
FACTORIZATION HOMOLOGY OF PUNCTURED SURFACES

DMYTRO MATVIEIEVSKYI

Abstract. These are the notes of a talk given on the RTG Graduate Research Seminar on factor-
ization homology along surfaces and quantum groups in Fall 2019. We use the Barr-Beck theory
explained by Vasya Krylov in [Kry] to compute the factorization homology of a punctured surface.
We mostly follow the exposition of [BBJ18].

1. Consequences of Barr-Beck theorem

1.1. Rigid abelian tensor categories. Recall the following important theorem that was ex-
plained in Vasily’s talk [Kry].

Theorem 1.1. Let A be a rigid abelian tensor category in Rex, and let M ∈ Rex be an abelian
A-module category with an A-progenerator m ∈ M. Let actm : A → M be the functor corre-
sponding to A action on m, and actRm be its right adjoint. Set T = actRm ◦ actm. Then actRm
induces an equivalence of A-module categories M ' End(m) -modA, where A acts on the right by
multiplication.

The following theorem was stated by Matej in the end of his talk.

Theorem 1.2. Let A be a rigid abelian tensor category, and let M, N be right and left module
categories, respectively, with A-progenerators m ∈M and n ∈ N . Then we have an equivalence of
categories

M�A N ' End(m) -modN ' (End(m)− End(n)) -bimodA .

Proof. The second assertion directly follows from Theorem 1.1, so we will focus on th first one.
Consider the categoryM∨ ' modA- End(m). We have a natural evaluation functorM∨�M→

A given by the relative tensor product of right and left End(m)-modules in A. In addition, we
have the functors Vect→M and Vect→M∨ given by Hom(•,m) and Hom(m, •) correspondingly.
Therefore we get a coevaluation functor Vect ' Vect�Vect→M�M∨ →M�AM∨.

The evaluation map M∨ �M �A N → N induces an equivalence M �A N ' FunA(M∨,N ).
Composing with the evaluation evm at m we get a functor G : M �A N → N . Since m is
a pro-generator, if evm(f) = 0 for some f ∈ FunA(M∨,N ), then f ≡ 0. Since N is abelian,
[Kry, Lemma 3.62] implies that evm is conservative, and therefore G is conservative. Since m
is projective, G preserves coequalizers. Therefore, by Barr-Beck theorem [Kry, Theorem 3.59],
M�A N ' End(m) -modN . �

In this section we will apply the monadicity theorem stated above to braided tensor categories,
tensor products and dominant functors.

Definition 1.3. A functor F : A → B is called dominant if every object of B appears as a
sub-object (equivalently using rigidity, quotient) of an object in the image of F .

Lemma 1.4. [BN11, Lemma 2.1] A tensor functor F : A → B is dominant if, and only if, its right
adjoint FR is faithful. i.e. B should be generated under colimits by the image of A.

Lemma 1.5. Let M, N be the categories with a structure of A-module, and F : M → N be an
A-module dominant functor. Suppose that m ∈ M is an A-generator of M. Then F (m) is an
A-generator of N .
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Proof. Since F is an A-module functor, we have F ◦actm(a) = F (m⊗a) = F (m)⊗a = actF (m)(a).

The isomorphism proven above implies that actRF (m) = FR ◦actRm. Since m is an A-generator ofM,

actRm is faithful. Since F is dominant, by Lemma 1.4, FR is faithful. Therefore actRF (m) is faithful,

and F (m) is an A-generator of N . �

Proposition 1.6. Let M be an abelian A-module category, F : A → B a dominant tensor functor,
and m ∈ M a A-progenerator. Then m �A 1B is a B-progenerator of M �A B, and we have an
equivalence of B-module categories,

M�A B ' F (End(m)) -modB .

Proof. We apply Theorem 1.2 for N = B, where the structure of A-module on B is given using
F . �

1.2. Braided monoidal categories. From now on, suppose that A is a rigid braded tensor cat-
egory. Then the multiplication functor A�n → A is a tensor functor.

Proposition 1.7. For any n, the tensor unit 1A is a progenerator for the n-fold right regular action
on A.

Proof. 1) To show that 1A is a progenerator, we need to show that actR1A is faithfull or, equivalently,
that act1A is dominant. Indeed, X ' X ⊗ 1A, so act1A is dominant.

2) To show that 1A is A-projective, we need to show that actR1A preserves colimits. We refer for
this fact to [BBJ18, Proposition 3.12]. �

For n = 2, consider TA := T (EndA�2(1A)), where T : A � A → A is the tensor product. We
have the following description of this object.

Proposition 1.8.

TA =

(⊕
V ∈A

V ∗ ⊗ V

)
/〈Im(idW ∗ ⊗φ− φ∗ ⊗ idV )|φ : V →W 〉

The composition (V ∗ ⊗ V ) ⊗ (W ∗ ⊗ W )
σV ∗⊗V,W∗→ (W ∗ ⊗ V ∗) ⊗ (V ⊗ W )

ιV⊗W→ TA induces a
multiplication structure on TA.

2. Factorization homology of punctured surfaces

2.1. Moduli algebra. Let S be a punctured surface, together with a choice of an interval along
the boundary.

Recall that the embedding ∅ → S induces a functor Vect →
∫
S A, and we defined the quantum

structure sheaf OS,A to be the image of k ∈ Vect.

Definition 2.1. The moduli algebra of S is AS = EndA(OS,A), where the A-action on
∫
S A is

given by the chosen interval.

The following proposition underlines the importance of AS .

Proposition 2.2. 1) The quantum structure sheaf OS,A is an A-progenerator of
∫
S A.

2) We have an equivalence of categories
∫
S A ' AS -modA.

Proof. First, we note that 2) follows from 1) immediately using Theorem 1.1. To prove 1) we will
first need a lemma.

Lemma 2.3. Let S be a punctured surface, and i : D2 → S be an embedding of a disk. Then the
induced functor i∗ : A =

∫
D2 A →

∫
S A is dominant.
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Proof. The factorization homology
∫
S A is defined as a colimit over all embeddings of a disjoint

union of disks in S. Let Γ stand for the corresponding diagram, so that
∫
S A = lim−→Γ

A�k. Any

such embedding tiD2
i ↪→ S can be factored through a bigger disk tiD2

i ↪→ D2 ↪→ S, and any two
such embeddings give rise to isomorphic functors on the level of factorization homology, cause S is
path connected. Therefore

∫
S A is generated under colimits by the image of i∗. �

Since the functor Vect →
∫
S A factors through A, corresponding to the embedding i : D2 → S

of a small disk, we have i∗(1A) = OS,A. Lemma 2.3, Lemma 1.5 and Proposition 1.7 imply that
OS,A is an A-generator of

∫
S A.

Analogously to the proof of Lemma 1.5, to show that OS,A is an A-projective, it is enough to

show that iR∗ preserves finite colimits. By construction, iR∗ ∈ Fun(
∫
S A,A) = Fun(lim−→Γ

A�k,A) =

lim←−Γ
(A�k,A). Filtered limits commute with finite colimits, so it is enough to check that each of

the corresponding functors A�k → A is cocontinious. Every such map factors through the tensor
product A�k → A, so it is enough to check it for each map A → A, where it easily follows from
the construction of that map. �

The main goal of the section is to give an explicit description of AS . To do that, we will first fix
some data determining the surface S, namely, gluing pattern P .

2.2. Gluing pattern and the algebra aP .

Definition 2.4. A gluing pattern is a bijection P : (1, 1′, 2, 2′, . . . , g, g′)↔ (1, 2, . . . , 2g), such that
P (i) < P (i′) for all i.

Given a gluing pattern P , we can construct a punctured surface Σ(P ) with a marked boundary
interval in the following way.

We begin with a disk D2 with a 2g+ 1 boundary intervals numbered from 0 to 2g, and then glue
g handles by gluing marked intervals of the i-th handle Hi with P (i) and P (i′)-th intervals of the
disk.

Plan:

1) To define an algebra structure aP on T⊗gA depending on the gluing pattern P ;
2) To show a Morita equivalence between aP and AΣ(P ) by computing the factorization ho-

mology.

Definition 2.5. We say that the handles Hi and Hj for i < j are

• positively linked if P (i) < P (j) < P (i′) < P (j′);
• negatively linked if P (j) < P (i) < P (j′) < P (i′);
• positively nested if P (j) < P (i) < P (i′) < P (j′);
• negatively nested if P (i) < P (j) < P (j′) < P (i′);
• positively unlinked if P (i) < P (i′) < P (j) < P (j′);
• negatively unlinked if P (j) < P (j′) < P (i) < P (i′).
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Example 2.6. Suppose that P = (1, 3, 1′, 2, 2′, 3). Then

• H1 and H2 are positively unlinked;
• H1 and H3 are positively linked;
• H2 and H3 are negatively nested.

Definition 2.7. We define the crossing morphisms L,N,U : TA⊗TA → TA⊗TA as the following
compositions:

L : V ∗ ⊗ V ⊗W ∗ ⊗W
1⊗σV,W∗⊗1

// V ∗ ⊗W ∗ ⊗ V ⊗W
σV ∗,W∗⊗σV,W

��
W ∗ ⊗W ⊗ V ∗ ⊗ V W ∗ ⊗ V ∗ ⊗W ⊗ V

1⊗σ−1
V ∗,W⊗1

oo

.

N : V ∗ ⊗ V ⊗W ∗ ⊗W
1⊗σV,W∗⊗1

// V ∗ ⊗W ∗ ⊗ V ⊗W
σ−1
V ∗,W∗⊗σV,W

��
W ∗ ⊗W ⊗ V ∗ ⊗ V W ∗ ⊗ V ∗ ⊗W ⊗ V

1⊗σ−1
V ∗,W⊗1

oo

.

U : V ∗ ⊗ V ⊗W ∗ ⊗W
1⊗σV,W∗⊗1

// V ∗ ⊗W ∗ ⊗ V ⊗W
σV ∗,W∗⊗σV,W

��
W ∗ ⊗W ⊗ V ∗ ⊗ V W ∗ ⊗ V ∗ ⊗W ⊗ V

1⊗σV ∗,W⊗1
oo

.

Remark 2.8. Since TA ∈ A, we have a natural braiding TA ⊗ TA → TA ⊗ TA. It coincides with
the constructed morphism U .

No we are ready to define the algebra aP . We set aP = T⊗gA , and will endow it with an algebra

structure. Let T
(i)
A denote the i-th copy of TA in T⊗gA . Then we have aP ⊗ aP = T

(1)
A ⊗ T

(2)
A ⊗

. . .T
(g)
A ⊗T

(1)
A ⊗ . . .T

(g)
A . We have a well defined product on each copy, m(i) : T

(i)
A ⊗T

(i)
A → T

(i)
A . The

algebra structure is given by ”braiding”, i.e. a morphism T
(1)
A ⊗ T

(2)
A ⊗ . . .T

(g)
A ⊗ T

(1)
A ⊗ . . .T

(g)
A →

T
(1)
A ⊗ T

(1)
A ⊗ T

(2)
A ⊗ T

(2)
A ⊗ . . .T

(g)
A ⊗ T

(g)
A . To construct such morphism, it is enough to construct

a morphism T
(j)
A ⊗ T

(i)
A → T

(i)
A ⊗ T

(j)
A for all 1 ≤ i < j ≤ g. We define it as L±1 if the handles Hi,
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Hj are ± linked, N±1 if the handles Hi, Hj are ± nested and U±1 if the handles Hi, Hj are ±
unlinked.

Example 2.9. Suppose that P = (1, 3, 1′, 2, 2′, 3). Then the algebra structure on aP is given in the
following way.

T
(1)
A ⊗ T

(2)
A ⊗ T

(3)
A ⊗ T

(1)
A ⊗ T

(2)
A ⊗ T

(3)
A

1⊗1⊗L⊗1⊗1 // T
(1)
A ⊗ T

(2)
A ⊗ T

(1)
A ⊗ T

(3)
A ⊗ T

(2)
A ⊗ T

(3)
A

1⊗U⊗1⊗1⊗1
��

T
(1)
A ⊗ T

(1)
A ⊗ T

(2)
A ⊗ T

(2)
A ⊗ T

(3)
A ⊗ T

(3)
A

m(1)⊗m(2)⊗m(3)

��

T
(1)
A ⊗ T

(1)
A ⊗ T

(2)
A ⊗ T

(3)
A ⊗ T

(2)
A ⊗ T

(3)
A1⊗1⊗N−1⊗1⊗1

oo

T
(1)
A ⊗ T

(2)
A ⊗ T

(3)
A

.

2.3. The main result. The following is the main result of the talk.

Theorem 2.10. Let A be an abelian rigid balanced braided tensor category in Prc. We have a
Morita equivalence between algebras AΣ(P ) and aP , and an equivalence of categories,∫

S
A ' aP -modA ' AΣ(P ) -modA

Remark 2.11. In fact, we have an equivalence of the algebras aP and AΣ(P ). To prove it one has
to use the pointing on the categories aP -modA and AΣ(P ) -modA given by the quantum structure
sheaf.

Proof. We want to compute the factorization homology over Σ(P ). We will use the excision for the
disk with marked intervals D2 and the union of handles

⊔
Hi.

For the disk, we have
∫
D2 A ' A, but the markings on D induce the structure of A�2g − A

bimodule on
∫
D2 A, where we assume that 0-th interval is on the right, and 2g others on the left.

Note that the action of A�2g naturally factors through the tensor functor A�2g → A. We denote
the category A together with a structure of A�2g −A bimodule by 2gAA.

For every handle Hi, we have
∫
Hi
A ' A, and the two marked intervals give

∫
Hi
A a structure of

a right A �A-module. Then
∫⊔

iHi
A ' A�g with a structure of a right A�2g module. Note that

on the i-th copy of A(i) in A�g there is an action of AP (i) � AP (i′) inside A�2g. We denote the
resulting category by AP . In other words, we have (a1 � a2 � . . . � ag) � (b1 � b2 � . . . � b2g) =
(a1 ⊗ bP (1) ⊗ bP (1′)) � . . .� (ag ⊗ bP (g) ⊗ bP (g′)).

The excision property implies that

(*)

∫
S
A ' AP �A�2g 2gAA

.
Let τP ∈ S2g be the permutation obtained by the precomposing P with the map {1, 2, . . . , 2g} →

{1, 1′, 2, 2′, . . . , g, g′} given by 2k → k, 2k − 1 → k′. Applying the corresponding functor (defined
by braiding) τP to an object End(1AA)�g ∈ A�2n, we get an algebra denoted by End(1AA)P .

Note that Proposition 1.7 and Theorem 1.1 imply that
∫
Hi
A ' End(1AA) -modA�2 . And there-

fore AP =
∫⊔

iHi
A ' End(1AA)P -modA�2g , and End(1AA)P is an A�2g-progenerator of AP .

We apply Theorem 1.2 for the dominant tensor functor T : A�2g → A to * and get

(**)

∫
S
A ' T (End(1AA)P ) -modA

By Proposition 2.2, we get a Morita equivalence between AS and T (End(1AA)P ). It remains to
show the isomorphism T (End(1AA)P ) ' aP , where aP is the algebra constructed in Section 2.2.
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Let us denote the subalgebra End(1AP (i)AP (i′) of T (End(1AA)P ) by T
(i,i′)
A , and set T

(i)
A = T (T

(i,i′)
A ).

Note that by construction we have T
(i)
A ' TA, where TA = T (EndA�2(1A) as in Section 1.2.

The multiplication map m : T
(1)
A ⊗ T

(2)
A ⊗ . . . ⊗ T

(g)
A → T (End(1AA)P ) is an isomorphism on

objects. Therefore it is enough to compute the pairwise cross relations between factors in aP and
T (End(1AA)P ).

Suppose that i < j. Note that T
(i,i′)
A ⊗ T

(j,j′)
A = T

(j,j′)
A ⊗ T

(i,i′)
A , because these two algebras of

endomorphisms occupy different factors.
We have well-defined diagrams that send {i, i′, j, j′} → {P (i), P (i′), P (j), P (j′)}, and {j, j′, i, i′} →

{P (i), P (i′), P (j), P (j′)}. Let Jij : T
(i)
A ⊗ T

(j)
A → T 4(T

(i,i′)
A ⊗ T

(j,j′)
A ) and Jji : T

(j)
A ⊗ T

(i)
A →

T 4(T
(j,j′)
A ⊗ T

(i,i′)
A ) be the maps given using these diagrams.

Then we have a commutative diagram.

T 4(T
(i,i′)
A ⊗ T

(j,j′)
A )

= //

T 4(m)

��

T 4(T
(j,j′)
A ⊗ T

(i,i′)
A )oo

T 4(m)

��

T
(i)
A ⊗ T

(j)
A

Jij
66

m

++

T
(i)
A ⊗ T

(j)
A

Jji

hh

m

ssaP

We have m|
T
(j)
A ⊗T

(i)
A

= m|
T
(i)
A ⊗T

(j)
A
◦ J−1

12 J21. We want to show that m|
T
(j)
A ⊗T

(i)
A

= m|
T
(i)
A ⊗T

(j)
A
◦ C,

where C is defined from the gluing pattern P as in Section 2.2, i.e. we want to prove C = J−1
12 J21.

That will prove an isomorphism of algebras aP and T (End(1AA)P ). We will check this isomorphism
in the next section.

�

2.4. Computing the braiding for every pair of habdles. Let us check the isomorphism C =
J−1

12 J21 for all cases of relation between Hi and Hj .
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1) Hi and Hj are positively linked. P : {1, 1′, 2, 2′} → {1, 3, 2, 4}.

2) Hi and Hj are negatively linked. P : {1, 1′, 2, 2′} → {2, 4, 1, 3}.
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3) Hi and Hj are positively nested. P : {1, 1′, 2, 2′} → {1, 4, 2, 3}.

4) Hi and Hj are negatively nested. P : {1, 1′, 2, 2′} → {2, 3, 1, 4}.
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5) Hi and Hj are positively unlinked. P : {1, 1′, 2, 2′} → {1, 2, 3, 4}.

6) Hi and Hj are negatively unlinked. P : {1, 1′, 2, 2′} → {3, 4, 1, 2}.
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