FACTORIZATION HOMOLOGY OF PUNCTURED SURFACES

DMYTRO MATVIEIEVSKYI

ABSTRACT. These are the notes of a talk given on the RTG Graduate Research Seminar on factorization homology along surfaces and quantum groups in Fall 2019. We use the Barr-Beck theory explained by Vasya Krylov in [Kry] to compute the factorization homology of a punctured surface. We mostly follow the exposition of [BBJ18].

1. Consequences of Barr-Beck Theorem

1.1. **Rigid abelian tensor categories.** Recall the following important theorem that was explained in Vasily's talk [Kry].

Theorem 1.1. Let \mathcal{A} be a rigid abelian tensor category in Rex, and let $\mathcal{M} \in \text{Rex}$ be an abelian \mathcal{A} -module category with an \mathcal{A} -progenerator $m \in \mathcal{M}$. Let $\operatorname{act}_m : \mathcal{A} \to \mathcal{M}$ be the functor corresponding to \mathcal{A} action on m, and act_m^R be its right adjoint. Set $T = \operatorname{act}_m^R \circ \operatorname{act}_m$. Then act_m^R induces an equivalence of \mathcal{A} -module categories $\mathcal{M} \simeq \operatorname{End}(m)\operatorname{-mod}_{\mathcal{A}}$, where \mathcal{A} acts on the right by multiplication.

The following theorem was stated by Matej in the end of his talk.

Theorem 1.2. Let \mathcal{A} be a rigid abelian tensor category, and let \mathcal{M} , \mathcal{N} be right and left module categories, respectively, with \mathcal{A} -progenerators $m \in M$ and $n \in N$. Then we have an equivalence of categories

 $\mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{N} \simeq \underline{\operatorname{End}}(m) \operatorname{-mod}_{\mathcal{N}} \simeq (\underline{\operatorname{End}}(m) - \underline{\operatorname{End}}(n)) \operatorname{-bimod}_{\mathcal{A}}.$

Proof. The second assertion directly follows from Theorem 1.1, so we will focus on th first one.

Consider the category $\mathcal{M}^{\vee} \simeq \operatorname{mod}_{\mathcal{A}}-\underline{\operatorname{End}}(m)$. We have a natural evaluation functor $\mathcal{M}^{\vee} \boxtimes \mathcal{M} \to \mathcal{A}$ given by the relative tensor product of right and left $\underline{\operatorname{End}}(m)$ -modules in \mathcal{A} . In addition, we have the functors $\operatorname{Vect} \to \mathcal{M}$ and $\operatorname{Vect} \to \mathcal{M}^{\vee}$ given by $\underline{\operatorname{Hom}}(\bullet, m)$ and $\underline{\operatorname{Hom}}(m, \bullet)$ correspondingly. Therefore we get a coevaluation functor $\operatorname{Vect} \simeq \operatorname{Vect} \boxtimes \operatorname{Vect} \to \mathcal{M} \boxtimes \mathcal{M}^{\vee} \to \mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{M}^{\vee}$.

The evaluation map $\mathcal{M}^{\vee} \boxtimes \mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{N} \to \mathcal{N}$ induces an equivalence $\mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{N} \simeq \operatorname{Fun}_{\mathcal{A}}(\mathcal{M}^{\vee}, \mathcal{N})$. Composing with the evaluation ev_m at m we get a functor $G : \mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{N} \to \mathcal{N}$. Since m is a pro-generator, if $\operatorname{ev}_m(f) = 0$ for some $f \in \operatorname{Fun}_{\mathcal{A}}(\mathcal{M}^{\vee}, \mathcal{N})$, then $f \equiv 0$. Since \mathcal{N} is abelian, [Kry, Lemma 3.62] implies that ev_m is conservative, and therefore G is conservative. Since m is projective, G preserves coequalizers. Therefore, by Barr-Beck theorem [Kry, Theorem 3.59], $\mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{N} \simeq \operatorname{End}(m)$ -mod $_{\mathcal{N}}$.

In this section we will apply the monadicity theorem stated above to braided tensor categories, tensor products and dominant functors.

Definition 1.3. A functor $F : \mathcal{A} \to \mathcal{B}$ is called **dominant** if every object of \mathcal{B} appears as a sub-object (equivalently using rigidity, quotient) of an object in the image of F.

Lemma 1.4. [BN11, Lemma 2.1] A tensor functor $F : \mathcal{A} \to \mathcal{B}$ is dominant if, and only if, its right adjoint F^R is faithful. i.e. \mathcal{B} should be generated under colimits by the image of \mathcal{A} .

Lemma 1.5. Let \mathcal{M}, \mathcal{N} be the categories with a structure of \mathcal{A} -module, and $F : \mathcal{M} \to \mathcal{N}$ be an \mathcal{A} -module dominant functor. Suppose that $m \in \mathcal{M}$ is an \mathcal{A} -generator of \mathcal{M} . Then F(m) is an \mathcal{A} -generator of \mathcal{N} .

Proof. Since F is an \mathcal{A} -module functor, we have $F \circ \operatorname{act}_m(a) = F(m \otimes a) = F(m) \otimes a = \operatorname{act}_{F(m)}(a)$. The isomorphism proven above implies that $\operatorname{act}_{F(m)}^R = F^R \circ \operatorname{act}_m^R$. Since m is an \mathcal{A} -generator of \mathcal{M} , act_m^R is faithful. Since F is dominant, by Lemma 1.4, F^R is faithful. Therefore $\operatorname{act}_{F(m)}^R$ is faithful. Therefore $\operatorname{act}_{F(m)}^R$ is faithful. \Box

Proposition 1.6. Let \mathcal{M} be an abelian \mathcal{A} -module category, $F : \mathcal{A} \to \mathcal{B}$ a dominant tensor functor, and $m \in \mathcal{M}$ a \mathcal{A} -progenerator. Then $m \boxtimes_{\mathcal{A}} 1_{\mathcal{B}}$ is a \mathcal{B} -progenerator of $\mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{B}$, and we have an equivalence of \mathcal{B} -module categories,

$$\mathcal{M} \boxtimes_{\mathcal{A}} \mathcal{B} \simeq F(\underline{\operatorname{End}}(m)) \operatorname{-mod}_{\mathcal{B}}$$

Proof. We apply Theorem 1.2 for $\mathcal{N} = \mathcal{B}$, where the structure of \mathcal{A} -module on \mathcal{B} is given using F.

1.2. Braided monoidal categories. From now on, suppose that \mathcal{A} is a rigid braded tensor category. Then the multiplication functor $\mathcal{A}^{\boxtimes n} \to \mathcal{A}$ is a tensor functor.

Proposition 1.7. For any n, the tensor unit $1_{\mathcal{A}}$ is a progenerator for the n-fold right regular action on \mathcal{A} .

Proof. 1) To show that $1_{\mathcal{A}}$ is a progenerator, we need to show that $\operatorname{act}_{1_{\mathcal{A}}}^{R}$ is faithfull or, equivalently, that $\operatorname{act}_{1_{\mathcal{A}}}$ is dominant. Indeed, $X \simeq X \otimes 1_{\mathcal{A}}$, so $\operatorname{act}_{1_{\mathcal{A}}}$ is dominant.

2) To show that $1_{\mathcal{A}}$ is \mathcal{A} -projective, we need to show that $\operatorname{act}_{1_{\mathcal{A}}}^{R}$ preserves colimits. We refer for this fact to [BBJ18, Proposition 3.12].

For n = 2, consider $\mathfrak{T}_{\mathcal{A}} := T(\underline{\operatorname{End}}_{\mathcal{A}^{\boxtimes 2}}(1_{\mathcal{A}}))$, where $T : \mathcal{A} \boxtimes \mathcal{A} \to \mathcal{A}$ is the tensor product. We have the following description of this object.

Proposition 1.8.

$$\mathfrak{T}_{\mathcal{A}} = \left(\bigoplus_{V \in \mathcal{A}} V^* \otimes V\right) / \langle \operatorname{Im}(\operatorname{id}_{W^*} \otimes \phi - \phi^* \otimes \operatorname{id}_V) | \phi : V \to W \rangle$$

The composition $(V^* \otimes V) \otimes (W^* \otimes W) \xrightarrow{\sigma_{V^* \otimes V, W^*}} (W^* \otimes V^*) \otimes (V \otimes W) \xrightarrow{\iota_{V \otimes W}} \mathfrak{T}_{\mathcal{A}}$ induces a multiplication structure on $\mathfrak{T}_{\mathcal{A}}$.

2. Factorization homology of punctured surfaces

2.1. Moduli algebra. Let S be a punctured surface, together with a choice of an interval along the boundary.

Recall that the embedding $\emptyset \to S$ induces a functor Vect $\to \int_S \mathcal{A}$, and we defined the quantum structure sheaf $\mathcal{O}_{S,\mathcal{A}}$ to be the image of $k \in$ Vect.

Definition 2.1. The moduli algebra of S is $A_S = \underline{\operatorname{End}}_{\mathcal{A}}(\mathcal{O}_{S,\mathcal{A}})$, where the \mathcal{A} -action on $\int_S \mathcal{A}$ is given by the chosen interval.

The following proposition underlines the importance of A_S .

Proposition 2.2. 1) The quantum structure sheaf $\mathcal{O}_{S,\mathcal{A}}$ is an \mathcal{A} -progenerator of $\int_S \mathcal{A}$. 2) We have an equivalence of categories $\int_S \mathcal{A} \simeq A_S \operatorname{-mod}_{\mathcal{A}}$.

Proof. First, we note that 2) follows from 1) immediately using Theorem 1.1. To prove 1) we will first need a lemma.

Lemma 2.3. Let S be a punctured surface, and $i: D^2 \to S$ be an embedding of a disk. Then the induced functor $i_*: \mathcal{A} = \int_{D^2} \mathcal{A} \to \int_S \mathcal{A}$ is dominant.

Proof. The factorization homology $\int_S \mathcal{A}$ is defined as a colimit over all embeddings of a disjoint union of disks in S. Let Γ stand for the corresponding diagram, so that $\int_S \mathcal{A} = \varinjlim_{\Gamma} \mathcal{A}^{\boxtimes k}$. Any such embedding $\sqcup_i D_i^2 \hookrightarrow S$ can be factored through a bigger disk $\sqcup_i D_i^2 \hookrightarrow D^2 \hookrightarrow S$, and any two such embeddings give rise to isomorphic functors on the level of factorization homology, cause S is path connected. Therefore $\int_S \mathcal{A}$ is generated under colimits by the image of i_* . \Box

Since the functor Vect $\rightarrow \int_{S} \mathcal{A}$ factors through \mathcal{A} , corresponding to the embedding $i: D^2 \rightarrow S$ of a small disk, we have $i_*(1_{\mathcal{A}}) = \mathcal{O}_{S,\mathcal{A}}$. Lemma 2.3, Lemma 1.5 and Proposition 1.7 imply that $\mathcal{O}_{S,\mathcal{A}}$ is an \mathcal{A} -generator of $\int_{S} \mathcal{A}$.

Analogously to the proof of Lemma 1.5, to show that $\mathcal{O}_{S,\mathcal{A}}$ is an \mathcal{A} -projective, it is enough to show that i_*^R preserves finite colimits. By construction, $i_*^R \in \operatorname{Fun}(\int_S \mathcal{A}, \mathcal{A}) = \operatorname{Fun}(\varinjlim_{\Gamma} \mathcal{A}^{\boxtimes k}, \mathcal{A}) =$ $\varprojlim_{\Gamma}(\mathcal{A}^{\boxtimes k}, \mathcal{A})$. Filtered limits commute with finite colimits, so it is enough to check that each of the corresponding functors $\mathcal{A}^{\boxtimes k} \to \mathcal{A}$ is cocontinious. Every such map factors through the tensor product $\mathcal{A}^{\boxtimes k} \to \mathcal{A}$, so it is enough to check it for each map $\mathcal{A} \to \mathcal{A}$, where it easily follows from the construction of that map. \Box

The main goal of the section is to give an explicit description of \mathcal{A}_S . To do that, we will first fix some data determining the surface S, namely, gluing pattern P.

2.2. Gluing pattern and the algebra a_P .

Definition 2.4. A gluing pattern is a bijection $P : (1, 1', 2, 2', \dots, g, g') \leftrightarrow (1, 2, \dots, 2g)$, such that P(i) < P(i') for all i.

Given a gluing pattern P, we can construct a punctured surface $\Sigma(P)$ with a marked boundary interval in the following way.

We begin with a disk D^2 with a 2g+1 boundary intervals numbered from 0 to 2g, and then glue g handles by gluing marked intervals of the *i*-th handle H_i with P(i) and P(i')-th intervals of the disk.

Plan:

- 1) To define an algebra structure a_P on $\mathfrak{T}_{\mathcal{A}}^{\otimes g}$ depending on the gluing pattern P;
- 2) To show a Morita equivalence between a_P and $\mathcal{A}_{\Sigma(P)}$ by computing the factorization homology.

Definition 2.5. We say that the handles H_i and H_j for i < j are

- positively linked if P(i) < P(j) < P(i') < P(j');
- negatively linked if P(j) < P(i) < P(j') < P(i');
- positively nested if P(j) < P(i) < P(i') < P(j');
- negatively nested if P(i) < P(j) < P(j') < P(i');
- positively unlinked if P(i) < P(i') < P(j) < P(j');
- negatively unlinked if P(j) < P(j') < P(i) < P(i').

Example 2.6. Suppose that P = (1, 3, 1', 2, 2', 3). Then

- H_1 and H_2 are positively unlinked;
- *H*₁ and *H*₃ are positively linked;
- H_2 and H_3 are negatively nested.

Definition 2.7. We define the crossing morphisms $L, N, U : \mathfrak{T}_{\mathcal{A}} \otimes \mathfrak{T}_{\mathcal{A}} \to \mathfrak{T}_{\mathcal{A}} \otimes \mathfrak{T}_{\mathcal{A}}$ as the following compositions:

Remark 2.8. Since $\mathfrak{T}_{\mathcal{A}} \in \mathcal{A}$, we have a natural braiding $\mathfrak{T}_{\mathcal{A}} \otimes \mathfrak{T}_{\mathcal{A}} \to \mathfrak{T}_{\mathcal{A}} \otimes \mathfrak{T}_{\mathcal{A}}$. It coincides with the constructed morphism U.

No we are ready to define the algebra a_P . We set $a_P = \mathfrak{T}_{\mathcal{A}}^{\otimes g}$, and will endow it with an algebra structure. Let $\mathfrak{T}_{\mathcal{A}}^{(i)}$ denote the *i*-th copy of $\mathfrak{T}_{\mathcal{A}}$ in $\mathfrak{T}_{\mathcal{A}}^{\otimes g}$. Then we have $a_P \otimes a_P = \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \ldots \mathfrak{T}_{\mathcal{A}}^{(g)} \otimes \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \ldots \mathfrak{T}_{\mathcal{A}}^{(g)}$. We have a well defined product on each copy, $m^{(i)} : \mathfrak{T}_{\mathcal{A}}^{(i)} \otimes \mathfrak{T}_{\mathcal{A}}^{(i)} \to \mathfrak{T}_{\mathcal{A}}^{(i)}$. The algebra structure is given by "braiding", i.e. a morphism $\mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \ldots \mathfrak{T}_{\mathcal{A}}^{(g)} \otimes \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \ldots \mathfrak{T}_{\mathcal{A}}^{(g)} \to \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \ldots \mathfrak{T}_{\mathcal{A}}^{(g)} \to \mathfrak{T}_{\mathcal{A}}^{(g)} \to \mathfrak{T}_{\mathcal{A}}^{(g)} \otimes \mathfrak{T}_{\mathcal{A}}^{(g)}$. To construct such morphism, it is enough to construct a morphism $\mathfrak{T}_{\mathcal{A}}^{(j)} \otimes \mathfrak{T}_{\mathcal{A}}^{(j)} \to \mathfrak{T}_{\mathcal{A}}^{(j)} \otimes \mathfrak{T}_{\mathcal{A}}^{(j)} \to \mathfrak{T}_{\mathcal{A}}^{(j)} \otimes \mathfrak{T}_{\mathcal{A}}^{(j)}$ for all $1 \leq i < j \leq g$. We define it as $L^{\pm 1}$ if the handles H_i ,

 H_j are \pm linked, $N^{\pm 1}$ if the handles H_i , H_j are \pm nested and $U^{\pm 1}$ if the handles H_i , H_j are \pm unlinked.

Example 2.9. Suppose that P = (1, 3, 1', 2, 2', 3). Then the algebra structure on a_P is given in the following way.

$$\begin{split} \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} \otimes \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} & \xrightarrow{1 \otimes 1 \otimes L \otimes 1 \otimes 1} \rightarrow \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \mathfrak{T}_{\mathcal{A}}^{(3)} \otimes$$

2.3. The main result. The following is the main result of the talk.

Theorem 2.10. Let \mathcal{A} be an abelian rigid balanced braided tensor category in Pr_c . We have a Morita equivalence between algebras $A_{\Sigma(P)}$ and a_P , and an equivalence of categories,

$$\int_{S} \mathcal{A} \simeq a_{P} \operatorname{-mod}_{\mathcal{A}} \simeq A_{\Sigma(P)} \operatorname{-mod}_{\mathcal{A}}$$

Remark 2.11. In fact, we have an equivalence of the algebras a_P and $A_{\Sigma(P)}$. To prove it one has to use the pointing on the categories $a_P \operatorname{-mod}_{\mathcal{A}}$ and $A_{\Sigma(P)} \operatorname{-mod}_{\mathcal{A}}$ given by the quantum structure sheaf.

Proof. We want to compute the factorization homology over $\Sigma(P)$. We will use the excision for the disk with marked intervals D^2 and the union of handles $\bigsqcup H_i$.

For the disk, we have $\int_{D^2} \mathcal{A} \simeq \mathcal{A}$, but the markings on D induce the structure of $\mathcal{A}^{\boxtimes 2g} - \mathcal{A}$ bimodule on $\int_{D^2} \mathcal{A}$, where we assume that 0-th interval is on the right, and 2g others on the left. Note that the action of $\mathcal{A}^{\boxtimes 2g}$ naturally factors through the tensor functor $\mathcal{A}^{\boxtimes 2g} \to \mathcal{A}$. We denote the category \mathcal{A} together with a structure of $\mathcal{A}^{\boxtimes 2g} - \mathcal{A}$ bimodule by ${}_{2g}\mathcal{A}_{\mathcal{A}}$.

For every handle H_i , we have $\int_{H_i} \mathcal{A} \simeq \mathcal{A}$, and the two marked intervals give $\int_{H_i} \mathcal{A}$ a structure of a right $\mathcal{A} \boxtimes \mathcal{A}$ -module. Then $\int_{\bigsqcup_i H_i} \mathcal{A} \simeq \mathcal{A}^{\boxtimes g}$ with a structure of a right $\mathcal{A}^{\boxtimes 2g}$ module. Note that on the *i*-th copy of $\mathcal{A}^{(i)}$ in $\mathcal{A}^{\boxtimes g}$ there is an action of $\mathcal{A}^{P(i)} \boxtimes \mathcal{A}^{P(i')}$ inside $\mathcal{A}^{\boxtimes 2g}$. We denote the resulting category by \mathcal{A}^P . In other words, we have $(a_1 \boxtimes a_2 \boxtimes \ldots \boxtimes a_g) \boxtimes (b_1 \boxtimes b_2 \boxtimes \ldots \boxtimes b_{2g}) = (a_1 \otimes b_{P(1)} \otimes b_{P(1')}) \boxtimes \ldots \boxtimes (a_g \otimes b_{P(g)} \otimes b_{P(g')}).$

The excision property implies that

(*)
$$\int_{S} \mathcal{A} \simeq \mathcal{A}^{P} \boxtimes_{\mathcal{A}^{\boxtimes 2g} 2g} \mathcal{A}_{\mathcal{A}}$$

Let $\tau_P \in S_{2g}$ be the permutation obtained by the precomposing P with the map $\{1, 2, \ldots, 2g\} \rightarrow \{1, 1', 2, 2', \ldots, g, g'\}$ given by $2k \rightarrow k, 2k - 1 \rightarrow k'$. Applying the corresponding functor (defined by braiding) τ_P to an object $\underline{\operatorname{End}}(1_{\mathcal{AA}})^{\boxtimes g} \in \mathcal{A}^{\boxtimes 2n}$, we get an algebra denoted by $\underline{\operatorname{End}}(1_{\mathcal{AA}})^P$.

Note that Proposition 1.7 and Theorem 1.1 imply that $\int_{H_i} \mathcal{A} \simeq \underline{\operatorname{End}}(1_{\mathcal{A}\mathcal{A}}) \operatorname{-mod}_{\mathcal{A}^{\boxtimes 2}}$. And therefore $\mathcal{A}^P = \int_{|I|} H_i \mathcal{A} \simeq \underline{\operatorname{End}}(1_{\mathcal{A}\mathcal{A}})^P \operatorname{-mod}_{\mathcal{A}^{\boxtimes 2g}}$, and $\underline{\operatorname{End}}(1_{\mathcal{A}\mathcal{A}})^P$ is an $\mathcal{A}^{\boxtimes 2g}$ -progenerator of \mathcal{A}^P .

We apply Theorem 1.2 for the dominant tensor functor $T: \mathcal{A}^{\boxtimes 2g} \to \mathcal{A}$ to * and get

(**)
$$\int_{S} \mathcal{A} \simeq T(\underline{\operatorname{End}}(1_{\mathcal{A}\mathcal{A}})^{P}) \operatorname{-mod}_{\mathcal{A}}$$

By Proposition 2.2, we get a Morita equivalence between A_S and $T(\underline{\operatorname{End}}(1_{\mathcal{A}\mathcal{A}})^P)$. It remains to show the isomorphism $T(\underline{\operatorname{End}}(1_{\mathcal{A}\mathcal{A}})^P) \simeq a_P$, where a_P is the algebra constructed in Section 2.2.

Let us denote the subalgebra $\underline{\operatorname{End}}(1_{\mathcal{A}_{P(i)}\mathcal{A}_{P(i')}} \text{ of } T(\underline{\operatorname{End}}(1_{\mathcal{A}\mathcal{A}})^P) \text{ by } \mathfrak{T}_{\mathcal{A}}^{(i,i')}, \text{ and set } \mathfrak{T}_{\mathcal{A}}^{(i)} = T(\mathfrak{T}_{\mathcal{A}}^{(i,i')}).$ Note that by construction we have $\mathfrak{T}_{\mathcal{A}}^{(i)} \simeq \mathfrak{T}_{\mathcal{A}}, \text{ where } \mathfrak{T}_{\mathcal{A}} = T(\underline{\operatorname{End}}_{\mathcal{A}^{\boxtimes 2}}(1_{\mathcal{A}}) \text{ as in Section 1.2.}$ The multiplication map $m : \mathfrak{T}_{\mathcal{A}}^{(1)} \otimes \mathfrak{T}_{\mathcal{A}}^{(2)} \otimes \ldots \otimes \mathfrak{T}_{\mathcal{A}}^{(g)} \to T(\underline{\operatorname{End}}(1_{\mathcal{A}\mathcal{A}})^P)$ is an isomorphism on objects. Therefore it is enough to compute the pairwise cross relations between factors in a_P and $T(\underline{\operatorname{End}}(1_{\mathcal{A}\mathcal{A}})^P).$

Suppose that i < j. Note that $\mathfrak{T}_{\mathcal{A}}^{(i,i')} \otimes \mathfrak{T}_{\mathcal{A}}^{(j,j')} = \mathfrak{T}_{\mathcal{A}}^{(j,j')} \otimes \mathfrak{T}_{\mathcal{A}}^{(i,i')}$, because these two algebras of endomorphisms occupy different factors.

We have well-defined diagrams that send $\{i, i', j, j'\} \rightarrow \{P(i), P(i'), P(j), P(j')\}$, and $\{j, j', i, i'\} \rightarrow \{P(i), P(i'), P(j), P(j')\}$. Let $J_{ij} : \mathfrak{T}_{\mathcal{A}}^{(i)} \otimes \mathfrak{T}_{\mathcal{A}}^{(j)} \rightarrow T^4(\mathfrak{T}_{\mathcal{A}}^{(i,i')} \otimes \mathfrak{T}_{\mathcal{A}}^{(j,j')})$ and $J_{ji} : \mathfrak{T}_{\mathcal{A}}^{(j)} \otimes \mathfrak{T}_{\mathcal{A}}^{(i)} \rightarrow T^4(\mathfrak{T}_{\mathcal{A}}^{(j,j')} \otimes \mathfrak{T}_{\mathcal{A}}^{(j,j')})$ be the maps given using these diagrams.

Then we have a commutative diagram.

We have $m|_{\mathfrak{T}_{\mathcal{A}}^{(j)}\otimes\mathfrak{T}_{\mathcal{A}}^{(i)}} = m|_{\mathfrak{T}_{\mathcal{A}}^{(i)}\otimes\mathfrak{T}_{\mathcal{A}}^{(j)}} \circ J_{12}^{-1}J_{21}$. We want to show that $m|_{\mathfrak{T}_{\mathcal{A}}^{(j)}\otimes\mathfrak{T}_{\mathcal{A}}^{(i)}} = m|_{\mathfrak{T}_{\mathcal{A}}^{(i)}\otimes\mathfrak{T}_{\mathcal{A}}^{(j)}} \circ C$, where C is defined from the gluing pattern P as in Section 2.2, i.e. we want to prove $C = J_{12}^{-1}J_{21}$. That will prove an isomorphism of algebras a_P and $T(\underline{\operatorname{End}}(1_{\mathcal{A}\mathcal{A}})^P)$. We will check this isomorphism in the next section.

2.4. Computing the braiding for every pair of habdles. Let us check the isomorphism $C = J_{12}^{-1}J_{21}$ for all cases of relation between H_i and H_j .

2

1) H_i and H_j are positively linked. $P: \{1, 1', 2, 2'\} \rightarrow \{1, 3, 2, 4\}.$

2

1

y=1 0 y ==

2

References

- [BBJ18] David Ben-Zvi, Adrien Brochier, and David Jordan. "Integrating quantum groups over surfaces". In: Journal of Topology 11.4 (Aug. 2018), pp. 874–917. DOI: 10.1112/topo. 12072. URL: https://doi.org/10.1112/topo.12072.
- [BN11] A. Bruguieres and S. Natale. "Exact Sequences of Tensor Categories". In: International Mathematics Research Notices (Jan. 2011). DOI: 10.1093/imrn/rnq294. URL: https: //doi.org/10.1093/imrn/rnq294.
- [Kry] Vasily Krylov. "2-categories and Barr-Beck for module categories". In: (). URL: https:// web.northeastern.edu/brwilliams/wp-content/uploads/2019/10/2-categoriestalk-vasya.pdf.

DEPARTMENT OF MATHEMATICS, NORTHEASTERN UNIVERSITY. BOSTON, MA 02115. USA. *Email address*: matvieievskyi.d@husky.neu.edu