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1. Main definitions

Main reference for this talk is [BBJ, Sections 3,4]. We start from defining some basic
properties of categories which will allow us define in section 2 main four (2, 1) categories
which we will study.

We will always denote by k some field, Vectk is a category of k-vector spaces, Vectk,f.d.
is a category of finite dimensional vector spaces.

Definition 1.1
A category C is called k-linear if for any two objects X,Y ∈ Ob(C ) a class HomC (X,Y )
is equipped with a k-linear structure. Such that for any X,Y, Z ∈ Ob(C ) the map
Hom(X,Y )×Hom(Y, Z)→ Hom(X,Z) is k-bilinear.

Functor F : C → D between two k-linear categories is called k-linear if for any
a, b ∈ Ob(C ) the morphism HomC (X,Y )→ HomD(F(X),F(Y )) is k-linear.

Remark 1.2
One can easily show that for any k-linear (additive) category C there exists a canonical
bilinear functor Vectk,f.d.×C → C , (V,X) 7→ V ⊗ X such that for X ∈ Ob(C) the
object V ⊗k X represents the functor C → Vectk, Y 7→ HomVectk(V,HomC (X,Y )) i.e.

HomC (V ⊗k X,Y ) ' HomVectk(V,HomC (X,Y )).

To construct this object we can use a basis in V and the fact that it represents some
functor shows that this object is actually canonical.

Definition 1.3
A category C is called small if both objects and Hom-spaces of C are sets.

Definition 1.4
A category C is called essentially small if it is equivalent to a small category.

Let us now discuss colimits. The following lemma is very usefull.

Lemma 1.5
Consider a small diagram J : I → A (i.e. category I is small). We denote by Arr(I )
the set of arrows of I . For an arrow a ∈ Mor(I ) we denote by s(a), t(a) ∈ Ob(I )
its start and target respectively. Set X :=

∐
a∈Mor(I ) J(s(a)), Y :=

∐
i∈Ob(I ) J(i) (we

assume that they exist). We have two morphisms ψ, φ : X → Y defined as follows:
ψ|J(s(a)) := ιt(a) ◦ a, φ|J(s(a)) := ιs(a), where ιs(a) : J(s(a)) → Y, ιt(a) : J(t(a)) → Y are
the natural maps. Then the co-limit of F along I is exactly a co-equalizer of the pair
ψ, φ : X → Y (when it exists).

Definition 1.6
A category C is called cocomplete (resp. finite cocomplete) if it contains all small (resp.
finite) co-limits.
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Lemma 1.7
Category C is cocomplete (resp. finite cocomplete) iff it contains all small (resp. finite)
coproducts and coequalizers.

Proof. Follows from lemma 1.5. �

Example 1.8. An example of cocomplete category is the category Set. One can show
that if D is cocomplete and C is any other category then category [C ,D ] of functors
from C to D is cocomplete (one can compute colimits pointwisely). In particular any
(small) category C can be fully faithfully embedded (via Yoneda) in a cocomplete
category [C opp,Set].

Example 1.9. By lemma 1.5 any abelian category A is finite cocomplete. Indeed
it’s enough to show that finite coproducts and coequializers exist in A . Existence of
finite coproducts is one of the axioms of abelian category, coequalizer of two arrows
φ, ψ : A→ A′, A,A′ ∈ A is nothing else but coker(φ− ψ).

Example 1.10. An example af a not cocomplete category but finite cocomplete cate-
gory is the category A−modf.g. of finitely generated modules over a noetherian ring A.
Being abelian it is finite cocomplete but it does not contain a colimit of the following
diagram A ↪→ A⊕2 ↪→ . . . (which should be A⊕∞).

Definition 1.11
A non-empty categoty I is called filtered if

(i) for every two objects i, j ∈ Ob(I ) there exists an object l and two morphisms
i→ l, j → l,

(ii) For every two morphisms u, v : i → j there exists an object l ∈ Ob(I ) and an
arrow w : j → l such that w ◦ v = w ◦ u.

Example 1.12. Let I be a directed set i.e. a set equipped with a preoder 6 such that
any finite subset of I has an upper bound. Then we can construct a filtered category
I as a category whose objects are elements of I and the set Hom(a, b) consists of one
element a→ b if a 6 b and is empty otherwise.

Lemma 1.13
Category C is cocomplete iff it contains all finite and filtered coproducts.

Proof. Indeed, if C contains all finite coproducts then it also contains coequalizers and
all finite coproducts. Now any small coproduct is a filtered colimit of finite coproduct
so we are done by lemma 1.5. �

Definition 1.14
A category C is called presentable (locally-presentable) if it is cocomplete and there
exists a small subset S of Ob C such that any object of C is a filtered colimit of objects
in S.

Example 1.15. Examples of presentable categories include category Set and more
generally categories [C ,Set] where C is small. Other example of presentable category
is a category Op(X) for a topological space X, objects of Op(X) are open subsets
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U ⊂ X and morphisms are open embeddings, coproducts correspond to unions and
coequalizers are trivial. It is an exersise to show that the category of coalgebras over a
field k is presentable.

Definition 1.16
A functor F : A → B from a cocomplete category A is called cocontinuous if it pre-
serves colimits.

Remark 1.17
Note that in the same way as in the proof of lemma 1.13 using lemma 1.5 we see that
a functor is cocontinuous iff it preserves finite and filtered colimits.

Example 1.18. Let X,Y be two toplogical spaces and Ob(X),Ob(Y ) are the corre-
sponding categories of open subsets. Then any continous map f : Y → X defines a co-
continuous functor f∗ : Op(X)→ Op(Y ) by sending U ∈ Op(X) to f−1(U) ∈ Op(Y ).

Definition 1.19
An object C ∈ C of a category C which admits all filtered colimits is called compact
if the functor HomC (C, •) commutes with filtered colimits. We denote by Cc ⊂ C the
full subcategory consisting of compact objects of C .

Example 1.20. Compact objects in the category Set are precisely finite sets.

Example 1.21. Let R be a noetherian ring and C = R − mod the category of R-
modules. Then an object C ∈ C is compact iff it is finitely generated.

Proof. The implication ⇐ is a an exersise. Let us prove the implication ⇒. We
fix a compact object M ∈ C . Note that we can present M as a colimit of its
finitely generated submodules Mi ⊂M . We have Hom(M,M) = Hom(M, colimMi) =
colim(Hom(M,Mi)). Consider now the element id ∈ Hom(M,M). We see that there
exists Mi ⊂ M and f : M → Mi such that id = ιi ◦ f , where ιi : Mi ↪→ M is the
embedding. It follows that M = Mi, hence, M is fnitely presented. �

Example 1.22. Let X be a topological space and recall a category Op(X). Then an
object C ∈ Op(X) is compact iff it is compact as a topological space.

Proof. Fix a compact object C ∈ Op(X). Consider a covering C =
⊔
i∈I Ui by open

subsets. For any finite subset K ⊂ I define UK :=
⋃
i∈K Ui. The set {UK} together

with natural open embeddings defines a filtered system. Note that colimK UK = C.
We see that Hom(C,C) = Hom(C, colimK UK) = colimK Hom(C,UK). It follows that
C = UK for some K i.e. C is compact.

It is an exersise to check that any compact subspace C ⊂ X is compact in Op(X).
�

Remark 1.23
Let us point out that restricting ourselves to filtered colimits is crucial in the definition
of compact object. For example in the category A−mod compact objects are precisely
finitely presented modules while objects P ∈ A−mod such that HomC (C, •) commutes
with all colimits are projective finitely presented modules.
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Remark 1.24
Any functor F : A → B commutes with finite filtered colimits. Indeed if I is a
finite filtered category and J : I → A is a diagram then there is always the maximal
element i ∈ Ob(I ). Now it follows from the definitions that colimJ = J(i) i.e.
F(colim J) = F(J(i)) = colimF ◦ J .

Lemma 1.25
Let C be a cocomplete category then a finite colimit of compact objects is compact.

Proof. Indeed assume that C = colimiCi, whith Ci-compact and such that the indexing
set is finite. Consider now arbitrary filtered colimit colimj Xj . We have

Hom(C, colimj Xj) = Hom(colimiCi, colimj Xj) = limi Hom(Ci, colimj Xj) =

= limi colimj Hom(Ci, Xj) = colimj limi Hom(Ci, Xj) =

= colimj Hom(limiCi, Xj) = colimj Hom(C,Xj),

here we use the following standard fact – finite limits commute with filtered colimits
(exersise). �

Definition 1.26
A functor F : A → B is called compact if it sends compact objects to compact objects.

Example 1.27. A continuous map f : Y → X induces a compact functor f∗ : Ob(X)→
Ob(Y ) iff f is proper.

Definition 1.28
An object S ∈ Ob(C ) is called a generator if for every pair of morphisms f, g : X → Y
in C , if f ◦ l = g ◦ l for every morphism l : S → X then f = g.

Example 1.29. Let C be a category of A-modules. Then A ∈ Ob(C ) is a generator.
Indeed if M,N are two A-modules and f, g : M → N are two morphisms then to any
m ∈ M we can associate a morphism lm : A → M, a 7→ am then from f ◦ lm = g ◦ lm
we deduce f(m) = g(m).

Definition 1.30
A Grothendieck category is an abelian cocomplete category which has a generator and
such that filtered colimits are exact.

Example 1.31. Let A be a k-algebra then the category A − mod is Grothendieck.
More generally if (X,OX) is a ringed space then the category of sheaves of OX -modules
is Grothendieck.

Let us now formulate adjoint functor theorem in the setting of presentable categories
(see [AR]).

Proposition 1.32
Let F : A → B be a functor between locally presentable categories A ,B. Then F

admits a right adjoint iff it preserves all small co-limits.
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Definition 1.33
Let F : A → B be a functor. Suppose that all finite limits (resp. co-limits) exist in
A . We say that F is left (resp. right) exact if it commutes with finite limits (resp.
colimits).

Lemma 1.34
Functor F : A → B is right (resp. left) exact iff it commutes with finite products (resp.
coproducts) and equalizers (resp. coequalizers).

Proof. The implication ⇒ is clear. The opposite implication follows from lemma 1.5.
�

Corollary 1.35
For abelian categories A ,B the two notions of right (resp. left) exact functors coincide.

2. Main categories

Let V be a monoidal category. A V -category A (or a category enriched over V ) is
(i) a class of objects Ob(A ),
(ii) for any X,Y ∈ Ob(A ) an object Hom(X,Y ) ∈ V ,
(iii) for each X,Y, Z ∈ Ob(A ) a morphism

◦XY Z : Hom(X,Y )⊗Hom(Y,Z)→ Hom(X,Z),

(iv) for each X ∈ Ob(C ) a morphism idX : 1→ Hom(X,X)
such that the following diagrams commute:

(Hom(Z,H)⊗Hom(Y,Z))⊗Hom(X,Y )

α

��

◦Y ZH⊗id // Hom(Y,H)⊗Hom(X,Y )

◦XY H

��
Hom(X,H)

Hom(Z,H)⊗ (Hom(Y,Z)⊗Hom(X,Y ))
id⊗◦XY Z // Hom(Z,H)⊗Hom(X,Z)

◦XZH

OO

,

1⊗Hom(X,Y )

λ

((

idY ⊗id // Hom(Y, Y )⊗Hom(X,Y )

◦XY Yuu
Hom(X,Y )

,

Hom(X,Y )⊗ 1
ρ

((

id⊗idX // Hom(X,Y )⊗Hom(X,X)

◦XXYuu
Hom(X,Y )

,

where α, λ, ρ are the natural morphisms in the tensor category V .
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Example 2.36. A category enriched over Vectk is nothing else but k-linear category.
A category enriched over Set is nothing else but a small category.

Recall that if we have two categories C ,D then we can form their cartesian product
whose objects are Ob(C ) × Ob(D) and HomC×D((C,D), (C ′, D′)) := HomC (C,C ′) ×
HomD(D,D′) for C,C ′ ∈ Ob(C ), D,D′ ∈ Ob(D).

Definition 2.37
A (strict) 2-category is a category enriched over Cat with monoidal structure given by
cartesian product.

Definition 2.38
A (2, 1)-category is a 2-category in which any 2-morphism is invertible.

Our main players will be the following four (2, 1)-categories:
(1) Rex is a category of essentially small finitely cocomplete k-linear categories with

morphisms right exact functors and 2-morphisms – k-linear natural isomorphisms.
(2) Pr is a category of presentable k-linear categories with morphisms cocontinuous

functors and 2-morphisms – k-linear natural isomorphisms.
(3) Prc is a category of k-linear cocomplete categories C such that Cc is essentially

small and any object of C is a filtered limit of compact objects. Morphisms between
such categories are compact cocontinuous functors and 2-morphisms – k-linear natural
isomorphisms.

(4) Gr is a category of Grothendieck categories.

Remark 2.39
Note that by proposition 1.32 morphisms in categories Pr, Prc have right adjoints.

Example 2.40. One very important example of an object of Rex is a category C −
comodf.d. of finite dimensional comodules over some k-coalgebra C.

Now our goal is to construct an equivalence Rex ' Prc. Starting from a small finitely
co-complete category C we can construct its ind-completion as follows. Its objects are
functors F : I → C from a small filtered category I to C . Morphisms in ind(C )
are natural transformations of functors. We have a canonical fully faithfull embedding
ι : C ↪→ ind(C ). The following lemma (exersise) describes a universal property of the
category ind(C ).

Lemma 2.41
For any category D which has all filtered colimits and a functor F : C → D there exists
a unique functor ind(F) : ind(C )→ D which prerserves filtered colimits and such that
F = ind(F) ◦ ι.

The following is true.

Lemma 2.42
(a) For any C ∈ Ob(C ) the object ι(C) ∈ ind(C ) is compact.
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(b) If C̃ ∈ ind(C ) is compact then C̃ is a retract of some object C of C i.e. there

exist morphisms C̃
ι−→ C

π−→ C̃ such that π ◦ ι = idC̃ .

(c) If C is finite cocomplete then any compact object of C̃ is isomorphic to ι(C) for
some C ∈ Ob(C ).

Proof. Let us prove (a). Fix an object C ∈ C and let J̃ : I → C , i 7→ Xi be a filtered

diagram. From the definitions it follows that it is enough to deal with the diagrams J̃ =
ι◦J, J : I → C . We have to show that HomC̃ (ι(C), colimXi) = colim(Hom(C,Xi)). So
we need to check a universal property of colimit for HomC̃ (ι(C), colimXi). Take a set Z
together with compatible homomorphisms ψi : Hom(C,Xi)→ Z. We need to construct
a morphism Hom(C, colimXi)→ Z. Note that one can consider colimXi as an object
of ind(C ). By the definition an element of Hom(C, colimXi) is a family of compatible
morphisms ϕi : C → Xi. We now construct a morphism Hom(C, colimXi) → Z by
sending (ϕi) to an element ψi(ϕi) (it does not depend on i). The claim follows.

Let us now prove part (b). Fix a compact object C̃ ∈ ind(C ). We can write C̃ =

colimi∈Ob(I )(Xi) for some diagram I → C , i 7→ Xi. We see that Homind(C )(C̃, C̃) =

Homind(C )(C̃, colimi∈Ob(I )(Xi)) = colimi(C̃,Xi) so, in particular, morphism id: C̃ →
C̃ can be decomposed as id = π ◦ ι for some Xi ∈ C .

To prove (c) it remains to note that C̃ from (b) is isomorphic to a coequalizer of the
pair ι ◦ π, id : C → C (we keep notations from the proof of (b)) which lies in C since it
is finite cocomplete. �

Proposition 2.43
We have an equivalence of (2, 1)-categories Rex ' Prc.

Proof. Fix a category C ∈ Rex. We can consider its ind-completion ind(C ). We
claim that ind(C ) ∈ Prc. Indeed category ind(C ) contains all finite (because C was
finite cocomplete and colimits commute with each other) and filtered colimits so by
lemma 1.13 it is cocomplete, note also that by lemma 2.42 any object X ∈ C is compact
as an object of ind(C ). Note also that if F : C → C ′ is a morphism in the category
Rex i.e. a functor which commutes with finite colimits then ind(F) is cocontinuous.

So we obtain a functor ind: Rex→ Prc.
Let us construct an inverse functor Prc → Rex. It sends D ∈ Prc to a full sub-

category Dc ⊂ D of compact objects. Recall that by the definition Dc is essentially
small. Note also that by lemma 1.25 the category Dc is finite cocomplete. It follows
that Dc ∈ Rex. We obtain a functor comp: Prc → Rexc.

It follows from lemma 2.42 that ind, comp are mutually inverse equivalences. �

We are now going to investigate objects C ,D ∈ Prc ' Rex and functors L : C → D .
For that we recall that by proposition 1.32 functor L andmits a right adjoint R : D → C .
We will investigate category D using the functor T := R ◦ L : C → D (it will have a
structure of a monad) and modules over T . Let us start from the general definition.

Definition 2.44
Let (C ,⊗) be a monoidal category. An object A ∈ C is called a unital algebra object if
we have morphisms m : A⊗A→ A, i : 1→ A such that standard axioms of associative
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unital algebra holds:

(A⊗A)⊗A
m⊗id

&&

α // A⊗ (A⊗A)
id⊗m // A⊗A

m
||

A⊗A m // A

,

1⊗A
λ

%%

i⊗id // A⊗A
m
��

A⊗Aid⊗ioo

ρ
yy

A

.

Example 2.45. Let C = Vectk be a category of vector spaces over k. Then a unital
algebra object of C is exactly an associative unital k-algebra.

To each k-linear category C we can associate the tensor category (End(C ), ◦) whose
objects are functors F : C → C , morphisms are natural transformations and tensor
structure comes from the composition of morphisms.

Definition 2.46
A monad T in a category C is a unital algebra object in the category End(C ).

Example 2.47. Let L : C → D , R : D → C be an adjoint pair of functors. Then the
composition T = R ◦ L is a monad on C via the adjunction and counit

η : idC → R ◦ L, ε : L ◦R→ idD .

Definition 2.48
If T is a monad in the category C with multiplication m : T 2 → T and unit η : idC → T
then we define the category T -modC as a category of pairs (X, f), where X ∈ C and f

is a morphism T (X)
f−→ X such that the following diagrams commute:

T 2(X)

T (f)

��

m(X) // T (X)

f

��
T (X)

f // X

, X

id

""

η(x)// T (X)

f
��
X

.

Morphisms between (X, f), (X ′, f ′) ∈ Ob(T − modC ) are h : X → X ′ such that
h ◦ f = f ′ ◦ T (h).

Example 2.49. Functor idC : C → C is a monad via the natural isomorphisms

idC
∼−→ idC , idC ◦ idC

∼−→ idC . We have an equivalence idC − modC
∼−→C given by

X 7→ (X, idC (X)).

Example 2.50. More generally assume that L,R are mutually inverse equivalences.
Then the morphisms η : idC → R ◦ L, ε : L ◦ R → idD are isomorphisms and we see
that T −modC is equivalent to C via a morphism C → T −modC , X 7→ (X, η−1(X)),
the inverse functor is a forgetting functor forg : T −modC → C .
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We always have a functor R̃ : D → T −modC sending X ∈ D to R(X) ∈ C equipped
with the canonical action

act : R ◦ L ◦R(A)
id⊗ε−−−→ R(A).

Recall that by proposition 1.32 if C ,D ∈ Pr that ANY morphism L : C → D of Pr
admits a right adjoint R : D → D so we obtain a functor R̃ : D → T −modC . Our next
goal is to formulate necessary and sufficient for this functor to be an equivalence.

3. Barr-Beck

Definition 3.51
Abelian category D is called locally finite if it has finite dimensional spaces of morphisms
and each object has finite length.

Definition 3.52
Abelian category D is called finite if it is locally finite has finite number of simple
objects, and has enough projectives.

Let us start from the following proposition.

Proposition 3.53
Let D be a finite abelian category. Then D ' A−modf.d. for some finite dimensional
algebra A. More precisely A = End(P )opp, where P is a projective generator of D .

Proof. Let P be a projective generator of D . We have a functor R = Hom(P, •) : D →
C , where C := End(P )opp−modf.d.. Note that R is left exact. Let us prove that R has
a left adjoint functor (it actually already follows from a version proposition 1.32). Note
that if we already know that C ' A −mod for some A than P must be an A-module
and the functor L is fiven by M 7→ P ⊗End(P )opp M for M ∈ C .

We now just mimick the construction of tensor product. Fix a basis {fj} of End(P )opp,
fix also a basis e1, . . . , em of M . We consider an object P⊕m and want to quotient
it by the elements of the form p ⊗ fjei − fj(p) ⊗ ei. For that consider morphisms
φij , ψij : P → P⊕m: φij is the map fj composed with the i-th coordinate embedding
P ↪→ P⊕m, to define ψij we decompose fjei =

∑
alel and define ψij as al idP on l-th

summand. Then we set

L(M) = P ⊗End(P )opp M := P⊕m/ Spank(Im(ψij − φij | i, j).

Let us also describe a more canonical way of constructing a functor L. Note that
we have a forgetfull functor C → Vectk and we denote by M the corresponding vec-
tor space. Consider an object M ⊗k P ∈ D (see remark 1.2). We have two mor-
phisms φ, ψ : M ⊗ End(P ) ⊗k P → M ⊗k P given as follows: φ = idM ⊗ actP , ψ =
actM ⊗ idP , where actM : M ⊗k End(P ) → M, (a, f) 7→ af, actP : End(P ) ⊗k P →
P, f ⊗ p 7→ f(p) (more formally we use the identification Hom(End(P ) ⊗k P, P ) '
Hom(End(P ),Hom(P, P )) and then morphism actP just corresponds to idP ). We then
can define L(M) := coker(φ− ψ).

It is easy to see that L is left adjoint to R.
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It remains to check that the adjunction morphisms η : idC → R ◦ L, ε : L ◦R→ idD

are isomorphisms. This can be done on the generators P,Hom(P, P ) of the categories
D ,C respectively.

We have

L(R(P )) = L(Hom(P, P )) = P ⊗End(P )opp Hom(P, P ) = P,

R(L(Hom(P, P ))) = R(P ) = Hom(P, P ).

The claim follows. �

Example 3.54. Let us give couple examples of categories which satisfy the conditions
of proposition 3.53. One important class of examples are blocks of BGG-category O for
semi-simple finite dimensional Lie algebra g. For g = sl2 one can easily describe the
corresponding algebra End(P )opp explicitly.

The following generalization of proposition 3.53 to the case of locally finite abelian
categories holds (the proof is not very hard, see [EGNO, Section 1.10]).

Proposition 3.55
Let D be a locally finite abelian category. Then D ' D − comodf.d. where the later
is a category of finite dimensional comodules over a unique coalgebra D. If D is finite
then D is finite dimensional and D ' D∗ −modf.d. (c.f. proposition 3.53).

Remark 3.56
Note that any locally finite category lies in Rex. The subclass of locally finite categor-
ties in Rex is very inmportant, for example, it is closed under the Deligne-Kelly tensor
product � on Rex (see section 4 and remark 4.67).

Let us now generalize proposition 3.53 to our setting.

Definition 3.57
A fork in a category A is a triple f, g : A → B, e : B → C such that ef = eg. A
split coequalizer is a folk together with morphisms t : B → A, s : C → B such that
es = idC , se = gt, ft = idB.

The following lemma is easy.

Lemma 3.58
Let (f, g, e) be a split coequalizer. Then for any functor F : A → B the morphism F(e)
is a coequalizer of the pair F(f),F(g).

Proof. Note that for any functor F, (F(f),F(g),F(e)) is a split coequalizer. So it
remains to check that if (f, g, e) is a split coequalizer then e is a coequalizer of f, g.
Indeed if h : B → D is some morphism such that h ◦ f = h ◦ g then h ◦ s : C → D
gives us the desired morphism. If p : C → D is any other map which makes diagram
commutative then we must have p ◦ e = h so p = p ◦ e ◦ s = h ◦ s and uniquenesse
follows. �

The following theorem is a generalization of the proposition 3.53. Recall adjoint
functors L : C → D , R : D → C .
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Theorem 3.59
The functor R̃ : D → T −modC is an equivalence if and only if

(1) R is conservative i.e. if f : X → Y in D is such that R(f) is an isomorphism
then f is an isomorphism,

(2) D has coequalizers of R-split parallel pairs (those parallel pairs of morphisms
in D , which R sends to pairs having a split coequalizer in D) and R preserves those
coequalizers.

Proof. Let us prove the implication ⇒. We assume that D is equivalent to T −modC

via R̃. After this equivalence the functor R : D → C becomes isomorphic to a forgetfull
functor Forg : T −modC → C which is obviously conservative.

Let us now fix two maps h, l : (X, f)→ (Y, g) in T−modC such that the corresponding
maps h, l : X → Y have a split coequalizer e : Y → Z in C . We need to construct a
coequalizer for h, l : (X, f)→ (Y, g). We have the following diagram

T (X)

f
��

T (h),T (l) // T (Y )

g

��

T (e) // T (Z)

X
h,l // Y

e // Z

Note that by lemma 3.58, T (e) is a coequalizer. It follows from the definitions that
egT (l) = elf = ehf = egT (h). We conclude that there exists m : T (Z)→ Z such that
the diagram commute. It is an exersise to check that m is compatible with a monad
(algebra) structure. It remains to show that e : (Y, g)→ (Z,m) is a coequalizer.

Consider any map d : (Y, g) → (Q, p) in T − modC such that dl = dh. Recall that
e : Y → Z is a coequalizer in C so there exists a unique d′ : Z → Q such that d′e = d.
Using the fact that T (e) is a coequalizer (uniquenesse part) we obtain p◦T (d′) = d′ ◦m
(maps p◦T (d′), d′◦m : T (Z)→ Q satisfy p◦T (d′)◦T (h) = d′◦m◦T (h), p◦T (d′)◦T (l) =
d′ ◦m ◦ T (l) so they must coincide). So we get a desired map d′ : (Z,m)→ (Q, p).

Let us prove the implication ⇐. Recall unit and counit morphisms

η : idC → R ◦ L, ε : L ◦R→ idD .

Recall that we have a multiplication m : T 2 → T . Let us firs off all note that for any
(x, f) ∈ Ob(T −modC ) the folk (m(x), T (f), f) splits by the pair s = η(x), t = η(Tx).

We have the forgetfull functor ForgC : T − modC → C . We also have a functor

L̃ : C → T −modC given by X 7→ (TX,m(X)) on the level of objects. It is easy to see

that L̃ is left adjoint to ForgC .
So we have two pairs of adjoint functors

(R,L), (ForgC , L̃), R : D → C , ForgC : T −modC → C .

Note that R ◦ L = ForgC ◦L̃ : C → C . so these adjoint pairs define the same monads.
Let us now prove the followig general lemma which will allow us to...

Lemma 3.60
Let (R,L), (R′, L′) be two adjoint pairs, R : D → C , R′ : D ′ → C such that R ◦ L =
R′ ◦ L′. Assume also that the condition (2) of theorem 3.59 holds for R. Then there
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exists a unique functor Q : D ′ → D such that RQ = R′, QL′ = L (in particular,
Qε′ = εQ).

Proof. Let us start from the uniqueness of Q. Note that for any x ∈ Ob(C ) the triple

(LR(ε(x)), ε(LR(x)), ε(x)), LR(ε(x)), ε(LR(x)) : LRLR(x)→ LR(x), ε(x) : LR(x)→ x,

is folk.
Let us consider a folk which corresponds to x = Qy for some y ∈ Ob(D ′). We obtain

the folk (LR(ε(Qy)), ε(LR(Qy)), ε(Qy)) = (LR′(ε′(y)), ε(LR′(y)), Qε′(y)).
Let us now apply R to this folk. We obtain a folk (RLR′(ε′(y)), Rε(LR′(y)), RQε′(y))

which splits because it coincides with the folk (m(R′y), T (f), f) for f = ε′(R′y). It
follows that Qy should be a coequalizer of (LR′(ε′(y)), ε(LR′(y))) i.e. it is uniquelly
defined. The uniqueness of Q follows.

Let us prove the existence of Q. It follows from the above that to any y ∈ Ob(D ′) we
can associate some (uniquelly defined) object to be denoted Q(y). We now should define
Q on morphisms. Consider a map y → z for some y, z ∈ Ob(D ′). We have already
realised Q(y), Q(z) as coequalizers of certain diagrams. It is clear that f induces a
morphism of these diagrams. So we obtain a desired morphism Q(f). �

Let us now apply lemma 3.60 to R′ = ForgC , L
′ = L̃. We obtain a functor Q : T −

modC → D . Note now that the functor R̃ : D → T −modC coincides with functor from
lemma 3.60 for a pair (ForgC , L̃), (R,L) (we can apply this lemma to this pair because
it follows from the proof of the implication ⇒ that the condition (2) of theorem 3.59

holds for ForgC ). It now follows from the uniqueness part of lemma 3.60 that Q ◦ R̃ =

idD , R̃ ◦Q = idT−modC
. �

Remark 3.61
Note that if D is (finite) cocomplete and F is cocontinuous then (2) holds authomati-
cally.

The following lemma is very usefull for checking condition (1) of Theorem 3.59.

Lemma 3.62
Suppose D is abelian and R is right exact. Then R is conservative iff for any X with
R(X) ' 0 we have X ' 0.

Proof. Implication⇒ is obvious. Let us prove the implication⇐. Suppose that we have
f : X → Y such that R(f) is an isomorphism. Note that R being right exact and right
adjoint is exact. It follows that R(ker f) = kerR(f) = 0, R(coker f) = cokerR(f) = 0
so ker f ' coker f ' 0. We conclude that f is an isomorphism. �

We are now answering to the question when T −modA is abelian.

Proposition 3.63
If A is an abelian category and T : A → A is a right exact monad on A then B :=
T −modA is abelian.

Proof. Let us first of all show that the category T −modA is pre-abelian.
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To do this we need to construct kernels and co-kernels in the category T −modA .
If h : X → X ′ induces a morphism (X, f) → (X ′, f ′) in D then the kernel of this
morphism is exactly (kerh, l), where l : T (kerh)→ kerh is obtained as the composition
of the morphisms T (kerh)→ kerT (h)→ kerh. To construct co-kernel we recall that T
is right exact so T (cokerh) = cokerT (h) and we can define cokernel of the morphism
h : (X, f) → (X ′, f ′) to be (coker(h), p), where p : T (cokerh) = cokerT (h) → coker(h)
is the natural morphism.

Consider now a forgetful functor forg : B → A . It follows from the constructions
that forg is an exact functor. Note that forg is conservative and C is abelian so it
follows that the comparison morphism

coker(ker(h))→ ker(coker(h))

is an isomorphism in D , hence, D is abelian.
�

4. Deligne-Kelly tensor product

Recall that on the previous lecture factorization homologies were constructed. They
were constructed as a colimit along some diagram. So we want to work with categories
which have enough colimits (cocomplete). So a good setting for us will be Prc. Recall
that by proposition 2.43 we have an equivalence Prc ' Rex. We want to have a tensor
structure on the category Rex ' Prc.

Definition 4.64
Given two k-linear categories A ,B we define their tensor product A ⊗B as a cat-
egory with objects the pairs (A,B) with A ∈ Ob(A ), B ∈ Ob(B) and morphisms
Hom((A,B), (A′, B′)) := Hom(A,B)⊗k Hom(A′, B′).

Proposition 4.65
(a) Category A ⊗B has the following universal property – we have a natural equivalence
between k-bilinear functors A × B → C to some k-linear category C and functors
A ⊗B → C .

(b) For any k-linear A ,B,C we have [A ⊗B,C ] ' [A [B,C ]].

It turns out that if A ,B are cocomplete then the category A ⊗B need not to be
cocomplete. There is a way to define other tensor product to be denoted by � such that
tensor product of two cocomplete categories will be cocomplete. Refferences are [K,
Section 6.5], [S, Section 2.3], [EGNO, Section 1.11],

Theorem 4.66
(a) For any two A ,B ∈ Rex there exists a category A �B uniquelly defined by the
following property

Rex[C �D ,E ] ' Bilin(C ×D ,E ),

where Bilin(C × D ,E ) is the category of k-bilinear functors preserving finite colimits
in each variable.

We have an equivalence

Rex[C �D ,E ] ' Rex[C ,Rex[D ,E ]].



14

(b) The Kelly tensor product � equips Rex with the structure of a symmetric closed
monoidal (2, 1)-category.

(c) The tensor product � extends to a monoidal structure on Prc and the functor

ind extends to an equivalence Rex� ∼−→Pr�c of symmetric monoidal (2, 1)-categories.

Remark 4.67
Assume that C ,D are locally finite abelian. Then by proposition 3.56 we have an
equivalence C ' C − comod, D ' D − comodf.d. for some coalgebras C,D over k.
Then we have C � D ' (C ⊗D) − comod so we have a rather explicit description of
the category C �D in this case.

5. Monadicity for module categories

Main refference for all the notions of this section is [EGNO, Chapter 7]. The main
theorem is taken from [BBJ, Theorem 4.6].

Definition 5.68
Tensor category (C ,⊗) is called closed if for any X ∈ Ob(C ) the functor X⊗• : C → C
admits a right adjoint. If C ∈ Pr then this is equivalent to the fact that X ⊗ • is
cocomplete.

Definition 5.69
An object C ∈ Ob(C ) of a tensor category is called right dualizable if there exists an
object C∗ ∈ Ob(C ) and morphisms evC : C∗ ⊗ C → 1, coevC : 1 → C ⊗ C∗ such that
the compositions

C
coevC ⊗idC−−−−−−−→ (C ⊗ C∗)⊗ C

αC,C∗,C−−−−−→ C ⊗ (C∗ ⊗ C)
idC⊗evC−−−−−→ C,

C∗
idC∗⊗coevC−−−−−−−−→ C∗ ⊗ (C ⊗ C∗)

α−1
C∗,C,C∗−−−−−−→ (C ⊗ C∗)⊗ C evC ⊗idC−−−−−−→ C

are identity morphisms, here α are associators for the tensor structure ⊗ on C .
An object C ∈ Ob(C ) of a tensor category is called left dualizable if there exists an

object ∗C ∈ Ob(C ) and morphisms ev′C : C ⊗ ∗C → 1, coev′C : 1 → ∗C ⊗ C such that
the compositions

C
idC⊗coev′C−−−−−−−→ C ⊗ (∗C ⊗ C)

αC,∗C,C−−−−−→ (C ⊗ C∗)⊗ C idC⊗evC−−−−−→ C,

∗C
coev′C ⊗idC∗−−−−−−−−→ (∗C ⊗ C)⊗ ∗C

α−1
C∗,C,C∗−−−−−−→ ∗C ⊗ (C ⊗ ∗C)

idC⊗ev′C−−−−−→ ∗C.

Definition 5.70
Tensor category (C ,⊗) is called rigid if all compact objects of C are right and left
dualizable.

Definition 5.71
Let (A ,⊗) be a tensor category in a category Prc.

(1) A (right) A -module category M in Prc is a category M ∈ Prc together with
an action functor

actM : M �A →M
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satisfying standard associativity (pentagon) axioms (this notion categorifies the notion
of a module over an algebra). We will denote actM (m�X) by m⊗X, m ∈ Ob(M ), X ∈
Ob(C ).

(2) For any m ∈M the functor actm : A →M , a 7→ m ⊗ a admits a right adjoint
to be denoted actRm : M → A (by proposition 1.32).

(3) For m,n ∈ M we set HomA (m,n) := actRm(n) ∈ A . Note that the object
Hom(m,n) (contravariantly) represents the functor A → Vectk, X 7→ HomM (X⊗m,n)
i.e.

HomA (X,Hom(m,n)) = HomA (X, actRm(n)) ' HomM (m⊗X,n). (5.1)

The object Hom(m,n) is called internal Hom form m to n.
(4) For any triple m,n, p ∈M there is a well-defined composition map in A :

Hom(n, p)⊗Hom(m,n)→ Hom(m, p). (5.2)

To construct it let us note that for any m,n ∈ Ob(M ) we have a canonical evaluation
morphism

evm,n : HomA (m,n)⊗m→ n

which corresponds to idHomA (m,n) under the isomorphism (5.1). We can now form the
composition

(HomA (n, p)⊗HomA (m,n))⊗m
αHomA (n,p),HomA (m,n),m−−−−−−−−−−−−−−−−−→

HomA (n, p)⊗ (HomA (m,n)⊗m)
id⊗evm,n−−−−−−→

HomA (n, p)⊗ n evn,p−−−→ p

which gives us the composition map (5.2) via the isomorphism (5.1).
(5) We set End(m) := Hom(m,m) = actRm(m) = actRm(actm(1)). By (4), End(m)

carries a unital algebra structure i.e. End(m) ∈ A is a unital algebra object. Recall
that by End(m)−modA we denote the category of End(m)-modules (in A ).

(6) We say that m is an A -generator if actRm is faithfull.
(7) We say that m is an A -projective if actRm is colimit-preserving (this is equivalent

to say that actRm preserves finite colimits since actRm preserves filtered colimits and now
apply remark 1.17).

(8) We say that m is an A -progenerator if it is an A -projective A -generator.

Definition 5.72
Let M ,N be A -module categories. A A -linear functor from M to N consists of a

functor F : M → N and a natural isomorphism sX,M : F(X ⊗M) ∼−→X ⊗F(M), X ∈
Ob(A ),M ∈ Ob(M ) which is associative and compatible with tensor product by 1 ∈
Ob(C ):

Theorem 5.73
(Monadicity for module categories) Let A be a rigid abelian tensor category in Prc
and let M ∈ Prc be an abelian A -module category with an A -progenerator m ∈M .
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Then the functor ãctRm (Hom(m, •)) is an equivalence of A -module categories,

M ' End(m)−modA ,

where A acts on the right by multiplication.

Proof. (Sketch) We want to apply theorem 3.59 to the functor actm : A →M . Recall
that m is an A -generator so by lemma 3.62 the functor actRm is conservative. Note also
thatm is A -projective i.e. it is colimit-preserving in particular it preserves coequalizers.
So by theorem 3.59 we obtain an equivalence

M ∼−→ actRm ◦ actm −modA .

It remains to identify actRm◦actm−modA ' End(m)−modA , functor ãctRm will identify
with Hom(m, •).

One can show that actRm : M → A carries a canonical module structure so the
composition actRm◦actm : A → A is a module functor. Any module functor F : A → A
is isomorphic to the functor F(1)⊗• (this is a categorification of the fact that if A is a
k-algebra then any (right) A-module homomorphism f : A 7→ A is given by a 7→ f(1)a).
So we see that actRm ◦ actm ' actRm ◦ actm(1)⊗ • = End(m)⊗ • and the claim follows.

One can also show directly (in the spirit of proposition 3.53) that the functor

Hom(m, •) defines an equivalence M ∼−→End(m)−modA (see [EGNO, section 7.10]).
�

Remark 5.74
Recall that End(m)−modA is the category of End(m)-modules in the tensor category
A .

Example 5.75. One can hold in head the following example. Let A = Vectk,f.d.
be the category of finite dimensional vector spaces over k and M is some finite cate-
gory. We consider A ,M as objects of the tensor category (Cat,×) (analogy of Prc).
Then the category (Vectk,f.d.,⊗) is a tensor category in Cat and the natural func-
tor Vectk,f.d.×M → M (see remark 1.2) equipps M with a structure of Vectk,f.d.-
module. For M ∈M the functor actM : Vectk,f.d. sends V to V ⊗kM the right adjoint

actRM : M → Vectk,f.d. sends N to HomM (M,N) ∈ Ob(Vectk,f.d.).
Now the theorem exactly says that if P ∈ M is a projective generator then M '

End(P )−modVectf.g = End(P )−modf.g (c.f. proposition 3.53).
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