Factorization homology along surfaces and quantum groups
Vasya Krylov
2-categories and Barr-Beck for module categories

1. MAIN DEFINITIONS

Main reference for this talk is [BBJ) Sections 3,4]. We start from defining some basic
properties of categories which will allow us define in Section main four (2, 1) categories
which we will study.

We will always denote by k some field, Vecty, is a category of k-vector spaces, Vecty, 7.q.
is a category of finite dimensional vector spaces.

Definition 1.1
A category € is called k-linear if for any two objects X, Y € Ob(%) a class Homy (X, Y)
is equipped with a k-linear structure. Such that for any X,Y,Z € Ob(%) the map
Hom(X,Y) x Hom(Y, Z) — Hom(X, Z) is k-bilinear.

Functor F: € — & between two k-linear categories is called k-linear if for any
a,b € Ob(%) the morphism Homy (X,Y) — Homgy(F(X),F(Y)) is k-linear.

Remark 1.2

One can easily show that for any k-linear (additive) category % there exists a canonical
bilinear functor Vecty rq x€ — ¢, (V,X) — V ® X such that for X € Ob(C) the
object V' ®j, X represents the functor 4 — Vecty, Y — Homyect, (V, Homey (X,Y)) ie.

Homy (V ®p X,Y) ~ Homvyect, (V, Homy (X, Y)).

To construct this object we can use a basis in V' and the fact that it represents some
functor shows that this object is actually canonical.

Definition 1.3
A category € is called small if both objects and Hom-spaces of € are sets.

Definition 1.4
A category € is called essentially small if it is equivalent to a small category.

Let us now discuss colimits. The following lemma is very usefull.

Lemma 1.5

Consider a small diagram J: . — < (i.e. category .% is small). We denote by Arr(.%)
the set of arrows of .. For an arrow a € Mor(.#) we denote by s(a),t(a) € Ob(.¥)
its start and target respectively. Set X := ][ enion(.r) J(8(a), Y := [L;con(r) J (1) (we
assume that they exist). We have two morphisms ¢, ¢: X — Y defined as follows:
V] 1(s(@)) 2= t(a) © @5 Plu(s(a)) = Ls(a), Where tyqy: J(s(a)) = Y, 1yqy: J(t(a)) — Y are
the natural maps. Then the co-limit of F along .% is exactly a co-equalizer of the pair
Y,¢: X =Y (when it exists).

Definition 1.6
A category € is called cocomplete (resp. finite cocomplete) if it contains all small (resp.
finite) co-limits.
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Lemma 1.7
Category € is cocomplete (resp. finite cocomplete) iff it contains all small (resp. finite)
coproducts and coequalizers.

Proof. Follows from lemma [1.5 O

Example 1.8. An example of cocomplete category is the category Set. One can show
that if 2 is cocomplete and % is any other category then category [¢, Z] of functors
from € to Z is cocomplete (one can compute colimits pointwisely). In particular any
(small) category % can be fully faithfully embedded (via Yoneda) in a cocomplete
category [€°PP, Set].

Example 1.9. By lemma [1.5| any abelian category « is finite cocomplete. Indeed
it’s enough to show that finite coproducts and coequializers exist in /. Existence of
finite coproducts is one of the axioms of abelian category, coequalizer of two arrows
o, A— A') A A" € of is nothing else but coker(¢ — ).

Example 1.10. An example af a not cocomplete category but finite cocomplete cate-
gory is the category A —mody . of finitely generated modules over a noetherian ring A.
Being abelian it is finite cocomplete but it does not contain a colimit of the following
diagram A — A%? — ... (which should be A%>).

Definition 1.11
A non-empty categoty .# is called filtered if

(i) for every two objects i,j € Ob(#) there exists an object | and two morphisms
t— 1,5 —1,

(ii) For every two morphisms u,v: i — j there exists an object | € Ob(.¥) and an
arrow w: j — | such that wov = w o u.

Example 1.12. Let I be a directed set i.e. a set equipped with a preoder < such that
any finite subset of I has an upper bound. Then we can construct a filtered category
& as a category whose objects are elements of I and the set Hom(a, b) consists of one
element a — b if a < b and is empty otherwise.

Lemma 1.13
Category € is cocomplete iff it contains all finite and filtered coproducts.

Proof. Indeed, if € contains all finite coproducts then it also contains coequalizers and
all finite coproducts. Now any small coproduct is a filtered colimit of finite coproduct
so we are done by lemma |1.5 g

Definition 1.14
A category € is called presentable (locally-presentable) if it is cocomplete and there

exists a small subset S of Ob % such that any object of € is a filtered colimit of objects
in S.

Example 1.15. Examples of presentable categories include category Set and more
generally categories |4, Set| where € is small. Other example of presentable category
is a category Op(X) for a topological space X, objects of Op(X) are open subsets
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U C X and morphisms are open embeddings, coproducts correspond to unions and
coequalizers are trivial. It is an exersise to show that the category of coalgebras over a
field k is presentable.

Definition 1.16
A functor F: of — % from a cocomplete category </ is called cocontinuous if it pre-
serves colimits.

Remark 1.17
Note that in the same way as in the proof of lemma [1.13| using lemma [1.5| we see that
a functor is cocontinuous iff it preserves finite and filtered colimits.

Example 1.18. Let X,Y be two toplogical spaces and Ob(X), Ob(Y) are the corre-
sponding categories of open subsets. Then any continous map f: Y — X defines a co-
continuous functor f*: Op(X) — Op(Y) by sending U € Op(X) to f~1(U) € Op(Y).

Definition 1.19

An object C' € € of a category ¢ which admits all filtered colimits is called compact
if the functor Homg (C, @) commutes with filtered colimits. We denote by 6. C € the
full subcategory consisting of compact objects of € .

Example 1.20. Compact objects in the category Set are precisely finite sets.

Example 1.21. Let R be a noetherian ring and ¥ = R — mod the category of R-
modules. Then an object C' € ¥ is compact iff it is finitely generated.

Proof. The implication < is a an exersise. Let us prove the implication =. We
fix a compact object M € %. Note that we can present M as a colimit of its
finitely generated submodules M; C M. We have Hom(M, M) = Hom(M, colim M;) =
colim(Hom(M, M;)). Consider now the element id € Hom(M, M). We see that there
exists M; C M and f: M — M; such that id = ¢; o f, where ¢;: M; — M is the
embedding. It follows that M = M;, hence, M is fnitely presented. O

Example 1.22. Let X be a topological space and recall a category Op(X). Then an
object C' € Op(X) is compact iff it is compact as a topological space.

Proof. Fix a compact object C' € Op(X). Consider a covering C' = | |;c; U; by open
subsets. For any finite subset K C I define Uy := (J;cg Ui- The set {Ug} together
with natural open embeddings defines a filtered system. Note that colimyg Ux = C.
We see that Hom(C, C) = Hom(C, colimg Uk ) = colimx Hom(C, Uk). It follows that
C = Uk for some K i.e. C is compact.

It is an exersise to check that any compact subspace C' C X is compact in Op(X).
O

Remark 1.23

Let us point out that restricting ourselves to filtered colimits is crucial in the definition
of compact object. For example in the category A —mod compact objects are precisely
finitely presented modules while objects P € A —mod such that Homg¢ (C, ) commutes
with all colimits are projective finitely presented modules.
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Remark 1.24

Any functor F: & — % commutes with finite filtered colimits. Indeed if & is a
finite filtered category and J: .# — & is a diagram then there is always the maximal
element ¢ € Ob(.#). Now it follows from the definitions that colimJ = J(i) i.e.
F(colim J) = F(J(i)) = colimF o J.

Lemma 1.25
Let € be a cocomplete category then a finite colimit of compact objects is compact.

Proof. Indeed assume that C' = colim; C;, whith C;-compact and such that the indexing
set is finite. Consider now arbitrary filtered colimit colim; X;. We have

Hom(C, colim; X;) = Hom(colim; Cj, colim; X ;) = lim; Hom(Cj, colim; X;) =
= lim; colim; Hom(Cj, X;) = colim; lim; Hom(C}, X;) =
= colim; Hom(lim; Cj, X;) = colim; Hom(C, Xj),

here we use the following standard fact — finite limits commute with filtered colimits
(exersise). O

Definition 1.26
A functor F: &/ — A is called compact if it sends compact objects to compact objects.

Example 1.27. A continuous map f: Y — X induces a compact functor f*: Ob(X) —
Ob(Y) iff f is proper.

Definition 1.28
An object S € Ob(%) is called a generator if for every pair of morphisms f,g: X =Y
in%, if fol=gol for every morphism [: S — X then f = g.

Example 1.29. Let € be a category of A-modules. Then A € Ob(%) is a generator.
Indeed if M, N are two A-modules and f,g: M — N are two morphisms then to any

m € M we can associate a morphism [,,: A — M, a — am then from fol,, =goln,
we deduce f(m) = g(m).

Definition 1.30
A Grothendieck category is an abelian cocomplete category which has a generator and
such that filtered colimits are exact.

Example 1.31. Let A be a k-algebra then the category A — mod is Grothendieck.
More generally if (X, Ox) is a ringed space then the category of sheaves of O x-modules
is Grothendieck.

Let us now formulate adjoint functor theorem in the setting of presentable categories
(see [AR]).

Proposition 1.32
Let F: o — 9 be a functor between locally presentable categories of ,98. Then F
admits a right adjoint iff it preserves all small co-limits.



Definition 1.33
Let F: o — A be a functor. Suppose that all finite limits (resp. co-limits) exist in
of . We say that F is left (resp. right) exact if it commutes with finite limits (resp.

colimits).
Lemma 1.34

Functor F: of — 2 is right (resp. left) exact iff it commutes with finite products (resp.
coproducts) and equalizers (resp. coequalizers).

Proof. The implication = is clear. The opposite implication follows from lemma
O

Corollary 1.35
For abelian categories <7 , 8 the two notions of right (resp. left) exact functors coincide.

2. MAIN CATEGORIES

Let 7 be a monoidal category. A ¥-category &7 (or a category enriched over ¥') is
(i) a class of objects Ob(</),

(ii) for any X,Y € Ob(.2) an object Hom(X,Y) € ¥,

(iii) for each X,Y,Z € Ob(«/) a morphism

oxyz: Hom(X,Y)® Hom(Y, Z) — Hom(X, Z),

(iv) for each X € Ob(%) a morphism idx: 1 — Hom(X, X)
such that the following diagrams commute:

(Hom(Z, H) ® Hom(Y, Z)) ® Hom(X, Y) Y282 Hom(Y, H) ® Hom(X,Y) ,
lOXYH
a Hom(X, H)
TOXZH
Hom(Z, H) @ (Hom(Y, Z) ® Hom(X, Y)) —222%Y2 Hom(Z, H) ® Hom(X, Z)
idy ®id
1 ® Hom(X,Y) Hom(Y,Y) ® Hom(X,Y) ,
\ %
Hom(X,Y)
id®idx
Hom( Hom(X,Y) ® Hom(X, X) ,

X,Y)
\ %

HomX Y

where o, A, p are the natural morphisms in the tensor category ¥'.
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Example 2.36. A category enriched over Vecty is nothing else but k-linear category.
A category enriched over Set is nothing else but a small category.

Recall that if we have two categories 4, Z then we can form their cartesian product
whose objects are Ob(%) x Ob(Z) and Homyg 4 ((C, D), (C’, D)) := Homg (C,C") x
Homg (D, D’) for C,C" € Ob(¥¢), D, D’ € Ob(2).

Definition 2.37
A (strict) 2-category is a category enriched over Cat with monoidal structure given by
cartesian product.

Definition 2.38
A (2,1)-category is a 2-category in which any 2-morphism is invertible.

Our main players will be the following four (2, 1)-categories:

(1) Rex is a category of essentially small finitely cocomplete k-linear categories with
morphisms right exact functors and 2-morphisms — k-linear natural isomorphisms.

(2) Pr is a category of presentable k-linear categories with morphisms cocontinuous
functors and 2-morphisms — k-linear natural isomorphisms.

(3) Pr. is a category of k-linear cocomplete categories ¢ such that %, is essentially
small and any object of ¥ is a filtered limit of compact objects. Morphisms between
such categories are compact cocontinuous functors and 2-morphisms — k-linear natural
isomorphisms.

(4) Gr is a category of Grothendieck categories.

Remark 2.39
Note that by proposition morphisms in categories Pr, Pr. have right adjoints.

Example 2.40. One very important example of an object of Rex is a category C' —
comody g, of finite dimensional comodules over some k-coalgebra C'.

Now our goal is to construct an equivalence Rex ~ Pr,. Starting from a small finitely
co-complete category ¥ we can construct its ind-completion as follows. Its objects are
functors F: .4/ — € from a small filtered category .# to ¥. Morphisms in ind(%)
are natural transformations of functors. We have a canonical fully faithfull embedding
t: € — ind(%). The following lemma (exersise) describes a universal property of the
category ind(%).

Lemma 2.41
For any category & which has all filtered colimits and a functor F: € — & there exists

a unique functor ind(¥F): ind(%) — & which prerserves filtered colimits and such that
F=ind(F) 0.

The following is true.

Lemma 2.42
(a) For any C € Ob(%) the object +(C) € ind(¥) is compact.
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(b) If C € ind(%) is compact then C' is a retract of some object C of € i.e. there

exist morphisms C' = C' = C such that wo 1 = idga.

(¢) If € is finite cocomplete then any compact object of € is isomorphic to 1(C) for
some C' € Ob(%).

Proof. Let us prove (a). Fix an object C' € € and let J: & — €, i — X; be a filtered
diagram. From the definitions it follows that it is enough to deal with the diagrams J =
o, J: I — €. We have to show that Hom.;(¢(C), colim X;) = colim(Hom(C, X;)). So
we need to check a universal property of colimit for Hom;(¢(C'), colim X;). Take a set Z
together with compatible homomorphisms v;: Hom(C, X;) — Z. We need to construct
a morphism Hom(C, colim X;) — Z. Note that one can consider colim X; as an object
of ind(%). By the definition an element of Hom(C, colim X;) is a family of compatible
morphisms ¢;: C — X;. We now construct a morphism Hom(C, colim X;) — Z by
sending (p;) to an element 1;(p;) (it does not depend on 7). The claim follows.

Let us now prove part (b). Fix a compact object C' € ind(%). We can write C' =
colim;cop(.s)(X;) for some diagram & — €, i — X;. We see that Homind(%)(é, C) =
Homind(%)(é,colimieOb(j) (X;)) = colim;(C, X;) so, in particular, morphism id: C' —
C can be decomposed as id = 7 o ¢ for some X; € €.

To prove (c) it remains to note that C' from (b) is isomorphic to a coequalizer of the
pair tom,id: C' — C (we keep notations from the proof of (b)) which lies in ¢ since it
is finite cocomplete. O

Proposition 2.43
We have an equivalence of (2, 1)-categories Rex ~ Pr..

Proof. Fix a category ¥ € Rex. We can consider its ind-completion ind(%). We
claim that ind(%¢’) € Pr.. Indeed category ind(%) contains all finite (because ¢ was
finite cocomplete and colimits commute with each other) and filtered colimits so by
lemma [1.13]it is cocomplete, note also that by lemma|[2.42|any object X € € is compact
as an object of ind(%¢’). Note also that if F: € — %"’ is a morphism in the category
Rex i.e. a functor which commutes with finite colimits then ind(F) is cocontinuous.

So we obtain a functor ind: Rex — Pr..

Let us construct an inverse functor Pr, — Rex. It sends ¥ € Pr. to a full sub-
category %, C 2 of compact objects. Recall that by the definition Z, is essentially
small. Note also that by lemma the category 2, is finite cocomplete. It follows
that 2. € Rex. We obtain a functor comp: Pr. — Rex..

It follows from lemma that ind, comp are mutually inverse equivalences. O

We are now going to investigate objects ¢, Z € Pr. ~ Rex and functors L: € — Z.
For that we recall that by proposition [1.32|functor L andmits a right adjoint R: 2 — €.
We will investigate category Z using the functor 7' := Ro L: ¢ — 2 (it will have a
structure of a monad) and modules over T'. Let us start from the general definition.

Definition 2.44
Let (¢, ®) be a monoidal category. An object A € € is called a unital algebra object if
we have morphisms m: A® A — A, i: 1 — A such that standard axioms of associative
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unital algebra holds:

id@m

(A A)® A - A (A A) AR A,

= 23

AR A m A

10A 40 A A9 4.

S

Example 2.45. Let ¥ = Vecty be a category of vector spaces over k. Then a unital
algebra object of € is exactly an associative unital k-algebra.

To each k-linear category ¢ we can associate the tensor category (End(%’), o) whose
objects are functors F: ¥ — %, morphisms are natural transformations and tensor
structure comes from the composition of morphisms.

Definition 2.46
A monad T in a category ¢ is a unital algebra object in the category End(%).

Example 2.47. Let L: ¥ — 9, R: 9 — % be an adjoint pair of functors. Then the
composition T'= R o L is a monad on ¥ via the adjunction and counit

7n: id¢g > RoL,e: LoR —idgy.

Definition 2.48
If T is a monad in the category € with multiplication m: T? — T and unit n: idgy — T
then we define the category T-mody as a category of pairs (X, f), where X € ¢ and f

is a morphism T'(X) Iy X such that the following diagrams commute:

2x) " rxy, x "D rx) .

iT(f) J{f y\if

T(X) L~ x

Morphisms between (X, f), (X', f') € Ob(T — mody) are h: X — X' such that
hof=f oT(h).

Example 2.49. Functor idg: ¥ — % is a monad via the natural isomorphisms
idy = idy, idy o idy = idy. We have an equivalence idy — mody —> % given by
X = (X,idg(X)).

Example 2.50. More generally assume that L, R are mutually inverse equivalences.
Then the morphisms 7n: idy — Ro L, e€: L o R — idy are isomorphisms and we see
that T — modg is equivalent to ¢ via a morphism ¢ — T — modg, X — (X,n71(X)),
the inverse functor is a forgetting functor forg: T — mody — % .
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We always have a functor R: 2 — T —mody sending X € 2 to R(X) € € equipped
with the canonical action

act: RoLo R(A) 1S, R(A).
Recall that by proposition if ¢,% € Pr that ANY morphism L: ¢ — Z of Pr
admits a right adjoint R: & — Z so we obtain a functor R: 2 — T —modg. Our next
goal is to formulate necessary and sufficient for this functor to be an equivalence.

3. BARR-BECK

Definition 3.51
Abelian category & is called locally finite if it has finite dimensional spaces of morphisms
and each object has finite length.

Definition 3.52
Abelian category & is called finite if it is locally finite has finite number of simple
objects, and has enough projectives.

Let us start from the following proposition.

Proposition 3.53
Let 9 be a finite abelian category. Then 9 ~ A — mody 4. for some finite dimensional
algebra A. More precisely A = End(P)°PP, where P is a projective generator of 9.

Proof. Let P be a projective generator of 2. We have a functor R = Hom(P,e): ¥ —
¢, where € := End(P)°? —mody q.. Note that R is left exact. Let us prove that R has
a left adjoint functor (it actually already follows from a version proposition. Note
that if we already know that 4 ~ A — mod for some A than P must be an A-module
and the functor L is fiven by M — P ®gnq(p)orr M for M € €.

We now just mimick the construction of tensor product. Fix a basis { f;} of End(P)?,
fix also a basis e1,...,e, of M. We consider an object P®™ and want to quotient
it by the elements of the form p ® fje; — fj(p) ® e;. For that consider morphisms
GijsYij: P — P¥™: ¢;; is the map f; composed with the i-th coordinate embedding
P — P®™_ to define v;; we decompose fje; = Y aje; and define ;; as a;idp on [-th
summand. Then we set

L(M) = P @gpa(pyors M := P / Spany (Im(vij — ¢45] 4, J).-

Let us also describe a more canonical way of constructing a functor L. Note that
we have a forgetfull functor ¥ — Vect; and we denote by M the corresponding vec-
tor space. Consider an object M ®) P € 2 (see remark . We have two mor-
phisms ¢,9: M ® End(P) ®, P — M ®j P given as follows: ¢ = idy ® actp,yp =
acty ® idp, where actyr: M @ End(P) — M, (a, f) — af, actp: End(P) & P —
P, f ® p— f(p) (more formally we use the identification Hom(End(P) @ P, P) =~
Hom(End(P), Hom(P, P)) and then morphism actp just corresponds to idp). We then
can define L(M) := coker(¢ — ).

It is easy to see that L is left adjoint to R.
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It remains to check that the adjunction morphisms 7: idy - Ro L, e: Lo R — idg
are isomorphisms. This can be done on the generators P, Hom(P, P) of the categories
9,6 respectively.

We have

L(R(P)) = L(Hom(P, P)) = P ®gya(pyerr Hom(P, P) = P,

R(L(Hom(P, P))) = R(P) = Hom(P, P).
The claim follows. O

Example 3.54. Let us give couple examples of categories which satisfy the conditions
of proposition One important class of examples are blocks of BGG-category O for
semi-simple finite dimensional Lie algebra g. For g = sly one can easily describe the
corresponding algebra End(P)°PP explicitly.

The following generalization of proposition to the case of locally finite abelian
categories holds (the proof is not very hard, see [EGNO| Section 1.10]).

Proposition 3.55

Let 9 be a locally finite abelian category. Then 9 ~ D — comody 4 where the later
is a category of finite dimensional comodules over a unique coalgebra D. If & is finite
then D is finite dimensional and & ~ D* — mody 4. (c.f. proposition .

Remark 3.56
Note that any locally finite category lies in Rex. The subclass of locally finite categor-

ties in Rex is very inmportant, for example, it is closed under the Deligne-Kelly tensor
product X on Rex (see section |4 and remark [4.67]).

Let us now generalize proposition to our setting.

Definition 3.57

A fork in a category &/ is a triple f,g: A — B, e: B — C such that ef = eg. A
split coequalizer is a folk together with morphisms t: B — A, s: C — B such that
es = idg, se = gt, ft = idp.

The following lemma is easy.

Lemma 3.58
Let (f,g,e) be a split coequalizer. Then for any functor F: &/ — 9 the morphism F(e)
is a coequalizer of the pair F(f),F(g).

Proof. Note that for any functor &F, (F(f),F(g),F(e)) is a split coequalizer. So it
remains to check that if (f,g,e) is a split coequalizer then e is a coequalizer of f,g.
Indeed if h: B — D is some morphism such that ho f = hog then hos: C — D
gives us the desired morphism. If p: C' — D is any other map which makes diagram
commutative then we must have poe = h so p = poeos = hos and uniquenesse
follows. O

The following theorem is a generalization of the proposition [3.53] Recall adjoint
functors L: ¢ — 9, R: 9 — ¢
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Theorem 3.59
The functor R: 9 — T — mody is an equivalence if and only if

(1) R is conservative i.e. if f: X — Y in 2 is such that R(f) is an isomorphism
then f is an isomorphism,

(2) Z has coequalizers of R-split parallel pairs (those parallel pairs of morphisms
in 9, which R sends to pairs having a split coequalizer in &) and R preserves those
coequalizers.

Proof. Let us prove the implication =. We assume that & is equivalent to T — mody
via R. After this equivalence the functor R: 2 — € becomes isomorphic to a forgetfull
functor Forg: T'— mody — % which is obviously conservative.

Let us now fix two maps h,[l: (X, f) — (Y, g) in T—modg such that the corresponding
maps h,l: X — Y have a split coequalizer e: Y — Z in ¥. We need to construct a
coequalizer for h,l: (X, f) — (Y, g). We have the following diagram

T(X) 0 T(Y) - 1(2)
X ig
X o Yy — 7

Note that by lemma [3.58, T'(e) is a coequalizer. It follows from the definitions that
egT(l) = elf = ehf = egT(h). We conclude that there exists m: T(Z) — Z such that
the diagram commute. It is an exersise to check that m is compatible with a monad
(algebra) structure. It remains to show that e: (Y, g) — (Z,m) is a coequalizer.

Consider any map d: (Y,g) — (@,p) in T'— mody such that dl = dh. Recall that
e: Y — Z is a coequalizer in % so there exists a unique d’': Z — @ such that d'e = d.
Using the fact that T'(e) is a coequalizer (uniquenesse part) we obtain poT'(d') = d' om
(maps poT'(d'),d om: T(Z) — Q satisfy poT(d')oT(h) = d'omoT(h),poT(d')oT(l) =
d omoT(l) so they must coincide). So we get a desired map d': (Z,m) — (Q,p).

Let us prove the implication <. Recall unit and counit morphisms

n:idg - RoL,e: Lo R —idg.

Recall that we have a multiplication m: T? — T. Let us firs off all note that for any
(x, f) € Ob(T — modg) the folk (m(z),T(f), f) splits by the pair s = n(x),t = n(Tx).
We have the forgetfull functor Forgy,: T'— mody — ¥. We also have a functor
L: % — T —mody given by X + (T'X, m(X)) on the level of objects. It is easy to see
that L is left adjoint to Forgg,.
So we have two pairs of adjoint functors

(R, L), (Forgy, L), R: 2 — €, Forgy: T — mody — €.

Note that R o L = Forge, oL: % — %. so these adjoint pairs define the same monads.
Let us now prove the followig general lemma which will allow us to...

Lemma 3.60
Let (R,L), (R',L') be two adjoint pairs, R: 9 — ¢, R': 9" — € such that Ro L =
R’ o L. Assume also that the condition (2) of theorem holds for R. Then there
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exists a unique functor Q: 2' — 2 such that RQ = R/,QL' = L (in particular,
Qe = €Q).

Proof. Let us start from the uniqueness of Q). Note that for any x € Ob(%) the triple
(LR(e(z)),e(LR(x)),e(z)), LR(e(x)),e(LR(z)): LRLR(x) — LR(z), €(z): LR(x) — =

is folk.

Let us consider a folk which corresponds to x = Qy for some y € Ob(.@/ ). We obtain
the folk (LR(e(Qy)), (LE(Qy)). e(Qy)) = (LE'(€ (1), e(LE (1)), Q' (y)).

Let us now apply R to this folk. We obtain a folk (RLR’( '(y)), Re(LR'(y)), RQ€ (y))
which splits because it coincides with the folk (m(R'y),T(f), f) for f = € (R'y). It
follows that Qy should be a coequalizer of (LR/(€'(y)),e(LR'(y))) i.e. it is uniquelly
defined. The uniqueness of () follows.

Let us prove the existence of Q. It follows from the above that to any y € Ob(2’) we
can associate some (uniquelly defined) object to be denoted Q(y). We now should define
@ on morphisms. Consider a map y — z for some y,2 € Ob(2’). We have already
realised Q(y),Q(z) as coequalizers of certain diagrams. It is clear that f induces a
morphism of these diagrams. So we obtain a desired morphism Q(f). O

Let us now apply lemma to R’ = Forgy, L' = L. We obtain a functor Q: T —
mody — Z. Note now that the functor R:9—T —modg coincides with functor from
lemma m for a pair (Forge, i), (R, L) (we can apply this lemma to this pair because
it follows from the proof of the implication = that the condition (ZH theorem

?

holds for Forg,). It now follows from the uniqueness part of lemma [3.60| that Q o R =
idg, RoQ = idemOdcg . U

Remark 3.61
Note that if Z is (finite) cocomplete and F is cocontinuous then (2) holds authomati-
cally.

The following lemma is very usefull for checking condition (1) of Theorem m

Lemma 3.62
Suppose 2 is abelian and R is right exact. Then R is conservative iff for any X with
R(X) ~ 0 we have X ~ 0.

Proof. Implication = is obvious. Let us prove the implication <. Suppose that we have
f: X — Y such that R(f) is an isomorphism. Note that R being right exact and right
adjoint is exact. It follows that R(ker f) = ker R(f) = 0, R(coker f) = coker R(f) =0
so ker f ~ coker f ~ 0. We conclude that f is an isomorphism. O

We are now answering to the question when T"— mod,, is abelian.

Proposition 3.63
If o/ is an abelian category and T: &/ — </ is a right exact monad on < then 9B =
T — mod,, is abelian.

Proof. Let us first of all show that the category T — mod,, is pre-abelian.
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To do this we need to construct kernels and co-kernels in the category T — mod,,.
If h: X — X’ induces a morphism (X, f) — (X', f') in 2 then the kernel of this
morphism is exactly (ker h, 1), where [: T'(ker h) — ker h is obtained as the composition
of the morphisms T'(ker h) — ker T'(h) — ker h. To construct co-kernel we recall that T
is right exact so T'(coker h) = coker T'(h) and we can define cokernel of the morphism
h: (X, f) = (X', ') to be (coker(h),p), where p: T'(coker h) = coker T'(h) — coker(h)
is the natural morphism.

Consider now a forgetful functor forg: 4 — &/. It follows from the constructions
that forg is an exact functor. Note that forg is conservative and % is abelian so it
follows that the comparison morphism

coker(ker(h)) — ker(coker(h))

is an isomorphism in &, hence, & is abelian.

4. DELIGNE-KELLY TENSOR PRODUCT

Recall that on the previous lecture factorization homologies were constructed. They
were constructed as a colimit along some diagram. So we want to work with categories
which have enough colimits (cocomplete). So a good setting for us will be Pr,.. Recall
that by proposition [2.43| we have an equivalence Pr, ~ Rex. We want to have a tensor
structure on the category Rex ~ Pr,.

Definition 4.64

Given two k-linear categories </, % we define their tensor product o Q@ % as a cat-
egory with objects the pairs (A, B) with A € Ob(«/), B € Ob(#) and morphisms
Hom((A, B), (A, B")) := Hom(A, B) ®; Hom(A’, B').

Proposition 4.65
(a) Category of @ % has the following universal property — we have a natural equivalence
between k-bilinear functors &/ x 9 — € to some k-linear category ¢ and functors
A RQB—C.

(b) For any k-linear </, ,€ we have [/ @ B,C| ~ [ |B,F]].

It turns out that if &/, & are cocomplete then the category &/ ® % need not to be
cocomplete. There is a way to define other tensor product to be denoted by X such that
tensor product of two cocomplete categories will be cocomplete. Refferences are [K|
Section 6.5], [S, Section 2.3], [EGNO] Section 1.11],

Theorem 4.66
(a) For any two <7, % € Rex there exists a category &/ X 9 uniquelly defined by the
following property
Rex|[¢ X 2,&] ~ Bilin(¢ x 2,8),
where Bilin(¢ x 2,&) is the category of k-bilinear functors preserving finite colimits
in each variable.
We have an equivalence

Rex[¢ X 2, &] ~ Rex[¢,Rex[Z, &]].
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(b) The Kelly tensor product X equips Rex with the structure of a symmetric closed
monoidal (2,1)-category.

(c) The tensor product X extends to a monoidal structure on Pr. and the functor
ind extends to an equivalence Rex® -~ Pr¥ of symmetric monoidal (2,1)-categories.

Remark 4.67

Assume that %, 2 are locally finite abelian. Then by proposition [3.56] we have an
equivalence 4 ~ C — comod, ¥ ~ D — comod; 4 for some coalgebras C,D over k.
Then we have ¥ K ¥ ~ (C ® D) — comod so we have a rather explicit description of
the category ¥ X Z in this case.

5. MONADICITY FOR MODULE CATEGORIES

Main refference for all the notions of this section is [EGNO| Chapter 7]. The main
theorem is taken from [BBJ, Theorem 4.6].

Definition 5.68

Tensor category (¢, ®) is called closed if for any X € Ob(%) the functor X R e: € — €
admits a right adjoint. If € € Pr then this is equivalent to the fact that X ® e is
cocomplete.

Definition 5.69
An object C € Ob(%) of a tensor category is called right dualizable if there exists an
object C* € Ob(%) and morphisms evg: C* ® C — 1, coeve: 1 — C' @ C* such that
the compositions

C coeve Rido (C®C*) ®C ac.c*,C C® (C* ®C> ido®evo 07

-1
id (e * .
O LN, ox g (O @ OF) —mC, (C®C*)®CMC
are identity morphisms, here o are associators for the tensor structure ® on €.
An object C € Ob(%) of a tensor category is called left dualizable if there exists an
object *C' € Ob(¥) and morphisms evy,: C ® *C — 1, coevyr: 1 — *C @ C such that
the compositions

idc®coev?, acxc,c ido®ev
C SO (*CeC) (CoC*) e C 7% C,
coevy, ®idcx QE’IF,C,C* idc®eve Je.

*C

Definition 5.70
Tensor category (¢,®) is called rigid if all compact objects of € are right and left
dualizable.

(FfCeC)e"C ———*"C®(C®*0C)

Definition 5.71
Let (<7, ®) be a tensor category in a category Pr..

(1) A (right) o/-module category .# in Pr. is a category .# € Pr. together with
an action functor

act y: MR — M
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satisfying standard associativity (pentagon) axioms (this notion categorifies the notion
of a module over an algebra). We will denote act_,(mXX) by m@ X, m € Ob(4#), X €
Ob(?).

(2) For any m € ./ the functor act,,: & — M, a — m @ a admits a right adjoint
to be denoted actl : .#/ — o/ (by proposition .

(3) For m,n € .# we set Hom(m,n) := actf(n) € o/. Note that the object
Hom(m,n) (contravariantly) represents the functor &/ — Vecty, X — Hom _,(X®m,n)
ie.

Hom,, (X, Hom(m,n)) = Hom (X, act?(n)) ~ Hom 4 (m ® X,n). (5.1)

The object Hom(m,n) is called internal Hom form m to n.
(4) For any triple m,n,p € .4 there is a well-defined composition map in < :

Hom(n, p) ® Hom(m, n) — Hom(m, p). (5.2)

To construct it let us note that for any m,n € Ob(.#) we have a canonical evaluation
morphism

eVpmn: Hom ,(m,n) ® m —n
which corresponds t0 idom , (m,n) under the isomorphism (5.1). We can now form the
composition

XHom gy (n,p),Hom g7 (m,n),m

(Hom,y(n,p) @ Hom,,(m,n)) @ m
Hom,/(n,p) ® (Hom,, (m,n) @ m) “err
Mﬂ(nap) Kn m} P

which gives us the composition map via the isomorphism .

(5) We set End(m) := Hom(m,m) = actl(m) = actl(act,,(1)). By (4), End(m)
carries a unital algebra structure i.e. End(m) € &/ is a unital algebra object. Recall
that by End(m) — mod,, we denote the category of End(m)-modules (in <7 ).

(6) We say that m is an o/-generator if actl is faithfull.

(7) We say that m is an o/ -projective if actll is colimit-preserving (this is equivalent
to say that act® preserves finite colimits since act® preserves filtered colimits and now

apply remark .

(8) We say that m is an <7 -progenerator if it is an </ -projective <7 -generator.

Definition 5.72

Let .#, .V be «-module categories. A &/ -linear functor from # to A consists of a
functor F: M4 — A and a natural isomorphism sx p: F(X QM) X F (M), X €
Ob(«), M € Ob(.#') which is associative and compatible with tensor product by 1 €
Ob(%):

Theorem 5.73
(Monadicity for module categories) Let </ be a rigid abelian tensor category in Pr,
and let # € Pr. be an abelian </-module category with an </ -progenerator m € . .
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Then the functor act® (Hom(m,e)) is an equivalence of o/-module categories,
A ~ End(m) — mod,y,
where & acts on the right by multiplication.

Proof. (Sketch) We want to apply theorem to the functor act,,: o/ — .# . Recall
that m is an «/-generator so by lemma the functor act? is conservative. Note also
that m is &7-projective i.e. it is colimit-preserving in particular it preserves coequalizers.
So by theorem [3.59] we obtain an equivalence

M5 actl o act,, —mod,y, .

It remains to identify act? oact,, —mod,, ~ End(m)—mod,,, functor act® will identify
with Hom(m, e).

One can show that actl: .# — & carries a canonical module structure so the
composition act? oact,,: &/ — & is a module functor. Any module functor F: .o/ — o7
is isomorphic to the functor F(1) ® e (this is a categorification of the fact that if A is a
k-algebra then any (right) A-module homomorphism f: A — A is given by a — f(1)a).
So we see that actl o act,, ~ actl o act,,(1) @ ¢ = End(m) ® e and the claim follows.

One can also show directly (in the spirit of proposition that the functor
Hom(m, ) defines an equivalence .# < End(m) — mod (see [EGNO], section 7.10]).

O

Remark 5.74
Recall that End(m) — mod,, is the category of End(m)-modules in the tensor category
o .

Example 5.75. One can hold in head the following example. Let &/ = Vecty sq.
be the category of finite dimensional vector spaces over k and .# is some finite cate-
gory. We consider o7, .# as objects of the tensor category (Cat, x) (analogy of Pr,).
Then the category (Vecty rq,®) is a tensor category in Cat and the natural func-
tor Vecty pq XM — M (see remark equipps . with a structure of Vecty r.q-
module. For M € .# the functor acty;: Vecty rq4 sends V to V ®; M the right adjoint
actll s M — Vecty, 7.4 sends N to Hom 4 (M, N) € Ob(Vecty, 1.4.).

Now the theorem exactly says that if P € .# is a projective generator then .# ~
End(P) — modvect, , = End(P) — mody,, (c.f. proposition (3.53).
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