{\left(j, j^{\prime}\right)} \otimes \mathfrak{T}_{\mathcal{A}}^{\left(i, i^{\prime}\right)}$, because these two algebras of endomorphisms occupy different factors.

We have well-defined diagrams that send $\left\{i, i^{\prime}, j, j^{\prime}\right\} \rightarrow\left\{P(i), P\left(i^{\prime}\right), P(j), P\left(j^{\prime}\right)\right\}$, and $\left\{j, j^{\prime}, i, i^{\prime}\right\} \rightarrow$ $\left\{P(i), P\left(i^{\prime}\right), P(j), P\left(j^{\prime}\right)\right\}$. Let $J_{i j}: \mathfrak{T}_{\mathcal{A}}^{(i)} \otimes \mathfrak{T}_{\mathcal{A}}^{(j)} \rightarrow T^{4}\left(\mathfrak{T}_{\mathcal{A}}^{\left(i, i^{\prime}\right)} \otimes \mathfrak{T}_{\mathcal{A}}^{\left(j, j^{\prime}\right)}\right)$ and $J_{j i}: \mathfrak{T}_{\mathcal{A}}^{(j)} \otimes \mathfrak{T}_{\mathcal{A}}^{(i)} \rightarrow$ $T^{4}\left(\mathfrak{T}_{\mathcal{A}}^{\left(j, j^{\prime}\right)} \otimes \mathfrak{T}_{\mathcal{A}}^{\left(i, i^{\prime}\right)}\right)$ be the maps given using these diagrams.

Then we have a commutative diagram.

We have $\left.m\right|_{\mathfrak{T}_{\mathcal{A}}^{(j)} \otimes \mathfrak{T}_{\mathcal{A}}^{(i)}}=\left.m\right|_{\mathfrak{T}_{\mathcal{A}}^{(i)} \otimes \mathfrak{T}_{\mathcal{A}}^{(j)}} \circ J_{12}^{-1} J_{21}$. We want to show that $\left.m\right|_{\mathfrak{T}_{\mathcal{A}}^{(j)} \otimes \mathfrak{F}_{\mathcal{A}}^{(i)}}=\left.m\right|_{\mathfrak{T}_{\mathcal{A}}^{(i)} \otimes \mathfrak{T}_{\mathcal{A}}^{(j)}} \circ C$, where C is defined from the gluing pattern P as in Section 2.2, i.e. we want to prove $C=J_{12}^{-1} J_{21}$. That will prove an isomorphism of algebras a_{P} and $T\left(\underline{\operatorname{End}}\left(1_{\mathcal{A A}}\right)^{P}\right)$. We will check this isomorphism in the next section.
2.4. Computing the braiding for every pair of habdles. Let us check the isomorphism $C=$ $J_{12}^{-1} J_{21}$ for all cases of relation between H_{i} and H_{j}.

1) H_{i} and H_{j} are positively linked. $P:\left\{1,1^{\prime}, 2,2^{\prime}\right\} \rightarrow\{1,3,2,4\}$.
$P(1) \quad P(2) P\left(1^{\prime}\right) P\left(2^{\prime}\right)$

$$
y_{12}^{-1} \circ y_{21}=
$$

2) H_{i} and H_{j} are negatively linked. $P:\left\{1,1^{\prime}, 2,2^{\prime}\right\} \rightarrow\{2,4,1,3\}$.

3) H_{i} and H_{j} are positively nested. $P:\left\{1,1^{\prime}, 2,2^{\prime}\right\} \rightarrow\{1,4,2,3\}$.

4) H_{i} and H_{j} are negatively nested. $P:\left\{1,1^{\prime}, 2,2^{\prime}\right\} \rightarrow\{2,3,1,4\}$.

5) H_{i} and H_{j} are positively unlinked. $P:\left\{1,1^{\prime}, 2,2^{\prime}\right\} \rightarrow\{1,2,3,4\}$.

6) H_{i} and H_{j} are negatively unlinked. $P:\left\{1,1^{\prime}, 2,2^{\prime}\right\} \rightarrow\{3,4,1,2\}$.

References

[BBJ18] David Ben-Zvi, Adrien Brochier, and David Jordan. "Integrating quantum groups over surfaces". In: Journal of Topology 11.4 (Aug. 2018), pp. 874-917. Doi: $10.1112 /$ topo. 12072. URL: https://doi.org/10.1112/topo.12072.
[BN11] A. Bruguieres and S. Natale. "Exact Sequences of Tensor Categories". In: International Mathematics Research Notices (Jan. 2011). DOI: $10.1093 / i m r n / r n q 294$. URL: https: //doi.org/10.1093/imrn/rnq294.
[Kry] Vasily Krylov. "2-categories and Barr-Beck for module categories". In: (). URL: https:// web.northeastern.edu/brwilliams/wp-content/uploads/2019/10/2-categories-talk-vasya.pdf.

Department of Mathematics, Northeastern University. Boston, MA 02115. USA.
Email address: matvieievskyi.d@husky.neu.edu

