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ABSTRACT. We introduce the concept of a holomorphic field theory on any complex man-
ifold in the language of the Batalin-Vilkovisky formalism. When the complex dimension
is one, this setting agrees with that of chiral conformal field theory. Our main result con-
cerns the behavior of holomorphic theories under renormalization group flow. Namely,
we show that holomorphic theories are one-loop finite. We use this to completely charac-
terize holomorphic anomalies in any dimension. Throughout, we compare our approach
to holomorphic field theories to more familiar approaches including that of supersymmet-
ric field theories.
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1. INTRODUCTION

From a mathematical perspective, much of the appeal of quantum field theory is that
often theories depend naturally on input geometric data. Furthermore, the usual quan-
tities in quantum field theory such as expectation values and the partition function pro-
duce invariants of these underlying geometries. An important and fruitful instance of
this is the notion of a topological field theory. Mathematically, a topological field theory
can be defined on an arbitrary manifold of a fixed dimension. In a precise way, topo-
logical theories depend naturally on the smooth structure of the manifold (or smooth
structures on associated data such as a bundle). A more complicated class of theories are
Riemannian field theories, which, in addition to smooth structures, are sensitive to input
metric data. These theories have more refined invariants associated to them, such as the
β-function, and are often more relevant to physical examples. In this paper, we study a
class of theories that lie between the aforementioned examples. These holomorphic theories
depend naturally on the complex structure of the underlying space-time.

The idea of studying holomorphic dependence in quantum field theory is certainly
not a new one. The most well-known case of this appears in complex dimension one
with the notion of a chiral conformal field theory. Here, the holomorphic structure shines
most brightly through the operator product expansion (OPE) of chiral operators in the the-
ory. This says that the dependence on the product of operators on their relative position
is holomorphic, even at the quantum level. These operators combine to form a mathe-
matical object called a vertex algebra. Numerous calculations in conformal field theory
reduce to algebraic manipulations at the level of vertex algebras. Furthermore, on arbi-
trary algebraic curves, the phenomena of operator product expansions has been inter-
preted mathematically through the pioneering work of Beilinson and Drinfeld on chiral
algebras [BD04]. This is arguably one of the greatest successes of mathematics in describ-
ing a small, albeit important, class of field theories.

Past dimension one, in complex dimensions two, four and six, an approach to studying
special types of holomorphic theories has appeared in the work of Nekrasov and collab-
orators [Nek96, LMNS97, LMNS96]. There is a holomorphic version of Chern-Simons
theory that has appeared in [Pop99, Pop00]. A holomorphic theory of gravity has been
proposed in [BCOV94] and studied most recently in the formalism used here in the work
of Costello and Costello-Li [CL, Cosa, Cosb]. We will discuss the relationship of our
approach to holomorphic field theory to these works throughout this paper.

The goal of this paper is two-fold. In the first part the discussion is fairly formal. After
a short recollection of field theory in the Batalin-Vilkovisky formalism, we go on to define
the definition of a holomorphic field theory on any complex manifold. We characterize
holomorphic deformations of holomorphic theories and provide numerous examples of
these theories in the language we set up.
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The second part of the paper proceeds to study quantizations of holomorphic field
theories defined on Cd, for any d ≥ 1. Of course, studying properties of quantization is
extremely theory-dependent. Nevertheless, our main result says that when it comes to
renormalization, holomorphic theories are generically well-behaved. We show that the
renormalization of a holomorphic theory on Cd is finite for quantization at one-loop. A
more precise statement is given in Theorem 3.4.

The approach to quantum field theory we use follows Costello’s theory of renormal-
ization and the Batalin-Vilkovisky formalism developed in [Cos11]. In broad strokes, it
says that to construct a full quantum field theory it suffices to define the theory at each
energy (or length) scale and to ask that these descriptions be compatible as we vary the
scale. Concretely, this compatibility is through the renormalization group (RG) flow and is
encoded by an operator W(Pε<L,−) acting on the space of functionals. The functional
W(Pε<L,−) is defined as a sum over weights of graphs which is how Feynman diagrams
appear in Costello’s formalism. The infamous infinities of quantum field theory arise due
to studying behavior of theories at arbitrarily high energies (or small lengths). In physics
this is called the ultra-violet (UV) divergence. Our result can be interpreted by saying
that, at one-loop, holomorphic theories have no UV divergences.

Although we do not consider this topic in the present paper, a large collection of exam-
ples of holomorphic theories come from familiar physical theories. Namely, holomorphic
theories generically appear as minimal twists of supersymmetric theories. These are more
general than the topological twists considered by Witten in [Wit88]. Any supercharge Q
of a supersymmetric theory satisfying Q2 = 0 allows one to construct a “twist”. In some
cases, where Clifford multiplication with Q spans all translations such a twist becomes a
topological theory (in the weak sense). In any case, however, such a Q defines a “holo-
morphic twist” [Cos13], which results in the type of holomorphic theories we consider.
Regularization in supersymmetric theories, especially gauge theories, is notoriously dif-
ficult. Our result implies that after twisting the analytic difficulties become much easier
to deal with. Consequently, facets of these theories, such as their anomalies, can be cast
in a more algebraic framework. For a recent discussion of holomorphic aspects of twists
of supersymmetric theories see [ES].

In no way does this paper tell the complete story of holomorphic field theory. A major
future program of the author is to study the behavior of operators for holomorphic field
theory, even in the case that the complex manifold is X = Cd. In general, the operators
of any quantum field theory form a factorization algebra [CG17, CG]. For one-dimensional
holomorphic theories, our formalism recovers the theory of chiral and vertex algebras
[Wil17, GGW, CG17]. When d ≥ 2 there is strong evidence that the factorization algebras
of holomorphic theories combine to form some higher dimensional vertex algebra struc-
ture, where the OPE still varies holomorphically with respect to the relative location of
the operators. We will return to this in later publications.
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2. THE DEFINITION OF A HOLOMORPHIC FIELD THEORY

The goal of this section is to define the notion of a holomorphic field theory. This is a
variant of Costello’s definition of a theory in the Batalin-Vilkovisky formalism, which we
will recall at a rapid pace in the first part of this section. In crude summary, to arrive at
the definition of a holomorphic field theory we modify the definition of an ordinary BV
theory by inserting the word “holomorphic” in front of most objects (bundles, differential
operators, etc..). By applying the Dolbeault complex in appropriate locations, we will
recover Costello’s definition of a theory, but with a holomorphic flavor, see Table 1.

2.1. A recollection of the BV-BRST formalism. In this section we will give an expedient
review of the classical Batalin-Vilkovisky formalism. We will also set up the requisite
conventions and notations that we will use throughout this paper.

2.1.1. Classical field theory. Classical field theory is a formalism for describing a physical
system in terms of objects called fields. Mathematically, the space of fields is a (most often
infinite dimensional) vector space E. Classical physics is described by the critical locus of
a (usually real or complex valued) linear functional on the space of fields

(1) S : E→ R or C,

called the action functional. The critical locus is the locus of fields that have zero variation

(2) Crit(S) := {ϕ ∈ E | dS(ϕ) = 0}.

A field ϕ satisfying the equation dS(ϕ) = 0 is said to be a solution to the classical equations
of motion.

Even in the finite dimensional case, if the functional S is not sufficiently well-behaved
the critical locus can be still be highly singular. The starting point of the classical Batalin-
Vilkovisky formalism is to instead consider the derived critical locus. To get a feel for this,
we review the finite dimensional situation. Let M be a manifold, which is our ansatz
for E at the moment, and suppose S : M → R is a smooth map. The critical locus is
the intersection of the graph of dS in T∗M with the zero section 0 : M → T∗M. Thus,
functions on the critical locus are of the form

O(Crit(S)) = O(Γ(dS))⊗O(T∗M) O(M).
4



The derived critical locus is a derived space whose dg ring of functions is

O(Crith(S)) = O(Γ(dS))⊗L
O(T∗M) O(M).

We have replaced the strict tensor product with the derived one. Using the Koszul res-
olution of O(M) as a O(T∗M)-module one can write this derived tensor product as a
complex of polyvector fields equipped with some differential:

O(Crith(S)) '
(
PV−∗(M), ιdS

)
.

In cohomological degree −i we have PV−i(M) = Γ(M,∧iTM) and ιdS denotes contrac-
tion with the one-form dS (which raises cohomological degree with our regrading con-
vention). With our grading convention we have O(T∗[−1]M) = PV−∗(M). The space
O(T∗[−1]M) has natural shifted Poisson structure, which takes the form of the familiar
Schouten-Nijenhuis bracket of polyvector fields.

The takeaway is that the derived critical locus of a functional S : M→ R has the struc-
ture of a (−1)-shifted symplectic space. This will be the starting point for our definition
of a theory in the BV formalism in the general setting.

In all non-trivial examples the space of fields E is infinite dimensional and we must
be careful with what functionals S we allow. The space of fields we consider will always
have a natural topology, and we will choose functionals that are continuous with respect
to it. We include a discussion of our convention for infinite dimensional vector spaces
including duals and spaces of functionals in the Appendix.

In general, the space of fields of a field theory is equal to the space of smooth sections
of a Z-graded vector bundle E → X on a manifold E = Γ(X, E). The Z-grading is the
cohomological, or BRST 1, grading of the theory.

2.1.2. Local functionals. The class of functionals S : E → R defining the classical theories
we consider are required to be local, or given by the integral of a Lagrangian density. We
define this concept now.

Let DX denote the sheaf of smooth differential operators on X. If E is any graded
vector bundle on X let Jet(E) denote its bundle of ∞-jets. This is a smooth vector bundle,
albeit infinite rank, on X whose fiber over y ∈ X can be identified with

Ey ×C[[x1, . . . , xn]].

Here, {xi} is a formal coordinate near y. This object is given the natural structure of a
pro object in the category of vector bundles. We let J(E) denote the associated sheaf of
smooth sections. It is well-known that Jet(E) is equipped with a natural flat connection
rendering J(E) with the structure of a smooth DX-module.

1Named after Becchi, Rouet, Stora, Tyutin, for which our approach to field theory is greatly influenced
by their original mathematical approach to quantization.
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In the Appendix we define the algebra of functions O(E(X)) on the space of global sec-
tions E(X). This is the completed symmetric algebra on the linear dual of E(X), where the
tensor product and dual are interpreted in the appropriate topological sense. Likewise,
there is the space of reduced functionals Ored(E(X)) = O(E(X))/R. It is the quotient of
all functionals by the constant polynomial functions.

The space Ored(J(E)) inherits a natural DX-module structure from J(E). We refer
to Ored(J(E)) as the space of Lagrangians on the vector bundle E. Every element F ∈
Ored(J(E)) can be expanded as F = ∑n Fn where each Fn is an element

Fn ∈ HomC∞
X
(J(E)⊗n, C∞

X )Sn
∼= PolyDiff(E⊗n, C∞(X))Sn

where the right-hand side is the space of polydifferential operators. The proof of the
isomorphism on the right-hand side can be found in Chapter 5 of [Cos11]. We refer to
Ored(J(E)) as the (left) DX-module of Lagrangians on the vector bundle E.

A local functional is given by a Lagrangian densities modulo total derivatives. The
mathematical definition is the following.

Definition 2.1. Let E be a graded vector bundle on X. Define the sheaf of local functionals
on X to be

Oloc(E) = DensX ⊗DX Ored(J(E)),

where we use the natural right DX-module structure on densities.

Note that we always consider local functionals coming from Lagrangians modulo con-
stants. We will not be concerned with local functions associated to constant Lagrangians.

From the expression for functionals in Lemma A.4 we see that integration defines an
inclusion of sheaves

(3) i : Oloc(E) ↪→ Ored(Ec).

Often times when we describe a local functional we will write down its value on test
compactly supported sections, then check that it is given by integrating a Lagrangian
density, which amounts to lifting the functional along i.

2.1.3. The definition of a classical field theory. Before giving the definition, we need to recall
what the proper notion of a shifted symplectic structure is in the geometric setting that
we work in.

Definition 2.2. Let E be a graded vector bundle on X. A k-shifted symplectic structure is an
isomorphism of graded vector spaces

E ∼=ω E![k] =
(
DensX ⊗ E∨

)
[k]

that is graded anti-symmetric.
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If ω∗ is the formal adjoint of the isomorphism ω∗ : E ∼= E![k], anti-symmetry amounts
to the condition ω∗ = −ω. In general, ω does not induces a Poisson structure on the
space of all functionals O(E). This is because, as we have seen above, elements of this
space are given by distributional sections and hence we cannot pair elements with over-
lapping support. The symplectic structure does, however, induce a Poisson bracket on
local functionals. 2 We will denote the bracket induced by a shifted symplectic structure
by {−,−}.

We are now ready to give the precise definition of a classical field theory.

Definition 2.3 ([CG] Definition 5.4.0.3). A classical field theory in the BV formalism on a
smooth manifold X is a Z-graded vector bundle E equipped with a (−1)-shifted sym-
plectic structure together with a local functional S ∈ Oloc(E) such that:

(1) the functional S satisfies the classical master equation

{S, S} = 0;

(2) S is at least quadratic, so we can write it (in a unique way) as

S(ϕ) = ω(ϕ, Qϕ) + I(ϕ)

where Q is a linear differential operator such that Q2 = 0, and I ∈ Oloc(E) is at
least cubic;

(3) the complex (E, Q) is elliptic.

In the physics literature, the operator Q is known as the linearized BRST operator,
and {S,−} = Q + {I,−} is the full BRST operator. Ellipticity of the complex (E, Q)

is a technical requirement that will be very important in our approach to the issue of
renormalization in perturbative quantum field theory. The classical master equation is
equivalent to

QI +
1
2
{I, I} = 0.

A free theory is a classical theory with I = 0 in the notation above. Thus, a free theory is
a simply an elliptic complex equipped with a (−1)-shifted symplectic pairing where the
differential in the elliptic complex is graded skew-self adjoint for the pairing.

Although the space O(E) does not have a well-defined shifted Possoin bracket induced
from the symplectic pairing, the operator {S,−} : O(E) → O(E)[1] is well-defined since
S is local by assumption. By assumption, it is also square zero. The complex of global
classical observables of the theory is defined by

Obscl
E (X) = (O(E(X)), {S,−}).

This complex is the field theoretic replacement for functions on the derived locus of S
from the beginning of this section. Although it does not have a P0-structure, there is a

2Note that Oloc(E) is not a shifted Poisson algebra since there is no natural commutative product.
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subspace that does. This is sometimes referred to as the BRST complex in the physics
literature.

2.1.4. A description using L∞ algebras. There is a completely equivalent way to describe
a classical field theory that helps to illuminate the mathematical meaningfulness of the
definition given above. The requisite concept we need to introduce is that of a local Lie
algebra (or local L∞ algebra).

First, recall that an L∞ algebra is a modest generalization of a dg Lie algebra where the
Jacobi identity is only required to hold up to homotopy. The data of an L∞ algebra is a
graded vector space V with, for each k ≥ 1, a k-ary bracket

`k : V⊗k → V[2− k]

of cohomological degree 2− k. These maps are required to satisfy a series of conditions,
the first of which says `2

1 = 0. The next says that `2 is a bracket satisfying the Jacobi
identity up to a homotopy given by `3. For a detailed definition see we refer the reader
to [Sta92, Get09].

We now give the definition of a local L∞ algebra on a manifold X. This has appeared
in Chapter 4 of [CG].

Definition 2.4. A local L∞ algebra on X is the following data:

(i) a Z-graded vector bundle L on X, whose sheaf of smooth sections we denote Lsh,
and

(ii) for each positive integer n, a polydifferential operator in n inputs

`n : L× · · · ×L︸ ︷︷ ︸
n times

→ L[2− n]

such that the collection {`n}n∈N satisfy the conditions of an L∞ algebra. In particular, L
is a sheaf of L∞ algebras.

The simplest example of a local Lie algebra starts with the data of an ordinary Lie
algebra g. We can then take the constant bundle gX with fiber g. The Lie bracket on
g extends to define the structure of a local Lie algebra. In this case, the sheaf of Lie
algebras is C∞

X ⊗ g. Another important example of a local Lie algebra is given by the Lie
algebra of vector fields Vect(X) on a smooth manifold. The Lie bracket of vector fields is
a bidifferential operator on the tangent bundle and this equips the sheaf of sections with
the structure of a sheaf of Lie algebras.

Just as in the case of an ordinary graded vector bundle, we can discuss local function-
als on a local Lie algebra L. In this case, the L∞ structure maps give this the structure of
a sheaf of complexes, providing a local version of the Chevalley-Eilenberg cochain com-
plex. Indeed, the ∞-jet bundle JL is an L∞ algebra object in DX-modules and so we can
define the DX-module of reduced Chevalley-Eilenberg cochains C∗Lie,red(JL). Mimicking
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the definition above, we arrive at the following local version of Lie algebra cohomology
that will come up again and again in this thesis.

Definition 2.5. Let L be a local Lie algebra. The local Chevalley-Eilenberg cochain com-
plex is the sheaf of cochain complexes

C∗loc(L) = DensX ⊗DX C∗Lie,red(L).

We denote the global sections by C∗loc(L(X)).

The local cohomology of a local Lie algebra is the cohomology of the local CE complex,
which we will denote H∗loc(L(X)).

Remark 2.6. We have already remarked that for a graded vector bundle E there is an
embedding Oloc(E) ↪→ Ored(E). This translates to an embedding of sheaves of cochain
complexes C∗loc(L) ↪→ C∗Lie,red(Lc) for any local Lie algebra L. In the case of vector fields,
there is a related cochain complex that has been studied extensively in the context of
characteristic classes of foliations [Fuk86, Gui73, Los98, BR73]. Suppose, for simplicity,
that X is a compact smooth manifold. If Vect(X) is the Lie algebra of vector fields on X
then the (reduced) diagonal cochain complex is the subcomplex

C∗∆,red(Vect(X)) ⊂ C∗Lie,red(Vect(X))

consisting of cochains ϕ : Vect(X)⊗k → C satisfying ϕ(X1, . . . , Xk) = 0 if
⋂k

i=1 Supp(Xi) =

∅. That is, the cocycle vanishes unless all of the supports of the inputs overlap nontriv-
ially. The inclusion of the local cochain complex C∗loc(Vect(X)) ⊂ C∗Lie,red(Vect(X)) factors
through this subcomplex to give a sequence of inclusions

C∗loc(Vect(X)) ↪→ C∗∆,red(Vect(X)) ↪→ C∗Lie,red(Vect(X)).

This is because the cochain of Vect(X) defined from a local cochain involves the integral
of local operators applied to the inputs.

It turns out that the definition of a classical field theory can be repackaged in terms of
certain structures on a local L∞ algebra. The first piece of data we need to transport to
the L∞ side is that of a symplectic pairing. The underlying data of a local L∞ algebra L is
a graded vector bundle. In Definition 2.2 we have already defined a k-shifted symplectic
pairing. On the local Lie algebra sign, we ask for k = −3 shifted symplectic structures
that are also invariant for the L∞ structure maps.

Also, an important part of a classical field theory is ellipticity. We say a local L∞ algebra
is elliptic if the complex (L, d = `1) is an elliptic complex.

Proposition 2.7 ([CG] Proposition 5.4.0.2). The following structures are equivalent:

(1) a classical field theory in the BV formalism (E, ω, S);
(2) an elliptic local Lie algebra structure on L = E[1] equipped with a (−3)-shifted symplec-

tic pairing.
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Proof. (Sketch) The underlying graded vector bundle of the space of fields E is E and
we obtain the bundle underlying the local L∞ algebra by shifting this down L = E[1].
The (−1)-shifted symplectic structure on E transports to a (−3)-shifted on on L. The L∞

structure maps for L come from the Taylor components of the action functional S. The
exterior derivative of S is a section

dS ∈ C∗loc(L,L![−1]),

where on the right-hand side we have zero differential. The Taylor components are of
the form (dS)n : L⊗n → L![−1]. Using the shifted symplectic pairing we can identify
these Taylor components with maps (dS)n : L⊗n → L[2]. Thus, dS can be viewed as
a section of C∗loc(L,L[2]). This is precisely the space controlling deformations of L as a
local Lie algebra. One checks immediately that the classical master equation is equivalent
to the fact that dS is a derivation, hence it determines the structure of a local Lie algebra.
The first Taylor component `1 is precisely the operator Q before, so ellipticity of (E, Q) is
equivalent to ellipticity of (L, `1). �

2.2. The definition of a holomorphic field theory. In this section we fix a complex man-
ifold X of complex dimension d. We start with the definition of a free holomorphic field
theory on X, from there we will go on to describe how to incorporate interactions.

2.2.1. Free holomorphic theories. The essential information that governs a classical field
theory are its equations of motion. For a free theory, the equations of motion are linear
in the space of fields. At least classically, the setting of free theories can essentially be
reduced to the study linear partial differential equations.

First, we must come to terms with the fields of a holomorphic theory. Just as in the case
of an ordinary field theory, they will arise as sections of some Z-graded vector bundle
on X. The Z-grading plays the same role as in the usual setting, it counts the BRST, or
ghost, degree. We will also refer to this as the cohomological degree. For a holomorphic
theory the crucial step is that we impose that this graded vector bundle be holomorphic.
By a holomorphic Z-graded vector bundle we mean a Z-graded vector bundle V• =

⊕iVi[−i] (which we will usually abbreviate simply as V) such that each graded piece Vi

is a holomorphic vector bundle (here Vi is in cohomological degree +i). Thus, in order
to define a holomorphic field theory on a complex manifold X we start with the data:

(1) a Z-graded holomorphic vector bundle V• = ⊕iVi[−i] on X, so that the finite
dimensional holomorphic vector bundle Vi is in cohomological degree i.

Remark 2.8. For supersymmetric theories it may be desirable to include an additional
Z/2, or fermionic, grading into the data of the space of fields, but we do not consider
that here.
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A free classical theory is made up of a space of fields as above together with the data of
a linearized BRST differential QBRST and a shifted symplectic pairing of cohomological
degree −1. Ordinarily, the BRST operator is simply a differential operator on the under-
lying vector bundle defining the fields. For the class of theories we are considering, we
require this operator be holomorphic. For completeness, we briefly recall this notion.

Suppose that E and F are two holomorphic vector bundles on X. Note that the Hom-
bundle Hom(E, F) inherits a natural holomorphic structure. By definition, a holomorphic
differential operator of order m is a linear map

D : Γhol(X; E)→ Γhol(X; F)

such that, with respect to a holomorphic coordinate chart {zi} on X, D can be written as

(4) D|{zi} = ∑
|I|≤m

aI(z)
∂|I|

∂zI

where aI(z) is a local holomorphic section of Hom(E, F). Here, the sum is over all multi-
indices I = (i1, . . . , id) and

∂|I|

∂zI
:=

d

∏
k=1

∂ik

∂zik
k

.

The length of the multi-index I is defined by |I| := i1 + · · ·+ id.

Example 2.9. The most basic example of a holomorphic differential operator is the ∂ op-
erator for the trivial vector bundle. For each 1 ≤ ` ≤ d = dimC(X), it is a holomorphic
differential operator from E = ∧`T1,0∗X to F = ∧`+1T1,0∗X which on sections is

∂ : Ω`,hol(X)→ Ω`+1,hol(X).

Locally, of course, it has the form

∂ =
d

∑
i=1

(dzi ∧ (−)) ∂

∂zi
,

where dzi ∧ (−) is the vector bundle homomorphism ∧`T1,0∗X → ∧`+1T1,0∗X sending
α 7→ dzi ∧ α.

The next piece of data we fix is:

(2) a square-zero holomorphic differential operator

Qhol : Vhol → Vhol

of cohomological degree +1. Here Vhol denotes the holomorphic sections of V.

Finally, to define a free theory we need the data of a shifted symplectic pairing. For
reasons to become clear in a moment, we must choose this pairing to have a strange
cohomological degree. The last piece of data we fix is:
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(3) an invertible bundle map

(−,−)V : V ⊗V → KX[d− 1]

Here, KX is the canonical bundle on X.

The definition of the fields of an ordinary field theory are the smooth sections of the
vector bundle V. In our situation this is a silly thing to do since we lose all of the data of
the complex structure we used to define the objects above. The more natural thing to do is
to take the holomorphic sections of the vector bundle V. By construction, the operator Qhol

and the pairing (−,−)V are defined on holomorphic sections, so on the surface this seems
reasonable. The technical caveat that the sheaf of holomorphic sections does not satisfy
certain conditions necessary to study renormalization and observables in our approach
to QFT. For more details on this see Remark 2.12. The solution to this problem is to take
a natural resolution of holomorphic sections in order to relate to the usual definition of a
classical BV theory.

Given any holomorphic vector bundle V we can define its Dolbeault complex Ω0,∗(X, V)

with its Dolbeault operator

∂ : Ω0,p(X, V)→ Ω0,p+1(X, V).

Here, Ω0,p(X, V) denotes smooth sections of the vector bundle
∧p(T0,1)∨X ⊗V. For any

U ⊂ X open subset, the complex Ω0,∗(U, V) is defined. In this way, we obtain a natural
sheaf of complexes on X, that we denote by Ω0,∗

X (V). The fundamental property of the
Dolbeault complex is that by Dolbeault’s Theorem it provides a resolution for the sheaf
of holomorphic sections:

Vhol → Ω0
X(V)

∂−→ Ω0,1
X (V)

∂−→ · · · .

We now take a graded holomorphic vector bundle V = V• as above, equipped with
the differential operator Qhol . The Dolbeault resolution Ω0,∗(X, V•) is now equipped with
two differentials Qhol and ∂. The complex of fields is the totalization of this complex:

EV = Tot
(

Ω0,∗(X, V), ∂, Qhol
)
=
(

Ω0,∗(X, V), ∂ + Qhol
)

.

The operator ∂ + Qhol will be the linearized BRST operator of our theory. By assumption,
we have [∂, Qhol ] so that (∂ + Qhol)2 = 0 and hence the fields still define a complex.

By construction, EV has the natural structure of a sheaf of complexes. When we want to
consider global sections over X we use the notation EV(X). There is similarly a cosheaf of
compactly supported sections EV,c whose underlying graded is the compactly supported
Dolbeault forms Ω0,∗

c (X, V).
The pairing (−,−)V defines a pairing on EV as follows. The thing to observe here is

that (−,−)V extends to the Dolbeault complex in a natural way: we simply combine the
12



wedge product of forms with the pairing on V. We obtain the following composition.

EV,c ⊗ EV,c
(−,−)V

//

ωV
((

Ω0,∗
c (X, KX)[d− 1]∫

X
��

C[−1].

The top Dolbeault forms with values in the canonical bundle KX are precisely the top
forms on the smooth manifold X, and we use the integration map

∫
X : Ωd,d

c (X)→ C. We
note that integration is of cohomological degree d, as exhibited in the diagram.

We arrive at the following definition.

Definition/Lemma 1. A free holomorphic theory on a complex manifold X is the data
(V, Qhol , (−,−)V) as in (1), (2), (3) above such that Qhol is a square zero elliptic dif-
ferential operator that is graded skew self-adjoint for the pairing (−,−)V . The triple
(EV , QV = ∂ + Qhol , ωV) defines a free BV theory in the usual sense.

The usual prescription for writing down the associated action functional holds in this
case. If ϕ ∈ Ω0,∗(X, V) denotes a field the action is

S(ϕ) =
∫

X

(
ϕ, (∂ + Qhol)ϕ

)
V

.

We arrive at an example, which is a higher dimensional version of a familiar chiral
CFT.

Example 2.10. The free βγ system. Suppose that

V = C⊕ KX[d− 1].

Let (−,−)V be the pairing

(C⊕ KX)⊗ (C⊕ KX)→ KX ⊕ KX → KX

sending (λ, µ)⊗ (λ′, µ′) 7→ (λµ′, λ′µ) 7→ λµ′+ λ′µ. In this example we set Qhol = 0. One
immediately checks that this is a holomorphic free theory as above. The space of fields
can be written as

EV = Ω0,∗(X)⊕Ωd,∗(X)[d− 1].

We write γ ∈ Ω0,∗(X) for a field in the first component, and β ∈ Ωd,∗(X)[d− 1] for a field
in the second component. The action functional reads

S(γ + β, γ′ + β′) =
∫

X
β ∧ ∂γ′ + β′ ∧ ∂γ.

When d = 1 this reduces to the ordinary chiral βγ system from conformal field theory.
The βγ system is a bosonic version of the ghost bc system that appears in the quantization
of the bosonic string, see Chapter 6 of [Pol98]. For instance, we will see how this theory
is the starting block for constructing general holomorphic σ-models.

13



Example 2.11. Coefficients in a bundle. There are many variants of the βγ system that we
can consider. For instance, if E is any (graded) holomorphic vector bundle on X we can
take

V = E⊕ KCd ⊗ E∨

where E∨ is the linear dual bundle. The pairing is constructed as in the case above where
we also use the evaluation pairing between E and E∨. In thise case, the fields are γ ∈
Ω0,∗(X, E) and β ∈ Ωd,∗(X, E∨)[d− 1]. The action functional is simply

S(γ, β) =
∫

evE(β ∧ ∂γ).

Here, evE stands for the evaluation pairing between sections of E and sections of the
dual E∨. When E is a tensor bundle of type (r, s) this theory is a bosonic version of the
bc ghost system of spin (r, s). For a general bundle E we will refer to it as the βγ system
with coefficients in the bundle E.

Remark 2.12. We will only work with a holomorphic theory prescribed by the data (V, (−,−)V , Qhol)

through its associated BV theory. One might propose a definition of a BV theory in the an-
alytic category based off of holomorphic sections of holomorphic vector bundles. There
are numerous technical reason why this approach fails in our approach to QFT. In partic-
ular, the sheaf of holomorphic sections of a holomorphic bundle is not a fine sheaf, and
there do not exists partitions of unity in general. In addition, there is no holomorphic ana-
log of compactly supported smooth functions. Compact support is crucial when consider
locality in field theory. For instance, the main result of [CG] is that the observables of any
QFT form a factorization algebra, which is heavily on the existence of sections with com-
pact support. A dual approach to higher dimensional versions of chiral algebras, in the
style of Beilinson and Drinfeld, has been proposed in [FG12]. This formulation makes
sense in the algebraic or analytic category and should be connected to our anticipated
version of chiral algebras as observables of a holomorphic field theory.

2.2.2. Interacting holomorphic theories. We proceed to define what an interacting holomor-
phic theory is. A general interacting field theory with space of fields E is prescribed by a
functional

S : E→ C

that satisfies the classical master equation. The key technical condition is that this functional
must, in addition, be local. For a precise definition see Chapter 5 of [CG].

Since X is a complex manifold, it makes sense to consider the sheaf of holomorphic
differential operators that we denote by Dhol

X . If V is a holomorphic vector bundle we
define the bundle of holomorphic ∞-jets Jethol(V) as follows [GG80, CW04]. This is a
pro-vector bundle that is holomorphic in a natural way. The fibers of this infinite rank
bundle Jethol(V) are isomorphic to

Jethol(V)|w = Vw ⊗C[[z1, . . . , zd]],
14



where w ∈ X and where {zi} is the choice of a holomorphic formal coordinate near w. We
denote by JholV the sheaf of holomorphic sections of this jet bundle. The sheaf JholV has
the structure of a Dhol

X -module, that is, it is equipped with a holomorphic flat connection
∇hol . This situation is completely analogous to the smooth case. Locally, the holomorphic
flat connection on Jethol(V) is of the form

∇hol |w =
d

∑
i=1

dwi

(
∂

∂wi
− ∂

∂zi

)
,

where {wi} is the local coordinate on X near w and zi is the fiber coordinate labeling the
holomorphic jet expansion.

One natural appearance of the bundle of holomorphic jets is in providing an explicit
description of holomorphic differential operators. The statement in the smooth category
is simply that a differential operator between vector bundles is equivalent to the data of a
map of D-modules between the associated ∞-jet bundles. In a completely analogous way,
holomorphic differential operators are the same as bundle maps between the associated
holomorphic jet bundles. A similar result holds for polydifferential operators, which we
also state.

Lemma 2.13. Suppose V, W are holomorphic vector bundles with spaces of holomorphic sections
given by Vhol ,Whol respectively. There is an isomorphism of sheaves on X

Diffhol(Vhol ,Whol) ∼= HomDhol
X
(Jhol(V), Jhol(W)).

Similarly, if V1, . . . , Vn, W are holomorphic bundles on X, there is an isomorphism

PolyDiffhol(Vhol
1 × · · · × Vhol

n ,Whol) ∼= Hom(Jhol(V1)⊗ . . .⊗ Jhol(Vn), W).

In both cases, the right-hand side denotes the space of homomorphisms of holomorphic D-modules
that are compatible with the adic topology on jets.

We will utilize this intepretation of holomorphic jet bundles momentarily.
In ordinary field theory, local functionals are defined as integrals of Lagrangian densi-

ties. By definition, a Lagrangian density is a density valued functional on the fields that
only depends on the fields through it’s partial derivatives. In the holomorphic setting we
have the following definition.

Definition 2.14. Let V be a vector bundle. The space of holomorphic Lagrangian densities
on V is

Laghol(V) = Ωd,hol
X ⊗Ohol

X

(
∏
n>0

HomOhol
X
(Jhol(V)⊗n,Ohol

X )Sn

)
.

The hom space inside the parentheses denotes maps of holomorphic vector bundles re-
specting the natural filtration on jets. That is, we require the bundle maps to be continu-
ous with respect to the natural adic topology. We also take coinvariants for the symmetric
group Sn.
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Note that we take the product over n > 0. We do not want to consider Lagrangians
that are constant in the fields.

Equivalently, a holomorphic Lagrangian density is of the form ω⊗ F where ω is a top
holomorphic form and F is a functional F = ∑k Fk where, for each k, the multilinear map

Fk : Vhol × · · · × Vhol → Ohol
X

depends only on the holomorphic ∞-jet of sections of V.
Next, suppose that V is part of the data of a free holomorphic theory (V, Qhol , (−,−)V).

The pairing (−,−)V endows the space of holomorphic Lagrangians with a sort of bracket
that we now construct.

Suppose ω ⊗ F, ω′ ⊗ F′ ∈ Laghol(V). For simplicity, we assume F, F′ are of homoge-
nous symmetric degree k, k′ respectively. Consider the natural map

(5)

(
Ωd,hol

X ⊗Hom(Jhol(V)⊗k,Ohol
X )
)
⊗
(

Ωd,hol
X ⊗Hom(Jhol(V)⊗k′ ,Ohol

X )
)

(
Ωd,hol

X ⊗Ωd,hol
X

)
⊗Hom(Jhol(V)⊗(k+k′),Ohol

X )

for which the product (ω⊗ F)⊗ (ω′ ⊗ F′) maps to (ω⊗ω′)⊗ (F⊗ F′). The bundle map
(−,−)V : V ⊗ V → KX[d − 1] is invertible, hence it determines a section (−,−)−1

V of
V ⊗V ⊗ K∨X of cohomological degree d− 1, where K∨X is the dual bundle to KX. Sections
of K∨X will be denoted PVd

X (the PV is stands for polyvector fields). The element (−,−)−1
V

determines a map

(6) Hom(Jhol(V)⊗(k+k′),Ohol
X )

(−,−)−1
V−−−−→ Hom(Jhol(V)⊗(k+k′−2), PVd

X).

Explicitly, this sends the element F⊗ F′ to the functional

ϕ1 ⊗ · · · ϕk+k′−2 7→ (F⊗ F′ ⊗ idK∨X
)(ϕ1 ⊗ · · · ϕk+k′−2 ⊗ (−,−)−1

V ) ∈ PVd
X.

Finally, using the natural pairing between top polyvector fields and top holomorphic
forms, we obtain a map
(7)(

Ωd,hol
X ⊗Ωd,hol

X

)
⊗Hom(Jhol(V)⊗(k+k′−2), PVd

X)→ Ωd,hol
X ⊗Hom(Jhol(V)⊗(k+k′),Ohol

X ).

Upon symmetrizing the inputs, we see that the image of (ω⊗ F)⊗ (ω′⊗ F′) under the
composition of the maps (5), (6), and (7) determines an element {F, F′}hol ∈ Laghol(V).
We extend to non-homogenous functionals in the obvious way.

In conclusion, we have produced a bilinear map

{−,−}hol : Laghol(V)× Laghol(V)→ Laghol(V)[d− 1].

Note that this bracket is of cohomological degree −d + 1 and lowers the polynomial
degree by two.
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We can now state the definition of a classical holomorphic theory. Note that top holo-
morphic forms have a natural action by the Lie algebra of holomorphic vector fields Thol

X

via Lie derivative. This induces an action of holomorphic vector fields on the space of
holomorphic Lagrangians.

Definition 2.15. A classical holomorphic theory on a complex manifold X is the data of a
free holomorphic theory (V, Qhol , (−,−)V) plus a holomorphic Lagrangian

Ihol ∈ Ωd,hol
X ⊗Ohol

X
∏
n≥3

Hom(Jhol(V)⊗n,Ohol
X )Sn ⊂ Laghol(V)

of cohomological degree d such that the following holomorphic Lagrangian

Qhol Ihol +
1
2
{Ihol , Ihol}hol

is in the image of a some holomorphic vector field. That is, there exists some ξ ∈ Thol
X and

F ∈ Laghol(V) such that Qhol Ihol + 1
2{Ihol , Ihol}hol = Lξ F.

Remark 2.16. Note that in the definition we require that the functional Ihol be at least cubic.
For brevity, we will denote the subspace ∏n≥3 Hom(Jethol(V)⊗n, KX)Sn by Laghol,+(V).

There is an alternative way to understand the condition on the functional Ihol to define
a classical holomorphic theory. To define it, we introduce the notion of a holomorphic
local functional. A holomorphic local functional is, by definition, a holomorphic La-
grangian defined up to a total holomorphic derivative. Precisely, we have the following
definition.

Definition 2.17. The sheaf of holomorphic local functionals is defined to be the quotient

Ohol
loc(V) := Laghol(V)/Thol

X · Laghol(V),

where TX · Laghol(V) denotes the subspace of holomorphic Lagrangians that are in the
image of the Lie derivative by some holomorphic vector field.

Equivalently, we may express this quotient using holomorphic D-modules in the fol-
lowing way. The left Dhol

X -module structure on Jhol(V) carries over to a left Dhol
X -module

structure on the product

∏
n>0

HomOhol
X
(Jhol(V)⊗n,Ohol

X ).

Moreover, we have already mentioned that there is the natural structure of a right Dhol
X -

module structure on Ωd,hol
X .

Lemma 2.18. There is an isomorphism

Ohol
loc(V) = Ωd,hol

X ⊗Dhol
X

∏
n>0

HomOhol
X
(Jhol(V)⊗n,Ohol

X ).
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Compare this to the definition of ordinary local functionals that we recalled in Defini-
tion 2.1.

Next, we have the following observation.

Lemma 2.19. Both the bracket {−,−}hol and the differential Qhol on holomorphic Lagrangians
descends to a bracket and differential on Ohol

loc(V) (that we denote by the same names). This yields
the structure of a dg Lie algebra

(Ohol
loc(V)[d− 1], Qhol , {−,−}hol).

An immediate corollary of this lemma is that the condition for a holomorphic La-
grangian Ihol to define a classical theory in Definition 2.17 is equivalent to the condition
that Ihol is a Maurer-Cartan element in Ohol

loc(V)[d− 1].
As in the free case, we proceed to verify that a holomorphic theory defines an interact-

ing classical BV theory in the sense of Definition 2.3.
The underlying space of fields, as we have already seen in the free case, is EV =

Ω0,∗(X, V). We show how to extend a holomorphic Lagrangian to a functional on this
Dolbeualt complex.

Recall, a holomorphic Lagrangian can be written as Ihol = ∑k Ihol
k where Ihol

k = ω ⊗ Fk

for ω ∈ Ωd,hol and Fk : Vhol × · · · × Vhol → Ohol is of the form

Fk(ϕ1, . . . , ϕk) = ∑
i1,...,ik

Di1(ϕ1) · · ·Dik(ϕk) ∈ Ohol
X .

Here, ϕi ∈ Vhol is a holomorphic section, and each Dij is a holomorphic differential oper-
ator Dij : Vhol → Ohol .

In general, suppose V, W are holomorphic vector bundles. Every holomorphic differ-
ential operator D : V → W extends to a smooth differential operator on the associated
Dolbeualt complexes with the property that it is compatible with the ∂-operator on both
sides.

To see how this works, suppose D : Vhol →Whol is locally of the form

D = ∑
m1,...,md

am1···md(z)
∂m1

∂zm1
1
· · · ∂md

∂zmd
,

where am1···md(z) denotes a local holomorphic section of Hom(V, W). Then, if α = sI(z, z)dzI ∈
Ω0,∗(X, V), where sI is a local smooth section of V, we define

DΩ0,∗
α = ∑

m1,...,md

am1···md(z)
(

∂m1

∂zm1
1
· · · ∂md

∂zmd
sI(z, z)

)
dzI ∈ Ω0,∗(X, W).

In this way, D extends to a differential operator

DΩ0,∗
: Ω0,∗(X, V)→ Ω0,∗(X, W).
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Since D is holomorphic, it is immediate that DΩ0,∗
∂V = ∂W DΩ0,∗

where ∂V , ∂W are the
(0, 1)-connections on V, W respectively. Thus, DΩ0,∗

is a map of sheaves of cochain com-
plexes.

Via this construction, we extend Fk to a Ω0,∗(X)-valued functional on Ω0,∗(X, V) by
the formula

FΩ0,∗
k : (α1, . . . , αk) 7→ ∑

i1,...,ik

DΩ0,∗
i1 (α1) ∧ · · · ∧ DΩ0,∗

ik
(αk) ∈ Ω0,∗(X).

Here, as above, the αi’s denote sections in Ω0,∗(X, V).
We have thus produced a linear map

(−)Ω0,∗
: HomOhol ((JholV)⊗k,Ohol)→ HomC∞((JΩ0,∗(X, V))⊗k, Ω0,∗(X))

where JΩ0,∗(X, V) denotes the sheaf of smooth jets of the graded vector bundle under-
lying the Dolbeault complex. This map clearly restricts to the symmetric coinvariants on
both sides. Taking direct products and tensoring with Ωd,hol

X we have a map

Laghol(V) → Ωd,hol ⊗C∞ ∏
k>0

HomC∞(JΩ0,∗(X, V)⊗k, Ω0,∗(X))

∼= Ωd,∗ ⊗C∞ ∏
k>0

Hom(JΩ0,∗(X, V)⊗k, C∞).

We have already mentioned that this map is compatible with the ∂-operator on the right-
hand side. Moreover, the holomorphic differential operator Qhol also extends to a dif-
ferential operator on the right-hand side in a way compatible with ∂. Thus, (−)Ω0,∗

is a
map of cochain complexes, where Laghol(X) is equipped with the differential Qhol and
the right-hand side has differential ∂ + Qhol .

The right-hand side admits a map of degree−d to Ωd,d⊗C∞ ∏k>0 Hom(JΩ0,∗(X, V)⊗k, C∞)

by projecting onto the (d, d)-component of Ωd,∗. Note that this map is only graded linear,
it does not preserve the ∂-differential. However, once we quotient by the action of vector
fields we do get a well-defined map

Ohol
loc(V)→ Ωd,d ⊗D ∏

k>0
Hom(JΩ0,∗(X, V)⊗k, C∞)Sk [−d].

Note that we have accounted for the shift of d coming from Ωd,∗ → Ωd,d[−d]. The right-
hand side is precisely the (shifted) space of ordinary local functionals for the sheaf EV =

Ω0,∗(X, V) defined in Definition 2.1.
In conclusion, we have obtained the following map of sheaves of cochain complexes

(8)
∫
(−)Ω0,∗

: Ohol
loc(V)→ Oloc(Ω0,∗(X, V))[−d].

In fact, we have the following stronger result, that this map is compatible with the brack-
ets on both sides.
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Lemma 2.20. The map
∫
(−)Ω0,∗

defines an map of sheaves of dg Lie algebras∫
(−)Ω0,∗

: Ohol
loc(V)[d− 1]→ Oloc(EV)[−1]

Proof. By definition, the sheaf of local functionals on EV is equal to

DensX ⊗DX Ored(JEV).

Since Ored(JEV) is flat as a DX-module [Cos11], we can replace the tensor product ⊗DX

with the derived tensor product ⊗L
DX

.
We now use the following observation about D-modules. If M is a holomorphic Dhol

X -
module, then clearly it forgets down to an ordinary smooth DX-module (with the same
underlying C∞

X -module structure) that we denote MC∞
. Moreover, there is a quasi-isomorphism

of D-modules
Ωd,hol

X ⊗L
Dhol

X
M[d] ' Ωd,d

X ⊗
L
DX

MC∞
.

We apply this to the case M = Ored(JholV), where V is a holomorphic vector bundle
This says that there is a quasi-isomorphism

(9) Ωd,hol
X ⊗L

Dhol
X

Ored(JholV)[d] ' Ωd,d
X ⊗

L
DX

Ored(JholV).

This quasi-isomorphism is compatible with the Qhol differential and the bracket {−,−}hol

on both sides. Note that the left-hand side is simply the space of shifted holomorphic
local functionals Ohol

loc(V)[d].
Next, observe that the map (−)Ω0,∗

determines a map of sheaves of cochain complexes

(10) (−)Ω0,∗
: Ωd,d

X ⊗
L
DX

Ored(JholV)→ DensX ⊗L
DX

Ored(JEV).

The right-hand side is quasi-isomorphic to Oloc(EV). The composition of (9) and (10) is
simply the map (8) ∫

(−)Ω0,∗
: Ohol

loc(V)[d]→ Oloc(EV).

One checks immediately that this map is compatible with the brackets, namely

{Ihol , Jhol}hol = {
∫

IΩ0,∗
,
∫

JΩ0,∗}.

�

As a result of the equivalence between solutions to the classical master equation and
Maurer-Cartan elements in the dg Lie algebras of shifted local functionals, we have the
following.

Proposition 2.21. Every classical holomorphic theory (V, Qhol , (−,−)V , Ihol) determines the
structure of a classical BV theory. The underlying free BV theory is given in Definition/Lemma 1
(EV , Q, ωV) and the interaction is I =

∫
IΩ0,∗

.

Table 1 is a useful summary showing how we are producing a BV theory from a holo-
morphic theory.
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Holomorphic theory BV theory

Holomorphic bundle V Space of fields EV = Ω0,∗(X, V)

Holomorphic differential operator Qhol Linear BRST operator ∂ + Qhol

Non-degenerate pairing (−,−)V (−1)-symplectic structure ωV

Holomorphic Lagrangian Ihol Local functional I =
∫

IΩ0,∗ ∈ Oloc(EV)
TABLE 1. From holomorphic to BV

Example 2.22. Holomorphic BF-theory Let g be a Lie algebra and X any complex manifold.
Consider the following holomorphic vector bundle on X:

V = gX[1]⊕ KX ⊗ g∨[d− 2].

The notation gX denotes the trivial bundle with fiber g. The pairing V ⊗ V → KX[d− 1]
is similar to the pairing for the βγ system, except we use the evaluation pairing 〈−.−〉g
between g and its dual g∨. In this example, Qhol = 0.

We describe the holomorphic Lagrangian. If fi : X → C, i = 1, 2 are holomorphic
functions and β ∈ KX, consider the trilinear functional

Ihol( f1 ⊗ X1, f2 ⊗ X2, β⊗ X∨) = f1 f2β〈X∨, [X1, X2]〉g + · · ·

where the · · · means that we symmetrize the inputs. This defines an element Ihol ∈
Ohol

loc(V)+ and the Jacobi identity for g guarantees {Ihol , Ihol}hol = 0. The fields of the
corresponding BV theory are

EV = Ω0,∗(X, g)[1]⊕Ωd,∗(X, g∗)[d− 2].

The induced local functional IΩ0,∗
on EV is

IΩ0,∗
(α, β) =

∫
X
〈β, [α, α]〉g.

The total action is S(α, β) =
∫
〈β, ∂α〉 + 〈β, [α, α]〉g. This is formally similar to BF the-

ory (see below) and for that reason we refer to it as holomorphic BF theory. The moduli
problem this describes is the cotangent theory to the moduli space of holomorphic con-
nections on the trivial G-bundle near the trivial bundle. There is an obvious enhancement
that works near any holomorphic principal bundle. When d = 2, in [Joh94], or for a more
mathematical treatment see [Cosc], it is shown that this theory is a twist ofN = 1 super-
symmetric pure Yang-Mills on R4.

Example 2.23. Topological BF-theory This is a deformation of the previous example that has
appeared throughout the physics literature. Suppose we take as our graded holomorphic
vector bundle

V =
(
gX ⊗

(
⊕d

k=0 ∧k T∗1,0X[1− k]
))
⊕
(
g∗X ⊗

(
⊕d

k=0 ∧k T∗1,0X[2(d− 1)− k]
))

.
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Here ∧0T∗1,0X is understood as the trivial bundle CX. The pairing is given by combining
the evaluation pairing between g and g∗ and taking the wedge product and projecting
onto the components isomorphic to KX. Explicitly, the pairing is equal to the sum of
bundle maps of the form

evg ⊗∧ :
(
gX ⊗∧

kT∗1,0X[1− k]
)
⊗
(
g∗X ⊗∧

d−kT∗1,0X[d− 1 + k]
)
→ KX[d− 1].

The holomorphic differential is of the form

Qhol = idg ⊗ ∂ + idg∗ ⊗ ∂,

where ∂ is the holomorphic de Rham differential. The holomorphic interaction is given
by combining the Lie algebra structure on g with the wedge product of the holomorphic
bundles ∧kT∗1,0X. We observe that the associated BV theory has classical space of fields
given by

(A, B) ∈ EV = Ω∗(X, g[1]⊕ g∗[2d− 2])

where Ω∗ is now the full de Rham complex. The action functional is

S =
∫

X
〈B, dA〉g +

1
3
〈B, [A, A]〉g.

As above, 〈−,−〉g denotes the pairing between g and its dual. This is the well-known
topological BF theory on the even dimensional real manifold X (of real dimension 2d). It
might seem silly that we have used the formalism of holomorphic field theory to describe
a very simple topological theory. We will discuss advantages of this approach at the send
of the next section. In particular, the theory of regularization for holomorphic theories we
will employ has peculiar consequences for renormalizing certain classes of topological
theories such as topological BF theory.

Remark 2.24. We have mentioned an alternative formulation of classical field theory in
terms of sheaves of L∞ algebras. Just as in the ordinary case we can formulate the data
of a classical holomorphic theory in terms of sheaves of L∞ algebras. We will not do that
here, but hope the idea of how to do so is clear.

Remark 2.25. Our definition of a holomorphic theory is compatible with the definition of a
two-dimensional chiral conformal field theory given in [Li] when the complex dimension
is d = 1.

2.3. Holomorphically translation invariant theories. When working on affine space one
can ask for a theory to be invariant with respect to translations. In this section, we take a
break from holomorphic theories defined on general complex manifolds to consider the
affine manifold Cd = R2d. We recall what a holomorphically translation invariant theory is,
and state a general result about deformations for such theories. This particular class of
theories has been discussed in Chapter 10 of [CG], and it is a special case of a general
holomorphic theory as defined above.
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Let V be a holomorphic vector bundle on Cn and suppose we fix an identification of
bundles

V ∼= Cd ×V0

where V0 is the fiber of V at 0 ∈ Cd. We want to consider a classical theory with space
of fields given by Ω0,∗(Cd, V) ∼= Ω0,∗(Cd) ⊗C V0. Moreover, we want this theory to be
invariant with respect to the group of translations on Cd. Per usual, it is best to work with
the corresponding Lie algebra of translations. Using the complex structure, we choose a
presentation for the complex Lie algebra of translations given by

C2d ∼= spanC

{
∂

∂zi
,

∂

∂zi

}
1≤i≤d

.

To define a theory, we need to fix a non-degenerate pairing on V. Moreover, we want
this to be translation invariant. So, suppose

(11) (−,−)V : V ⊗V → KCd [d− 1]

is a skew-symmetric bundle map that is equivariant for the Lie algebra of translations.
The shift is so that the resulting pairing on the Dolbeault complex is of the appropriate
degree. Here, equivariance means that for sections v, v′ we have

(
∂

∂zi
v, v′)V = L∂zi

(v, v′)V

where the right-hand side denotes the Lie derivative applied to (v, v′)V ∈ Ωd,hol
Cd . There is

a similar relation for the anti-holomorphic derivatives. We obtain a C-valued pairing on
Ω0,∗

c (Cd, V) via integration:

(12)
∫

Cd
◦(−,−)V : Ω0,∗

c (Cd, V)⊗Ω0,∗
c (Cd, V)

∧·(−,−)V−−−−−→ Ωd,∗(Cd)

∫
−→ C.

The first arrow is the wedge product of forms combined with the pairing on V. The
second arrow is only nonzero on forms of type Ωd,d. Clearly, integration is translation
invariant, so that the composition is as well.

The pairing (12) together with the differential ∂ are enough to define a free theory.
However, it is convenient to consider a slightly generalized version of this situation. We
want to allow deformations of the differential ∂ on Dolbeault forms of the form

Q = ∂ + Qhol

where Qhol is a holomorphic differential operator of the form

(13) Qhol = ∑
I

∂

∂zI µI

where I is some multi-index and µI : V → V is a linear map of cohomological degree +1.
Note that we have automatically written Qhol in a way that it is translation invariant. Of
course, for this differential to define a free theory there needs to be some compatibility
with the pairing on V.
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We can summarize this in the following definition, which should be viewed as a slight
modification of a free theory to this translation invariant holomorphic setting.

Definition 2.26. A holomorphically translation invariant free BV theory is the data of a holo-
morphic vector bundle V together with

(1) an identification V ∼= Cd ×V0;
(2) a translation invariant skew-symmetric pairing (−,−)V as in (11);
(3) a holomorphic differential operator Qhol as in (13);

such that the following conditions hold

(1) the induced C-valued pairing
∫
◦(−,−)V is non-degenerate;

(2) the operator Qhol satisfies (∂ + Qhol)2 = 0 and is skew self-adjoint for the pairing:∫
(Qholv, v′)V = ±

∫
(v, Qholv′).

The first condition is required so that we obtain an actual (−1)-shifted symplectic
structure on Ω0,∗(Cd, V). The second condition implies that the derivation Q = ∂ + Qhol

defines a cochain complex

EV =
(

Ω0,∗(Cd, V), ∂ + Qhol
)

,

and that Q is skew self-adjoint for the symplectic structure. Thus, in particular, EV to-
gether with the pairing define a free BV theory in the ordinary sense. In the usual way,
we obtain the action functional via

S(ϕ) =
∫
(ϕ, (∂ + Qhol)ϕ)V .

Before going further, we will give a familiar example from the last section.

Example 2.27. The free βγ system on Cd. Consider the βγ system with coefficients in any
holomorphic vector bundle from Example 2.10 (and the remarks after it) specialized to
the manifold X = Cd. One immediately checks that this is a holomorphically translation
invariant free theory.

2.3.1. Translation invariant interactions. Let’s fix a general free holomorphically transla-
tion invariant theory (V, (−,−)V , Qhol) as above. We now define what a holomorphically
translation invariant interacting theory is. Recall, translations span a 2d-dimensional
abelian Lie algebra C2d = C

{
∂

∂zi
, ∂

∂zi

}
. The first condition that an interaction be holomor-

phically translation invariant is that it be translation invariant, so invariant for this Lie
algebra. The additional condition is a bit more involved.

Let ηi denote the operator on Dolbeault forms given by contraction with the antiholo-
morphic vector field ∂

∂zi
. Note that ηi acts on the Dolbeault complex on Cd with values in

any vector bundle. In particular it acts on the fields of a free holomorphically translation
invariant theory as above, in addition to functionals on fields.
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Definition 2.28. A holomorphically translation invariant local functional is a translation in-
variant local functional I ∈ Oloc(EV)

C2d
such that ηi I = 0 for all 1 ≤ i ≤ d.

There is a succinct way of expressing holomorphic translation invariance as the Lie
algebra invariants of a certain dg Lie algebra. Denote by Cd[1] the abelian d-dimensional
graded Lie algebra in concentrated in degree −1 by the elements {ηi}. We want to con-
sider deformations that are invariant for the action by the total dg Lie algebra C2d|d =

C2d ⊕ Cd[1]. The differential sends ηi 7→ ∂
∂zi

. The space of holomorphically translation

invariant local functionals are denoted by Oloc(EV)
C2d|d

. The enveloping algebra of C2d|d

is of the form

U(C2d|d) = C

[
∂

∂zi
,

∂

∂zi
, ηi

]
with differential induced from that in C2d|d. Note that this algebra is quasi-isomorphic to
the algebra of constant coefficient polynomial holomorphic differential operators C[∂/∂zi]

'−→
U(C2d|d).

From the definitions, we see that any translation invariant local functional is a sum of
functionals of the form

ϕ 7→
∫

Cd
F(D1α, . . . , Dkα)ddz

where Dα is an operator in the space

C

[
dzi,

∂

∂zi
,

∂

∂zi
, ηi

]
,

and F : Ω0,∗(Cd, V)⊗k → Ω0,∗(Cd) is a linear map of the form

Ω0,∗(Cd, V)⊗k ∼= (Ω0,∗(Cd)⊗V0)
⊗k = Ω0,∗(Cd)⊗k ⊗V⊗k

0
∧⊗F0−−−→ Ω0,∗(Cd),

where F0 : V⊗k
0 → C is a linear map and ∧ denotes the wedge product of forms.

The condition ηi I = 0 means that none of the Di’s have any dzj-dependence. Using
this description we can exhibit the space of holomorphically translation functionals as
follows. Note that if E is any vector bundle on Cd we can consider the fiber at zero of its
jet bundle that we denote J0E.

Lemma 2.29. Let V be a holomorphic vector bundle on Cd and denote EV = Ω0,∗(X, V). Then

Oloc(EV)
C2d|d ∼= C · ddz⊗U(C2d|d) Ored(J0EV)

where EV is the vector bundle on Cd such that EV = Γ(EV).

This description of holomorphically translation invariant local functionals allows us
to give a convenient description of deformations of holomorphically translation invari-
ant theories. Suppose (V, Qhol , (−,−)V , I) be the data of an interacting holomorphically
translation invariant theory on Cd. We have already encountered the space of local func-
tionals Oloc(EV) and the deformation complex of the interacting BV theory is

DefEV =
(
Oloc(EV), ∂ + Qhol + {I,−}

)
.
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We’d like to characterize deformations that preserve holomorphically translation invari-
ance.

Recall that in the holomorphic case there is the holomorphic jet bundle JholV. The fiber
at zero of this jet bundle may be identified as Jhol

0 V = V0[[z1, . . . , zd]] where the zi’s denote
the formal jet coordinate.

Corollary 2.30. Suppose that Qhol = 0. Then, there is a quasi-isomorphism

(DefEV )
C2d|d
' C · ddz⊗L

C[∂z1 ,...,∂zd ]
Ored(V0[[z1, . . . , zd]])[d].

Equipped with differential {Ihol ,−} where Ihol only depends on holomorphic differential opera-
tors. Here, ∂zi =

∂
∂zi

and C · ddz denotes the trivial right C[∂zi ]-module.

The local functional I defining the classical holomorphic theory endows JholV[−1] the
structure of a L∞ algebra in DCd -modules. Repackaging the statement using Lie algebraic
data we can rewrite the equivalence in the lemma as

(DefEV )
C2d|d
' C · ddz⊗L

C[∂z1 ,...,∂zd ]
C∗Lie,red (V0[[z]][−1])) [d].

Proof. By Lemma 2.29 we have an expression for the holomorphically translation local
functionals

(DefEV )
C2d|d

=
(

C · ddz⊗U(C2d|d) Ored(J0EV)[d], ∂ + {I,−}
)

.

Since Ored(J0EV) is flat as a U(C2d|d)-module, it follows that we can replaces the tensor
product by the derived tensor product ⊗L up to quasi-isomorphism so that

(DefEV )
C2d|d
'
(

C · ddz⊗L
U(C2d|d)

Ored(J0EV)[d], ∂ + {I,−}
)

.

Consider the complex
(
Ored(J0EV), ∂ + {I,−}

)
. This complex is graded by symmet-

ric degree, and the associated spectral sequence has first page the associated graded of
Ored(J0EV) equipped with the ∂ differential. Moreover, at the E1-page, we have the quasi-
isomorphism (

O(J0EV), ∂
)
=
(
Ored(V0[[zi, zi]][dzi]), ∂

)
' Ored(V0[[zi]]).

Finally, we have already remarked that there is a quasi-isomorphism of algebras U(C2d|d) '
U(Cd) where the right-hand site is generated by the constant holomorphic vector fields.
The proof of the claim follows.

�

Example 2.31. The interacting βγ system Suppose V is a complex vector space and consider
the free βγ system with values in V. The fields are (γ, β) ∈ Ω0,∗(Cd)⊗ V ⊕Ωd,∗(Cd)⊗
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V∗[d− 1]. A holomorphically translation invariant differential operator on Cd is a linear
combination of operators of the form

(14) D =
∂|I|

∂zI

where I = (i1, . . . , id) is a multi-index, ∂zI = ∂zi1 · · · ∂zid and |I| = i1 + · · ·+ id.
We get a family of holomorphically translation invariant interactions in the following

way. For simplicity, suppose V = C. Let ε be an arbitrary translation invariant Dolbeault
form of type (0, 1). An example of a holomorphically translation invariant interaction for
the βγ system with values in V is

I(β, γ) =
∫

Cd
ε ∧ 〈β, (D1γ) · · · (Dkγ)〉V

where Di are holomorphically translation invariant differential operators, like in Equa-
tion (14), on Cd.

Example 2.32. Holomorphic superpotential. This is a different flavor of a holomorphically
translation invariant interaction for the βγ system, which is largely motivated by physics.
Consider again, the βγ system on Cd with values in V. In addition, let W ∈ C[V] be a
polynomial on the vector space V. Then, W extends in a natural way to a Dolbeault
valued functional on Ω0,∗(Cd)⊗V. One defines the local functional

IW(β, γ) =
∫

Cd
ddz W(γ).

It is immediate to see that IW is holomorpically translation invariant. On the other hand,
it is not, in general, a degree zero functional. Hence, it does not define a classical theory
in the usual sense. It does, however, define a slightly weaker classical theory that is only
Z/2 graded rather than the usual Z grading we are accustomed to.

We don’t develop the formal definition here, but IW defines a holomorpically transla-
tion invariant Z/2-graded BV theory. When d = 2, the βγ system arises as the minimal
twist of the freeN = 1 chiral supermultiplet on R4. In the presence of the interaction IW ,
the theory is equal to the minimal twist of the N = 1 chiral multiplet with holomorphic
superpotential given by W. 3

3. ONE-LOOP REGULARIZATION FOR THEORIES ON Cd

In Wilsonian’s approach to quantum field theory, constructing the path integral in-
volves exhibiting a family of theories parametrized by some scale L > 0, that we take for
illustration to be in units of length. The main idea is that the theory at scale L describes all
interactions happening at length scales smaller than or equal to L. To obtain the full per-
turbative QFT, one takes the limit L → ∞, where all quantum interactions are included.

3In super language, the superpotential term is usually written as
∫

d2θ
∫

d4xW(Φ), where Φ is the chiral
superfield.
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In practice, one has a good handle on the theory between some finite scales ε < L, and to
obtain the theory at scale L one must make sense of the ε→ 0 limit. Generally speaking,
the naive limit is ill-defined; this is the part of the strategy for constructing a QFT where
renormalization comes in.

In this section we consider the renormalization of holomorphic field theories on Cd,
for general d ≥ 1. We start with a classical holomorphic theory on Cd and study its
one-loop homotopy renormalization group flow from some finite scale ε to scale L. This
is where the theory is completely well-defined. Explicitly, this flow manifests as a sum
over weights of graphs; that is, Feynman diagrams. In terms of diagrams, we consider the
sum over graphs of genus at most one where at each vertex we place the holomorphic
interaction defining the classical theory. The edges of the graphs are labeled by the prop-
agator, which, for us, is an effective replacement for the Green’s function of the ∂ operator
defining the kinetic piece of the holomorphic field theory.

To obtain a quantization of a classical theory one must make sense of the ε → 0 limit
of this construction. In general, this involves introducing a family of counterterms. The
presence of counterterms can be an often undesirable, but necessary part of constructing
a quantum field theory. On one hand, logarithmic counterterms encode the β-function of
an interacting field theory, which is a sensitive invariant and is important quantity to ex-
perimentally measure quantities in QFT. Roughly, this quantity measures how couplings
run with renormalization group flow. Counterterms can also be extremely unwieldy. For
instance, some theories of gravity require the introduction of infinitely many such coun-
terterms [tHV74]. In this paper, we show how holomorphic theories on flat space are as
well-behaved as possible when it comes to renormalization.

Our main result in this section is the following (which we state more carefully in The-
orem 3.4 below):

Theorem 3.1. For a holomorphic theory on Cd, there exists a one-loop (pre)quantization where
the naive ε→ 0 limit exists and no counterterms are required.

Remark 3.2. Already, in [Li] Li has proved a stronger version of Theorem 3.1 when the
complex dimension is d = 1. His result holds to all orders in h̄, and applies it to give an
elegant interpretation of the quantum master equation for chiral conformal field theories
on (flat) Riemann surfaces using vertex algebras. Although we do not make any state-
ments in this thesis past one-loop quantizations, the higher loop behavior remains a rich
and subtle problem that we hope to return to.

As a peculiar corollary of our main result, and our work in developing the one-loop
β-function for QFT in the BV formalism [EWY18], we have the following.

Corollary 3.3. The one-loop β-function of a holomorphic theory on Cd is identically zero.
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This corollary has “no-go” style consequences for twists of supersymmetric field the-
ories. As we have already mentioned, often times a supersymmetric field theory on R2d

admits a holomorphic twist where half of the translations are left Q-exact. This result
implies that the β-function is not protected under such holomorphic twists. For instance,
N = 1 supersymmetric Yang-Mills on R4 admits a holomorphic twist to holomorphic
BF theory. While Yang-Mills has a non-trivial β-function, our results show that the β-
function for holomorphic BF theory is zero.

The proof of the main result will be involve explicit evaluations and estimates of
weights of Feynman diagrams. Before proceeding with the core analysis, we set up the
problem using our notation and conventions used above.

Suppose (V, Qhol , (−,−)V) prescribes the data of a free holomorphic theory on Cd.
This means that V is a holomorphic bundle on Cd, Qhol : Vhol → Vhol is a holomorphic
differential operator, and (−,−)V is a (shifted) KCd -valued pairing on V. We assume, in
addition, that Qhol is translation invariant. Concretely, this means that

Qhol ∈ C

[
∂

∂z1
, . . . ,

∂

∂zd

]
.

The complex of fields, in the BV formalism, are given by the following deformed Dol-
beault complex

EV =
(

Ω0,∗(Cd, V), ∂ + Qhol
)

.

We will fix a trivialization for the holomorphic vector bundle V = Cd × V0, where V0

is the fiber over 0 ∈ Cd. This leads to an identification Ω0,∗(Cd, V) = Ω0,∗(Cd) ⊗C V0.
Further, we write the (−1)-shifted symplectic structure defining the classical BV theory
in the form

ωV(α⊗ v, β⊗ w) = (v, w)V0

∫
ddz(α ∧ β)

where (−,−)V0 is a degree (d− 1)-shifted pairing on the finite dimensional vector space
V0.

A holomorphic interacting theory is prescribed by a holomorphic Lagrangian Ihol ∈
Ohol

loc(V)+. As we have seen in Section 2.2.2 any holomorphic Lagrangian determines a
local functional on its Dolbeualt complex via integration I =

∫
X IΩ0,∗

. Here, as above,
the notation IΩ0,∗

denotes the canonical extension of Ihol to the Dolbeualt complex for
V. Using the trivialization V = Cd × V0 and Ωd,hol = C · ddz, we can express the local
functional as

Ik(α) =
∫

Ihol
k (α) =

∫
Dk,1(φk,1(α)) · · ·Dk,k(φk,k(α))ddz

where each Di,j is a holomorphic differential operator Di,j ∈ C
[

∂
∂zi

]
, and φi,j ∈ V∨0 .
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3.1. Homotopy RG flow. As we’ve already mentioned, the main goal of this section is
to show that for holomorphic theories on Cd the one-loop renormalization group flow
produces a prequantization modulo h̄2. We follow the terminology of [Cos11] and use
prequantization to refer to an effective family of functionals satisfying renormalization
group flow but not necessarily the quantum master equation. We will see consequences
of our result for solving the quantum master equation modulo h̄2 in the next section.

The building block in Costello’s approach to renormalization is an effective family of
functionals {I[L]} parametrized by a length scale L > 0. For each L > 0 the functional
I[L] ∈ O(E)[[h̄]] must satisfy various conditions, which are carefully stated in Definition
8.2.9.1 of [CG]. We will recall some key aspects that will be useful for our purposes. The
main condition is a compatibility between the functionals I[L] as one changes the length
scale; this is referred to as homotopy renormalization group (RG) flow. The flow from scale
L > 0 to L′ > 0 is encoded by an invertible linear map

W(PL<L′ ,−) : O(E)[[h̄]]→ O(E)[[h̄]]

defined as a sum over weights of graphs W(PL<L′ , I) = ∑Γ WΓ(PL<L′ , I). Here, Γ denotes
a graph, and the weight WΓ is defined as follows. One labels the vertices of valence
k by the kth homogenous component of the functional I. The edges of the graph are
labeled by the propagator PL<L′ . The total weight is given by iterative contractions of
the homogenous components of the interaction with the propagator. For a more precise
definition see Chapter 2 of [Cos11].

The family of functionals {I[L]} defining a quantization must satisfy the RG flow equa-
tion

I[L′] = W(PL<L′ , I[L])

for all L < L′. Given a classical interaction I ∈ Oloc(E), there is a natural way to attempt
construct an effective family of functionals satisfying the RG flow equations. Indeed, it
follows from elementary properties of the homotopy RG flow operator W(PL<L′ ,−) that
if the functional

I[L] “ = ” W(P0<L, I)

were to be well-defined for each L > 0, then the RG flow equations would automatically
be satisfied for the collection {I[L]}. The problem is that this naive guess is ill-defined
due to the distributional nature of the propagator P0<L. The approach of Costello is to
introduce a small parameter ε > 0 and to consider the limit of the functionals W(Pε<L, I)
as ε → 0. For most theories, this ε → 0 limit is ill-defined, but there always exist ε-
dependent counterterms ICT(ε) rendering the existence of the ε → 0 limit of W(Pε<L, I −
ICT(ε)).

Our main goal in this section amounts to showing that the naive ε → 0 limit exists
without the necessity to introduce counterterms. This is a salient feature of holomorphic
theories on Cd that we will take advantage of to characterize anomalies, for instance.
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We will only consider quantizations defined modulo h̄2. In this case, the homotopy RG
flow takes the explicit form:

W(PV
ε<L, I) = ∑

Γ

h̄g(Γ)

|Aut(Γ)|WΓ(PV
ε<L, I).

The sum is over graphs of genus ≤ 1 and WΓ is the weight associated to the graph Γ.
We can now state the main result of this section.

Theorem 3.4. Let E be a holomorphic theory on Cd with classical interaction Icl . Then, there
exists a one-loop prequantization {I[L] | L > 0} of Icl involving no counterterms. That is, the
ε→ 0 limit of

W(Pε<L, I) mod h̄2 ∈ O(E)[[h̄]]/h̄2

exisits. Moreover, if I is holomorphically translation invariant we can pick the family {I[L]} to
be holomorphically translation invariant as well.

3.2. Holomorphic gauge fixing. The next component of a prequantization is the choice
of a gauge fixing condition. From a physics point of view the choice of a gauge fix-
ing condition is common place when computing quantities in QFT. Mathematically, it
is equivalent to choosing an isotropic subspace of the space of fields which is necessary
to define the path integral in the BV formalism. In our philosophy of QFT, all theories
are really defined over the space (or simplicial set) of gauge fixing conditions. The theory
does not depend on a gauge fixing condition in the sense that a path in the space of gauge
fixing conditions leads to a homotopy between the associated theories. See Chapter 5 of
[Cos11] for a thorough formulation of this.

In our approach, a gauge fixing condition appears through the choice gauge fixing
operator is a square-zero operator on fields

QGF : EV → EV [−1],

of cohomological degree −1 such that [Q, QGF] is a generalized Laplacian on E where Q
is the linearized BRST operator. For a complete definition see Section 8.2.1 of [CG].

For holomorphic theories there is a convenient choice for a gauge fixing operator. To
construct it we fix the standard flat metric on Cd. Doing this, we let ∂

∗
be the adjoint of

the operator ∂. Using the coordinates on (z1, . . . , zd) ∈ Cd we can write this operator as

∂
∗
=

d

∑
i=1

∂

∂(dzi)

∂

∂zi
.

The operator ∂
∂(dzi)

is the contraction with the anti-holomorphic vector field ∂
∂zi

. The op-

erator ∂
∗

extends to the complex of fields via the formula

QGF = ∂
∗ ⊗ idV : Ω0,∗(X, V)→ Ω0,∗−1(X, V),
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Lemma 3.5. The operator QGF = ∂
∗⊗ idV is a gauge fixing operator for the free theory (EV , ∂+

Q, ωV).

Proof. Clearly, QGF is square zero since (∂
∗
)2 = 0. Since Qhol is a translation invariant

holomorphic differential operator we have

[∂ + Qhol , QGF] = [∂, ∂
∗
]⊗ idV .

The operator [∂, ∂
∗
] is the Dolbeault Laplacian ∆∂ on Cd, which in coordinates is

∆∂ = −
d

∑
i=1

∂

∂zi

∂

∂zi
.

In particular, the operator [∂, ∂
∗
]⊗ idV is a generalized Laplacian.

Finally, we must show that QGF is (graded) self-adjoint for the shifted symplectic pair-
ing ωV . This follows from the fact about Dolbeualt forms on Cd. If α, β ∈ Ω0,∗

c (Cd) then∫
Cd
(∂
∗
α) ∧ β ∧ ddz = ±

∫
Cd

α ∧ (∂
∗
β) ∧ ddz.

�

Remark 3.6. One may ask what happens if we choose a different metric on Cd to define
the gauge fixing operator. For every choice of a Hermitian metric h on Cd we obtain an
operator ∂

∗
h and hence a gauge fixing condition. In fact, this defines a family of theories de-

fined over the space of all Hermitian metrics. Since this space is affine, hence connected,
we can always choose a path to the standard metric to any other one, thus resulting in
a homotopy equivalence between prequantizations defined by the standard metric and
the fixed one.

3.3. The propagator on Cd. The gauge fixing operator determines a generalized Lapla-
cian, which for us is essentially the ordinary Dolbeault Laplacian on Cd. Our regulariza-
tion scheme utilizes the heat kernel associated to the Laplacian, for which we recall the
explicit form below. By definition, the scale L > 0 heat kernel is a symmetric element
KV

L ∈ EV(C
d)⊗ EV(C

d) that satisfies

ωV(KL, ϕ) = e−L[Q,QGF ]ϕ

for any field ϕ ∈ EV . Thus, it is an integral kernel for the operator e−L[Q,QGF ]. For a more
detailed definition of how heat kernels are used to defined a quantum field theory in the
BV formalism, see Section 8.2.3 in [CG]. In this section we deduce the explicit form of the
heat kernel for our holomorphic theory on Cd.

The tensor square of EV(C
d) decomposes as

(15) EV(C
d)⊗ EV(C

d) =
(

Ω0,∗(Cd)⊗Ω0,∗(Cd)
)
⊗ (V0 ⊗V0).

We will decompose the heat kernel accordingly.
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Pick a basis {ei} of V0 and let

CV0 = ∑
i,j

ωij(ei ⊗ ej) ∈ V0 ⊗V0

be the quadratic Casimir. Here, (ωij) is the inverse matrix to the pairing (−,−)V0 .
Due to the nature of our symplectic pairing, we see that the heat kernel splits with

respect to the decomposition in Equation (15) as

KV
L (z, w) = Kan

L (z, w) · CV0 .

The analytic part Kan
L is independent of V and equal to the heat kernel for Dolbeault

Laplacian ∆∂ acting on Dolbeault forms on Cd.
We can further split this analytic heat kernel as the heat kernel for the ordinary Lapla-

cian acting on functions. Indeed, for L > 0 the analytic heat kernel Kan
L is equal to

Kan
L (z, w) = kan

L (z, w)
d

∏
i=1

(dzi−dzj) ∈ Ω0,∗(Cd)⊗Ω0,∗(Cd) ∼= Ω0,∗(Cd×Cd) ∼= C∞(Cd×Cd)[dz, dw]

where kan
L (z, w) ∈ C∞(Cd × Cd) is the heat kernel for the Laplacian acting on functions.

It is normalized by the rule

(e−L∆∂ f )(z) =
∫

w∈Cd
d2dw kan

L (z, w) f (w)

where f ∈ C∞(Cd). Explicitly, kan
L is given by

kan
L (z, w) =

1
(2πiL)d e−|z−w|2/4L.

The propagator for the holomorphic theory EV is defined using the heat kernels above
by the equation

PV
ε<L(z, w) =

∫ L

t=ε
dt(QGF ⊗ 1)KV

L (z, w).

Since the element CV0 is independent of the coordinate on Cd, the propagator also de-
composes as

PV
ε<L(z, w) = Pan

ε<L(z, w) · CV0

where

Pan
ε<L(z, w) =

∫ L

t=ε
dt(∂

∗ ⊗ 1)KV
L (z, w)

=
∫ L

t=ε
dt

1
(2πit)d

d

∑
j=1

(−1)j−1
(

zj − wj

4t

)
e−|z−w|2/4t

d

∏
i 6=j

(dzi − dzj).

Remark 3.7. In the limit as ε → 0 and L → ∞, this propagator reduces to the Green’s
function for the Dobleault operator on Cd. We can see this simplification explicitly.
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First, we recall the form of the Green’s function. Introduce the δ-distribution δ∆ along
the diagonal in Cd ×Cd. In formulas

δ∆ : Ω0,∗
c (Cd)×Ω0,∗

c → C , (α, β) 7→
∫

∆⊂Cd×Cd
ddz ∧ α ∧ β.

The Green’s function for ∂ is given in terms of the Bochner-Martinelli kernel. To define it,
first consider the smooth form on Cd × Cd away from the diagonal ωBM ∈ Ω

0,∗
(Cd

z ×
Cd

w \ ∆) given by

ωBM(z, w) =
(d− 1)!
(2πi)d

1
|z− w|2d

d

∑
i=1

(−1)i−1(zi − wi)∏
j 6=i

(dzj − dwj).

Since ∂ωBM(z, w) = 0 away from the diagonal, we see that ∂ωBM extends to a distribution
form on Cd ×Cd. Indeed, this distribution solves Green’s equation for the ∂-operator

∂ωBM = δ∆.

For more details on the above kernel and its relation to higher residues, see Chapter 3
of [GH94] for instance. For now, we have the immediate calculation.

Lemma 3.8. The ε → 0, L → ∞ distributional limit of the propagator Pε<L(z, w) exists. More-
over, as distributions

lim
ε→0

lim
L→∞

Pε<L(z, w) = ωBM(z, w).

Proof. Note that

Pε<L(z, w) =
∫ L

t=ε
dte−|z−w|2/4t 1

(2πit)d

d

∑
j=1

(−1)j−1 zj − wj

4t
(ddz− ddw)∏

i 6=j
(dzi − dwi)

=
1

(2πi)d
1

|z− w|2d ∑
j
(−1)j−1(zj − wj)(ddz− ddw)

×∏
i 6=j

(dzi − dwi)
∫ |z−w|2/ε

u=|z−w|2/L
duud−1e−u.

In the second line we have made the substitution u = |z − w|2/4t. Integration over u
produces the desired result. �

Thus, the propagator Pε<L is an effective replacement for the Green’s function for ∂ on
Cd.

3.4. Trees. We now turn to studying the one-loop effective action for the holomorphic
theory on Cd. For the genus zero graphs, or trees, we do not have any analytic difficulties
to worry about. The propagator PV

ε<L is smooth so long as ε, L > 0 but when ε → 0 it in-
herits a singularity along the diagonal z = w. This is what contributes to the divergences
in the naive definition of RG flow W(P0<L,−). But, if Γ is a tree the weight WΓ(PV

0<L, I)
only involves multiplication of distributions with transverse singular support, so is well-
defined. Thus we have observed the following.
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Lemma 3.9. If Γ is a tree then limε→0 WΓ(Pε<L, I) exists.

The only possible divergences in the ε → 0 limit, then, must come from graphs of
genus one, which we now direct our attention to.

3.5. A simplification for one-loop weights. Every graph of genus one is a wheel with
some trees protruding from the external edges of the tree. Thus, we can write the weight
of a genus one graph as a product of weights associated to trees times the weight associ-
ated to a wheel. We have just observed that the weights associated to trees are automati-
cally convergent in the ε → 0 limit, thus it suffices to focus on genus one graphs that are
purely wheels with some number of external edges.

The definition of the weight of the wheel involves placing the propagator at each in-
ternal edge and the interaction I at each vertex. The weights are evaluated by placing
compactly supported fields ϕ ∈ EV,c = Ω0,∗

c (Cd, V) at each of the external edges. We will
make two simplifications:

(1) the only ε dependence appears in the analytic part of the propagator Pan
ε<L, so we

can forget about the combinatorial factor CV0 and assume all external edges are
labeled by compactly supported Dolbeault forms in Ω0,∗

c (Cd);
(2) each vertex labeled by I is a sum of interactions of the form∫

Cd
D1(ϕ) · · ·Dk(ϕ)ddz

where Di is a holomorphic differential operator (only involves ∂
∂zi

-derivatives).
Some of the differential operators will hit the compactly supported Dolbeault
forms placed on the external edges of the graph. The remaining operators will
hit the internal edges labeled by the propagators. Since a holomorphic differen-
tial operator preserves the space of compactly supported Dolbeault forms that
is independent of ε, we replace each input by an arbitrary compactly supported
Dolbeault form.

Thus, for the ε → 0 behavior it suffices to look at weights of wheels with arbitrary
compactly supported functions as inputs where each of the internal edges are labeled by
some translation invariant holomorphic differential operator

D = ∑
n1,...nd

∂n1

∂zn1
1
· · · ∂nd

∂znd
d

applied to the propagator Pan
ε<L. This motivates the following definition.

Definition 3.10. Let ε, L > 0. In addition, fix the following data.

(a) An integer k ≥ 1 that will be the number of vertices of the graph.
(b) For each α = 1, . . . , k a sequence of integers

~nα = (nα
1 , . . . , nα

d).
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We denote by (~n) = (nj
i) the corresponding d× k matrix of integers.

The analytic weight associated to the pair (k, (~n)) is the smooth distribution

Wk,(n)
ε<L : C∞

c ((Cd)k)→ C,

that sends a smooth compactly supported function Φ ∈ C∞
c ((Cd)k) = C∞

c (Cdk) to

(16) Wk,(n)
ε<L (Φ) =

∫
(z1,...,zk)∈(Cd)k

k

∏
α=1

ddzαΦ(z1, . . . , zk)
k

∏
α=1

(
∂

∂zα

)~nα

Pan
ε<L(z

α, zα+1).

In the above expression, we use the convention that zk+1 = z1.

The coordinate on (Cd)k is given by {zα
i } where α = 1, . . . , k and i = 1, . . . , d. For each

α, {zα
1 , . . . , zα

d} is the coordinate for the space Cd sitting at the vertex labeled by α. We
have also used the shorthand notation(

∂

∂zα

)~nα

=
∂nα

1

∂zα
1
· · · ∂nα

d

∂zα
d

.

We will refer to the collection of data (k, (~n)) in the definition as wheel data. The moti-
vation for this is that the weight Wk,(n)

ε<L is the analytic part of the full weight WΓ(PV
ε<L, I)

where Γ is a wheel with k vertices.
We have reduced the proof of Proposition 3.4 to showing that the ε → 0 limit of the

analytic weight Wk,(~n)
ε<L (Φ) exists for any choice of wheel data (k, (~n)). To do this, there

are two steps. First, we show a vanishing result that says when k ≥ d the weights vanish
for purely algebraic reasons. The second part is the most technical aspect of the chapter
where we show that for k > d the weights have nice asymptotic behavior as a function of
ε.

Lemma 3.11. Let (k, (~n)) be a pair of wheel data. If the number of vertices k satisfies k ≤ d then

Wk,(n)
ε<L = 0

as a distribution on Cdk for any ε, L > 0.

Proof. In the integral expression for the weight (16) there is the following factor involving
the product over the edges of the propagators:

(17)
k

∏
α=1

(
∂

∂zα

)~nα

Pan
ε<L(z

α, zα).

We will show that this expression is identically zero. To simplify the expression we first
make the following change of coordinates on Cdk:

wα = zα+1 − zα , 1 ≤ α < k(18)

wk = zk.(19)
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Introduce the following operators

ηα =
d

∑
i=1

wα
i

∂

∂(dwα
i )

acting on differential forms on Cdk. The operator ηα lowers the anti-holomorphic Dol-
buealt type by one : η : (p, q) → (p, q − 1). Equivalently, ηα is contraction with the
anti-holomorphic Euler vector field wα

i ∂/∂wα
i .

Once we do this, we see that the expression (17) can be written as((
k−1

∑
α=1

ηα

)
d

∏
i=1

(
k−1

∑
α=1

dwα
i

))
k−1

∏
α=1

(
ηα

d

∏
i=1

dwα
i

)
.

Note that only the variables wα
i for i = 1, . . . , d and α = 1, . . . , k − 1 appear. Thus we

can consider it as a form on Cd(k−1). As such a form it is of Dolbeault type (0, (d− 1) +
(k− 1)(d− 1)) = (0, (d− 1)k). If k < d then clearly (d− 1)k > d(k− 1) so the form has
greater degree than the dimension of the manifold and hence it vanishes.

The case left to consider is when k = d. In this case, the expression in (17) can be
written as

(20)

((
d−1

∑
α=1

ηα

)
d

∏
i=1

(
d−1

∑
α=1

dwα
i

))
d−1

∏
α=1

(
ηα

d

∏
i=1

dwα
i

)
.

Again, since only the variables wα
i for i = 1, . . . , d and α = 1, . . . , d − 1 appear, we can

view this as a differential form on Cd(d−1). Furthermore, it is a form of type (0, d(d −
1)). For any vector field X on Cd(d−1) the interior derivative iX is a graded derivation.
Suppose ω1, ω2 are two (0, ∗) forms on Cd(d−1) such that the sum of their degrees is equal
to d2. Then, ω1ιXω2 is a top form for any vector field on Cd(d−1). Since ω1ω2 = 0 for
form type reasons, we conclude that ω1ιXω2 = ±(iXω1)ω2 with sign depending on the
dimension d. Applied to the vector field z1

i ∂/∂w1
i in (20) we see that the expression can

be written (up to a sign) as

η1

(
d−1

∑
α=1

ηα
d

∏
i=1

(
d−1

∑
α=1

dwα
i

))(
d

∏
i=1

dw1
i

)
d−1

∏
α=2

(
ηα

d

∏
i=1

dwα
i

)
.

Repeating this, for α = 2, . . . , k− 1 we can write this expression (up to a sign) as(
ηk−1 · · · η2η1

k−1

∑
α=1

ηα
d

∏
i=1

(
k−1

∑
α=1

dwα
i

))
k−1

∏
α=1

d

∏
i=1

dwα
i

The expression inside the parentheses is zero since each term in the sum over α involves
a term like ηβηβ = 0. This completes the proof for k = d. �

Lemma 3.12. Let (k, (~n)) be a pair of wheel data such that k > d. Then the ε → 0 limit of the
analytic weight

lim
ε→0

Wk,(n)
ε<L

exists as a distribution on Cdk.
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Proof. We will bound the absolute value of the weight in Equation (16) and show that it
has a well-defined ε → 0 limit. First, consider the change of coordinates as in Equations
(18),(19). For any compactly supported function Φ we see that Wk,(n)

ε<L (Φ) has the form
(21)∫

wk∈Cd ddwk
∫
(w1,...,wk−1)∈(Cd)k−1

(
k−1

∏
α=1

ddwα

)
Φ(w1, . . . , wk)

(
k−1

∏
α=1

(
∂

∂wα

)~nα

Pan
ε<L(w

α)

)

×
k−1

∑
α=1

(
∂

∂wα

)~nk

Pan
ε<L

(
k−1

∑
α=1

wα

)
.

For α = 1, . . . , k − 1 the notation Pan
ε<L(w

α) makes sense since Pan
ε<L(z

α, zα+1) is only a
function of wα = zα+1 − zα. Similarly Pan

ε<L(z
k+1, z1) is a function of

zk − z1 =
k−1

∑
α=1

wα.

Expanding out the propagators the weight takes the form

∫
wk∈Cd

d2dwk
∫
(w1,...,wk−1)∈(Cd)k−1

(
k−1

∏
α=1

d2dwα

)
Φ(w1, . . . , wk)

∫
(t1,...,tk)∈[ε,L]k

k

∏
α=1

dtα

(2πitα)d

×
d

∑
i1,...,ik−1=1

εi1··· ,ik

(
w1

i1
4t1

(w1)n1

4t|n1|

)
· · ·
(

wk−1
ik−1

4tk−1

(wk−1)nk−1

4t|nk−1|

)k−1

∑
α=1

wα
ik

4tk
· 1

t|nk |

(
k−1

∑
α=1

wα

)nk
× exp

− k−1

∑
α=1

|wα|2
4tα

− 1
4tk

∣∣∣∣∣k−1

∑
α=1

wα

∣∣∣∣∣
2


The notation used above warrants some explanation. Recall, for each α the vector of
integers is defined as nα = (nα

1 , . . . , nα
d). We use the notation

(wα)nα
= wnα

1
1 · · ·w

nα
d

d .

Furthermore, |nα| = nα
1 + · · ·+ nα

d . Each factor of the form
wα

iα
tα

comes from the application

of the operator ∂
∂zi

in ∂
∗

applied to the propagator. The factor (wα)nα

t|nα | comes from apply-

ing the operator
(

∂
∂w

)nα

to the propagator. Note that ∂
∗

commutes with any translation
invariant holomorphic differential operator, so it doesn’t matter which order we do this.

To bound this integral we will recognize each of the factors

wα
iα

4tα

(wα)nα

4t|nα|

as coming from the application of a certain holomorphic differential operator to the ex-
ponential in the last line. We will then integrate by parts to obtain a simple Gaussian
integral which will give us the necessary bounds in the t-variables. Let us denote this
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Gaussian factor by

E(w, t) := exp

− k−1

∑
α=1

|wα|2
4tα

− 1
4tk

∣∣∣∣∣k−1

∑
α=1

wα

∣∣∣∣∣
2


For each α, iα introduce the t = (t1, . . . , tk)-dependent holomorphic differential opera-
tor

Dα,iα
(t) :=

(
∂

∂wα
iα

−
k−1

∑
β=1

tβ

t1 + · · ·+ tk

∂

∂wβ
iα

)
d

∏
j=1

 ∂

∂wα
j
−

k−1

∑
β=1

tβ

t1 + · · ·+ tk

∂

∂wβ
j

nα
j

.

The following lemma is an immediate calculation

Lemma 3.13. One has

Dα,iα
E(w, t) =

wα
iα

4tα

(wα)nα

t|nα| E(w, t).

Note that all of the Dα,iα
operators mutually commute. Thus, we can integrate by parts

iteratively to obtain the following expression for the weight:

±
∫

wk∈Cd
d2dwk

∫
(w1,...,wk−1)∈(Cd)k−1

(
k−1

∏
α=1

d2dwα

) ∫
(t1,...,tk)∈[ε,L]k

k

∏
α=1

dtα

(2πitα)d

×
(

∑
i1,...,ik

εi1··· ,id D1,i1 · · ·Dk−1,ik−1

k−1

∑
α=1

Dα,ik Φ(w1, . . . , wk)

)

× exp

− k−1

∑
α=1

|wα|2
tα
− 1

tk

∣∣∣∣∣k−1

∑
α=1

wα

∣∣∣∣∣
2
 .

Thus, the absolute value of the weight is bounded by

(22)
|Wk,(n)

ε<L (Φ)| ≤ C
∫

wk∈Cd
d2dwk

∫
(w1,...,wk−1

k−1

∏
α=1

d2dwαΨ(w1, . . . , wk−1, wk)

×
∫
(t1,...,tk)∈[ε,L]k

dt1 . . . dtk
1

(4π)dk
1

td
1 · · · td

k
× E(w, t)

where Ψ is some compactly supported function on Cdk that is independent of t.
To compute the right hand side we will perform a Gaussian integration with respect

to the variables (w1, . . . , wk−1). To this end, notice that the exponential can be written as

E(w, t) = exp
(
−1

4
Mαβ(wα, wβ)

)
where (Mαβ) is the (k− 1)× (k− 1) matrix given by

a1 b b · · · b
b a2 b · · · b
b b a3 · · · b
...

...
...

. . .
...

b b b · · · ak−1


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where aα = t−1
α + t−1

k and b = t−1
k . The pairing (wα, wβ) is the usual Hermitian pairing

on Cd, (wα, wβ) = ∑i wα
i wβ

i . After some straightforward linear algebra we find that

det(Mαβ)
−1 =

t1 · · · tk

t1 + · · ·+ tk
.

We now perform a Wick expansion for the Gaussian integral in the variables (w1, . . . , wk−1).
For a reference similar to the notation used here see the Appendix of our work in [EWY18].
The inequality in (22) becomes

|Wk,(n)
ε<L (Φ)| ≤ C′

∫
wk∈Cd

d2dwkΨ(0, . . . , 0, wk)(23)

×
∫
(t1,...,tk)∈[ε,L]k

dt1 . . . dtk
1

(4π)dk
1

(t1 · · · tk)d

(
t1 · · · tk

t1 + · · ·+ tk

)d

+ O(ε)(24)

= C′
∫

wk∈Cd
d2dwkΨ(0, . . . , 0, wk)(25)

×
∫
(t1,...,tk)∈[ε,L]k

dt1 . . . dtk
1

(4π)dk
1

(t1 + · · ·+ tk)d + O(ε).(26)

The first term in the Wick expansion is written out explicitly. The O(ε) refers to higher
terms in the Wick expansion, which one can show all have order ε, so disappear in the
ε → 0 limit. The expression Ψ(0, . . . , 0, wk) means that we have evaluate the function
Ψ(w1, . . . , wk) at w1 = . . . = wk−1 = 0 leaving it as a function only of wk. In the original
coordinates this is equivalent to setting z1 = · · · = zk−1 = zk.

Our goal is to show that ε → 0 limit of the right-hand side exists. The only ε de-
pendence on the right hand side of (23) is in the integral over the regulation parameters
t1, . . . , tk. Thus, it suffices to show that the ε→ 0 limit of∫

(t1,...,tk)∈[ε,L]k

dt1 . . . dtk

(t1 + · · ·+ tk)d

exists. By the AM/GM inequality we have (t1 + · · ·+ tk)
d ≥ (t1 · · · td)

d/k. So, the integral
is bounded by∫
(t1,...,tk)∈[ε,L]k

dt1 . . . dtk

(t1 + · · ·+ tk)d ≤
∫
(t1,...,tk)∈[ε,L]k

dt1 . . . dtk

(t1 · · · tk)d/k =
1

(1− d/k)k

(
ε1−d/k − L1−d/k

)k
.

By assumption, d < k, so the right hand side has a well-defined ε → 0 limit. This
concludes the proof.

�

4. CHIRAL ANOMALIES IN ARBITRARY DIMENSIONS

Renormalization is an important step in constructing a quantum field theory. In the
context of gauge theory, however, a consistent quantization requires that this renormal-
ization behaves appropriately with respect to gauge symmetries present in the classical
theory. This formalism for studying quantizations of gauge theories is due to Batalin-
Vilkovisky [BV81], and has been made mathematically rigorous in the work of Costello

40



[Cos11]. The precise consistency of gauge symmetry with renormalization is encoded by
the quantum master equation. Heuristically, one can think of the quantum master equation
as a closedness condition on the path integral measure defined by the quantum action
functional.

The key idea is the following: once a classical theory has been renormalized, so that
we have a h̄-linear effective family of functionals {I[L]} whose h̄ = 0 limit is the clas-
sical action, the next step to constructing a quantization is to solve the quantum master
equation (QME) for each functional I[L]. (In fact, once the QME holds at a single pos-
itive length L > 0 it holds for every other length by RG flow.) Often, the QME is not
satisfied by the functional I[L], but there exists a “correction” to I[L] that does satisfy the
QME. On the other hand, there may be unavoidable obstructions to solving this quan-
tum master equation. These are known as anomalies in the physics literature. Since our
method for solving the QME is deformation-theoretic in nature, these anomalies appear
as cohomology classes in the cochain complex of local functionals.

In general, it is difficult to characterize such anomalies, but in the case of holomorphic
theories on Cd our result of one-loop finiteness from the previous section makes this
problem much more tractable. Indeed, since there are no counterterms required, we can
plug in the RG flow of the classical action functional and study the quantum master
equation directly. As is usual in perturbation theory, one works order by order in h̄ to
construct a quantization. However, in this section we continue to work linearly in h̄,
which is to say we study solutions to the quantum master equation modulo h̄2.

4.1. The quantum master equation. In the BV formalism, as developed in [Cos11, CG17,
CG], one has the following definition of a quantum field theory.

Definition 4.1. A quantum field theory in the BV formalism consists of a free BV theory
(E, Q, ω) and an effective family of functionals

{I[L]}L∈(0,∞) ⊂ O+
P,sm(E)[[h̄]]

that satisfy:

(a) the exact renormalization group (RG) flow equation

I[L′] = W(PL<L′ , I[L]);

(b) the scale L quantum master equation (QME) at every length scale L:

(Q + h̄∆L)eI[L]/h̄ = 0.

(c) as L→ 0, the functional S[L] has an asymptotic expansion that is local.

The first part of the definition, namely RG flow, was the phenomena we studied in
the previous section. We turn our attention to part two of the definition of a QFT. The
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regularized quantum master equation at scale L can equivalently be written as

QI[L] + h̄∆L I[L] +
1
2
{I[L], I[L]}L = 0;

Combined with part (c), the h̄ → 0, L → 0 limit of the above equation is precisely the
classical master equation for the local functional limL→0 I[L] mod h̄. A quantization of
a classical functional I ∈ Oloc(E) is a quantization {I[L]} as above whose h̄ → 0 limit
agrees with I.

In general, not every classical interaction admits a quantization. The obstruction to
satisfying the quantum master equation order by order in h̄ is given by the following
inductive definition.

Definition 4.2. Suppose I[L] ∈ O(E)[[h̄]]/h̄n+1 solves the QME modulo h̄n. The scale L
obstruction to solving the QME modulo h̄n is

Θ(n)[L] = h̄−n
(

QI[L] + h̄∆L I[L] +
1
2
{I[L], I[L]}L

)
∈ O(E).

Equivalently, we can write the obstruction as Θ(n)[L] = h̄−n+1e−I[L]/h̄(Q + h̄∆L)eI[L]/h̄.
As a consequence of part (c) in the definition of a QFT above, the L → 0 limit of the

obstruction is defined and determines a cohomological degree +1 local functional

Θ(n) = lim
L→0

Θ(n)[L] ∈ Oloc(E).

Moreover, Θ(n) is closed for the differential Q + {I,−}, where I = limL→0 I[L] mod h̄ ∈
Oloc(E).

In the remainder of this section we return to the holomorphic setting. Fix a classical
holomorphic theory (V, Qhol , (−,−)V , Ihol) on Cd. As usual, denote by EV = (Ω0,∗(Cd, V), ∂+

Qhol) the linearized BRST complex of fields and I =
∫

IΩ0,∗
the classical interaction. Let

I[L] = limε→0 W(Pε<L, I) mod h̄2 be the one-loop renormalization group flow using the
propagator defined in Section 3.

4.2. The QME for holomorphic theories. The main result of this section is a character-
ization of the one-loop obstruction for holomorphic theories. Before jumping into the
calculation, we state the following lemma, which is a simplification of the QME given
our assumptions. Note that we only study one-loop effects here.

Lemma 4.3. Let Θ[L] = Θ(1)[L] be the one-loop obstruction to the QME at scale L. Then, one
has

(27) h̄Θ[L] = Qhol I[L] +
1
2

lim
ε→0

e−I/h̄eh̄∂Pε<L

(
{I, I}εeI/h̄

)
mod h̄2.

Proof. We write the obstruction as Θ[L] = e−I[L]/h̄(Q + h̄∆L)eI[L]/h̄. Notice that formally
the one loop RG flow can equivalently be written as eI[L]/h̄ = limε→0 eh̄∂Pε<L eI/h̄ mod h̄2.
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Applying the operator Q + h̄∆L to both sides, we obtain

(Q + h̄∆L)eI[L]/h̄ = lim
ε→0

(Q + h̄∆L)
(

eh̄∂Pε<L eI/h̄
)

.

The operator Q commutes with eh̄∂Pε<L . Moreover, one has ∆Leh̄∂Pε<L = eh̄∂Pε<L ∆ε as
operators acting on functionals. Thus,

lim
ε→0

(Q + h̄∆L)
(

eh̄∂Pε<L eI/h̄
)
= lim

ε→0
eh̄∂Pε<L (Q + h̄∆ε)eI/h̄.

Since ∆ε is a BV operator with respect to the bracket {−,−}ε, we can rewrite the right-
hand side as

1
h̄

lim
ε→0

eh̄Pε<L(QI + h̄∆ε I +
1
2
{I, I}ε)eI/h̄.

For every ε > 0 we have ∆ε I = 0. This is because I is a local functional and ∆ε involves
contraction with a factor of ∏(dzi − dwi). Moreover, since I comes from a holomorphic
Lagrangian we have ∂I = 0.

Thus, the only terms remaining inside the parantheses in the above expression are
Qhol I + 1

2{I, I}ε. We conclude that the obstruction Θ[L] can be expressed as

Θ[L] =
1
h̄

lim
ε→0

e−I/h̄eh̄∂Pε<L

(
Qhol I +

1
2
{I, I}εeI/h̄

)
mod h̄2

=
1
h̄

Qhol I[L] +
1

2h̄
lim
ε→0

e−I/h̄eh̄∂Pε<L

(
{I, I}εeI/h̄

)
mod h̄2

as desired. In the second line, we have again used the fact that the operators Qhol and
∂Pε<L commute. �

As we saw above, the anomaly Θ[L] has a well-defined L → 0 limit as a local func-
tional and it is closed for the classical differential. Before stating the result, we need a
modification of the definition of the weight of a given Feynman diagram. If Γ is a graph
with a distinguished edge e, let WΓ,e(Pε<L, Kε, I) denote the weight of the graph as de-
fined before, except with one minor difference. Instead of placing Pε<L at each internal
edge, we place Kε at the edge labeled e and Pε<L on the remaining edges. The main result
of this section is the following.

Proposition 4.4. The obstruction Θ = limL→0 Θ[L] ∈ Oloc(EV) to satisfying the one-loop
quantum master equation is given by the expression

(28) h̄Θ = Qhol lim
L→0

I[L] +
1
2

lim
L→0

lim
ε→0

∑
Γ∈Wheeld+1,e

WΓ(Pε<L, Kε, I)

where the sum is over all wheels with (d + 1)-vertices and distinguished edges thereof. In partic-
ular, when Qhol = 0 (so that the first term vanishes), the anomaly is expressed as the sum over
wheels with exactly (d + 1)-vertices.
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· · ·

Kε
...Pε<L

· · ·
Pε<L

Pε<L

FIGURE 1. The second term in Equation (28) representing the holomor-
phic anomaly.

This obstruction determines an element in the cohomology of the local deformation
complex

[Θ] ∈ H1
(
Oloc(EV), ∂ + Qhol + {I,−}

)
.

This is a complete characterization of the cohomological obstruction to satisfying the
quantum master equation for the classical theory I. If we chose any other quantization
of {I′[L]} of I, say coming from a different gauge fixing condition, we obtain class coho-
mologous to this [Θ] = [Θ′].

Proof of Proposition 4.4. Like the proof of the non-existence of counterterms for holomor-
phic theories, the proof of this result will be the consequence of an explicit calculations
and bounds of certain Feynman diagrams.

Note that the first term, involving Qhol , is the L → 0 limit of the right-hand side of
Equation (27). Thus, it suffices to focus on the second term.

We express the quantity

(29) lim
ε→0

e−I/h̄eh̄∂Pε<L

(
{I, I}εeI/h̄

)
mod h̄2

as a sum over graphs. By assumption, we are only looking at graphs of genus one which
look like wheels with possible trees attach. Graphically, the quantity {I, I}ε is the graph
of two vertices with a separating edge labeled by the heat kernel Kε. Thus, all weights
appearing in the expansion of (29) attach the propagator Pε<L to all edges besides a single
distinguished edge e, which is labeled by Kε. Thus, as a over a sum of graphs, we see that
the following two types of weights occur in the expansion of (29).

(a) the distinguished edge e is separating;
(b) the distinguished edge e is not separating, and so appears as the internal edge of the

wheel portion of the graph.

By the classical master equation, we see that the ε → 0 limit of weights of Type (a) go
to zero. Thus, we must only consider the weights of Type (b).
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The result will follow from two steps. These should seem familiar from the proof of
the main result about the existence of no counterterms.

(1) If Γ is a wheel with k < d + 1 vertices, then WΓ(Pε<L, Kε, I) = 0 identically.
(2) If Γ is a wheel with k > d + 1 vertices, then limε→0 WΓ(Pε<L, Kε, I) = 0.

The proof of both of these facts is only dependent on the analytic part of the weights.
Thus, it suffices to make the same reduction as we did in the previous section. To extract
that analytic part of the graph we proceed as in Definition 3.10. If (k, (~n)) is a pair of
wheel data (recall k labels the number of vertices and ~n labels the derivatives at each
vertex) define the smooth distribution

W̃k,(n)
ε<L : C∞

c ((Cd)k)→ C,

that sends a smooth compactly supported function Φ ∈ C∞
c ((Cd)k) = C∞

c (Cdk) to
(30)

W̃k,(n)
ε<L (Φ) =

∫
(z1,...,zk)∈(Cd)k

k

∏
α=1

ddzαΦ(z1, . . . , zα)

(
∂

∂zk

)~nk

Kε(z1, zk)
k−1

∏
α=1

(
∂

∂zα

)~nα

Pan
ε<L(z

α, zα+1).

Item (1) follows from the following observation.

Lemma 4.5. Let (k, (~n)) be a pair of wheel data. If the number of vertices k satisfies k ≤ d then

W̃k,(n)
ε<L = 0

as a distribution on Cdk for any ε, L > 0.

Proof. In fact, the integrand of (30) is identically zero provided k ≤ d by a simple obser-
vation of the differential form type. Consider the factor in the integrand of W̃k,(n)

ε<L given
by (

∂

∂zk

)~nk

Kε(z1, zk)
k−1

∏
α=1

(
∂

∂zα

)~nα

Pan
ε<L(z

α, zα+1).

Making the usual change of coordinates wα = zα+1 − zα and wk = zk we see that this
factor is proportional to the following constant coefficient differential form(

d

∏
i=1

(
k−1

∑
α=1

dwα
i

))
k−1

∏
α=1

(
ηα

d

∏
i=1

dwα
i

)
.

Note that this differential form only involves the coordinates (wα
i ) for α = 1, . . . , k − 1.

Thus, we may consider it as a Dolbeualt form on Cd(k−1). As such, it is of the type (0, d +
(k− 1)(d− 1)) = (0, (d− k + 1) + d(k− 1)). Clearly, (d− k + 1) + d(k− 1) > d(k− 1)
provided k ≤ d. Thus, the weight is identically zero provided k ≤ d, as desired. �

Item (2) follows from the following technical lemma that the analytic weight associated
to the wheels of valency k > d + 1 vanish in the limit ε→ 0.
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Lemma 4.6. Let (k, (~n)) be a pair of wheel data such that k > d + 1. Then the ε → 0 limit of
the analytic weight

lim
ε→0

W̃k,(n)
ε<L = 0

is identically zero as a distribution on Cdk.

Proof. The proof is very similar to the argument we gave in the proof of Lemma 3.12, so
we will be a bit more concise. First, we make the familiar change of coordinates as in
Equations (18),(19). Using the explicit form the heat kernel and propagator we see that
for any Φ ∈ C∞

c (Cdk) the weight is

W̃k,(n)
ε<L (Φ) =

∫
wk∈Cd

d2dwk
∫
(w1,...,wk−1)∈(Cd)k−1

(
k−1

∏
α=1

d2dwα

)
Φ(w1, . . . , wk)

×
∫
(t1,...,tk)∈[ε,L]k−1

1
(2πiε)d

k−1

∏
α=1

dtα

(2πitα)d

×
d

∑
i1,...,ik−1=1

εi1,...,id

(
w1

i1
t1

(w1)n1

4t|n1|

)
· · ·
(

wk−1
ik−1

4tk−1

(wk−1)nk−1

4t|nk−1|

) 1
4t|nk |

(
k−1

∑
α=1

wα

)nk
× exp

− k−1

∑
α=1

|wα|2
4tα

− 1
4ε

∣∣∣∣∣k−1

∑
α=1

wα

∣∣∣∣∣
2
 .

We will integrate by parts to eliminate the factors of wα
i .

For each 1 ≤ α < k and iα, define the ε and t = (t1, . . . , tk−1)-dependent holomorphic
differential operator

Dα,iα
(t) :=

(
∂

∂wα
iα

−
k−1

∑
β=1

tβ

t1 + · · ·+ tk−1 + ε

∂

∂wβ
iα

)
d

∏
j=1

 ∂

∂wα
j
−

k−1

∑
β=1

tβ

t1 + · · ·+ tk−1 + ε

∂

∂wβ
j

nα
j

.

And the ε, t-dependent holomorphic differential operator

Dk(t) =
d

∏
j=1

 ∂

∂wk
j
−

k−1

∑
β=1

tβ

t1 + · · ·+ tk−1 + ε

∂

∂wβ
j

nk
j

.

By a completely analogous version of Lemma the operators above allow us to integrate
by parts and express the weight in the form

W̃k,(n)
ε<L (Φ) = ±

∫
wk∈Cd

d2dwk
∫
(w1,...,wk−1)∈(Cd)k−1

(
k−1

∏
α=1

d2dwα

)

×
∫
(t1,...,tk−1)∈[ε,L]k−1

1
(2πiε)d

k−1

∏
α=1

dtα

(2πitα)d

×
(

∑
i1,...,ik−1

εi1··· ,id D1,i1(t) · · ·Dk−1,ik−1(t)Dk(t)Φ(w1, . . . , wk)

)

× exp

− k−1

∑
α=1

|wα|2
4tα

− 1
4ε

∣∣∣∣∣k−1

∑
α=1

wα

∣∣∣∣∣
2
 .
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Observe that the operators Dα,iα
(t), Dk(t) are uniformly bounded in t. Thus, there exists

a constant C = C(Φ) > 0 depending only on the function Φ such that we can bound the
weight as

(31)

|W̃k,(n)
ε<L (Φ)| ≤ C

∫
(w1,...,wk−1

k−1

∏
α=1

d2dwα
∫
(t1,...,tk−1)∈[ε,L]k−1

dt1 . . . dtk
1

εdtd
1 · · · td

k−1

× exp

− k−1

∑
α=1

|wα|2
4tα

− 1
4ε

∣∣∣∣∣k−1

∑
α=1

wα

∣∣∣∣∣
2
 .

Thus, to show that the limit limL→0 limε→0 W̃k,(n)
ε<L (Φ) = 0 it suffices to show that the limit

of the right-hand side vanishes.
The Gaussian integral over the variables wα

i contributes the following factor

∫
(w1,...,wk−1

k−1

∏
α=1

d2dwα exp

− k−1

∑
α=1

|wα|2
4tα

− 1
4ε

∣∣∣∣∣k−1

∑
α=1

wα

∣∣∣∣∣
2
 = C′

(
εt1 · · · tk−1

ε + t1 + · · ·+ tk−1

)d

.

Where C′ involves factors of 2 and π. Plugging this back in to the right-hand side of (31)
we see that

|W̃k,(n)
ε<L (Φ)| ≤ CC′

∫
[ε,L]k−1

dt1 · · ·dtk−1

(ε + t1 + · · ·+ tk−1)d ≤ CC′
k−1

∏
α=1

∫ L

tα=ε
dtαt−d/(k−1)

α .

In the second inequality we have used the fact that ε > 0 and the AM-GM inequality. It
is immediate to see that the ε → 0 limit of the above exists provided k > d + 1, which is
the situation we are in, and that the L→ 0 limit vanishes. �

This completes the proof of Proposition 4.4 �

4.2.1. Relation to the ABJ anomaly. The lemma we have just proved implies that for holo-
morphic theories on Cd the anomaly is given by evaluating a collection of wheel diagrams
with exactly d + 1 vertices. This expression for the obstruction fits into a generic class of
of one-loop anomalies from gauge theory called the Adler-Bell-Jackiw (ABJ) anomaly
[Adl69, BJ69]. This anomaly is most commonly associated with four dimensional gauge
theory.

We recall the basic setup for the ABJ anomaly. Consider a free Dirac fermion Ψ on R4

coupled to a background gauge field A ∈ Ω1(R4)⊗ g. For this to make sense, Ψ is taken
to be in valued in a representation V of the Lie algebra g so we may think of it as an
element Ψ ∈ S(R4)⊗V. Here, S(R4) is the space of sections of the full spinor bundle on
R4. The action functional is

S(A, Ψ) =
∫
〈Ψ, /∂ AΨ〉V

where /∂ A = /∂ + [A,−] is the A-coupled Dirac operator. We are implicitly using the
canonical spin invariant symplectic pairing S ⊗ S → Ω4(R4) = C∞(R4)d4x and a g-
invariant pairing 〈−,−〉V : V ⊗V → C, to obtain a local functional.
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For any smooth map α : R4 → g, the infinitesimal transformation Ψ → Ψ + ε[α, Ψ]

(where ε is an even parameter of square zero) is a classical symmetry of S(A, Ψ). Quan-
tum mechanically, there is a one-loop anomaly which measures the failure of the path
integral to be invariant with respect to this symmetry. It is a well-known calculation, see
for instance [FS04], that this anomaly is measured by the following local functional

(32)
∫

TrV (αFAFA) .

The trace is taken in the representation V. The fundamental calculation is the infamous
”triangle diagram”, where two vertices are labeled by the gauge field and the third by α.
In practice, physicists express the anomaly as a failure for the Noether current associated
to the symmetry α to be divergenceless.

There is the following holomorphic version of this anomaly. Again, let V be a g repre-
sentation. Consider the following action functional on C2:

S(A, β, γ) =
∫
〈β, ∂Aγ〉V

where γ : C2 → V, β ∈ Ω2,1(C2, V), and A ∈ Ω0,1(C2, g). Since A is a (0, 1) form
it defines a deformation of the trivial holomorphic G-bundle. Although we have not
put this theory in the BV formalism, there is a natural way to do so. The infinitesimal
symmetry we contemplate is of the form γ→ γ + ε[α, γ] where α : C2 → g. We study the
anomaly to quantizing this symmetry to one-loop. Following the result for the anomaly
given in the previous section, one sees that it is computed by a wheel with three vertices.
For type reasons, one vertex is labeled α and the other two are labeled by the gauge fields
A. ∫

TrV(α∂A∂A).

This is the holomorphic version of ABJ anomaly (32). Note that there are no terms of
order A3 or above. In fact, the functional

∫
Tr(αFAFA) is cohomologous to the expression

above in the local deformation complex.

Remark 4.7. We have already shown how familiar topological theories can be cast in a
holomorphic language. For instance, topological BF theory is a holomorphic deforma-
tion of holomorphic BF theory. It is a peculiar consequence of the above result that such
topological theories also admit a simple regularization procedure. Without much more
difficulty, one can extend this to certain topological theories to odd dimensional mani-
folds of the form X × S, where X is a complex manifold and S is a real one-dimensional
manifold. We consider the theory as a product of a holomorphic theory on X and a
one-dimensional topological theory on S. This can be further extended to transversely
holomorphic foliations [Bru96, Ghy96], which we will study in a future publication. Fur-
ther, often topological BF theory further deforms to Yang-Mills. It would be interesting
to apply our analysis above to such gauge theories.
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APPENDIX A. SOME FUNCTIONAL ANALYSIS

Homological algebra plays a paramount role in our approach to quantum field theory.
We immediately run into a subtle issue, which is that the underlying graded spaces of
the complexes of fields we are interested in are infinite dimensional, so care must be
taken when defining constructions such as duals and homomorphism spaces. A common
approach to dealing with issues of infinite dimensional linear algebra is to consider vector
spaces equipped with a topology. A problem with this is that the category of topological
vector spaces is not an abelian category, so doing any homological algebra in this naive
category is utterly hopeless. It is therefore advantageous to enlarge this to the category
of differentiable vector spaces. The details of this setup are carried out in the Appendix
of [CG17], but we will recall some key points for completeness of exposition. In this
appendix we also set up our notation for duals and function spaces.

Let Mfld be the site of smooth manifolds. The covers defining the Grothendieck topol-
ogy are given by surjective local diffeomorphisms. There is a natural sheaf of algebras on
this site given by smooth functions C∞ : M 7→ C∞(M).

For any p the assignment Ωp : M 7→ Ωp(M) defines a C∞-module. Similarly, if F
is any C∞-module we have the C∞-module of p-forms with values on F defined by the
assignment

Ω1(F) : M ∈ Mfld 7→ Ωp(M, F) = Ωp(M)⊗C∞(M) F(M).

Definition A.1. A differentiable vector space is a C∞-module equipped with a map of sheaves
on Mfld

∇ : F → Ω1(F)

such that for each M, ∇(M) defines a flat connection on the C∞(M)-module F(M). A
map of differentiable vector spaces is one of C∞-modules that intertwines the flat con-
nections. This defines a category that we denote DVS.

Our favorite example of differentiable vector spaces are imported directly from geom-
etry.

Example A.2. Suppose E is a vector bundle on a manifold X. Let E(X) denote the space
of smooth global sections. Let C∞(M,E(X)) be the space of sections of the bundle π∗XE
on M× X where πX : M× X → X is projection. The assignment M 7→ C∞(M,E(X)) is
a C∞-module with flat connection, so defines a differentiable vector space. Similarly, the
space of compactly supported sections Ec(X) is a DVS.

Many familiar categories of topological vector spaces embed inside the category of
differentiable vector spaces. Consider the category of locally convex topological vector
spaces LCTVS. If V is such a vector space, there is a notion of a smooth map f : U ⊂
Rn → V. One can show, Proposition B.3.0.6 of [CG17], that this defines a functor dift :
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LCTVS → DVS sending V to the C∞-module M 7→ C∞(M, V). If BVS ⊂ LCTVS is the
subcategory with the same objects but whose morphisms are bounded linear maps, this
functor restricts to embed BVS as a full subcategory BVS ⊂ DVS.

There is a notion of completeness that is useful when discussing tensor products. A
topological vector space V ∈ BVS is complete if every smooth map c : R → V has an
anti-derivative [KM97]. There is a full subcategory CVS ⊂ BVS of complete topological
vector spaces. The most familiar example of a complete topological vector space will be
the smooth sections E(X) of a vector bundle E→ X.

We let Ch(DVS) denote the category of cochain complexes in differentiable vector
spaces (we will refer to objects as differentiable vector spaces). It is enriched over the
category of differential graded vector spaces in the usual way. We say that a map of dif-
ferentiable cochain complexes f : V → W is a quasi-isomorphism if and only if for each
M the map f : C∞(M, V)→ C∞(M, W) is a quasi-isomorphism.

Theorem A.3 (Appendix B [CG17]). The full subcategory difc : CVS ⊂ DVS is closed under
limits, countable coproducts, and sequential colimits of closed embeddings. Furthermore, CVS
has the structure of a symmetric monoidal category with respect to the completed tensor product
⊗̂β.

We will not define the tensor product ⊗̂βhere, but refer the reader the cited reference
for a complete exposition. We will recall its key properties below. Often times we will
write⊗ for ⊗̂β where there is no potential conflict of notation. The fundamental property
of the tensor product that we use is the following. Suppose that E, F are vector bundles
on manifolds X, Y respectively. Then, E(X),F(Y) lie in CVS, so it makes sense to take
their tensor product using ⊗̂β. There is an isomorphism

(33) E(X)⊗̂βF(Y) ∼= Γ(X×Y, E � F)

where E � F denotes the external product of bundles, and Γ is smooth sections.
If E is a vector bundle on a manifold X, then the spaces E(X),Ec(X) both lie in the

subcategory CVS ⊂ DVS. The differentiable structure arises from the natural topologies
on the spaces of sections.

We will denote by E(X) (Ec(X)) the space of (compactly supported) distributional sec-
tions. It is useful to bear in mind the following inclusions

Ec(X)

Ec(X) E(X)

E(X) .

When X is compact the bottom left and top right arrows are equalities.
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Denote by E∨ the dual vector bundle whose fiber over x ∈ X is the linear dual of Ex.
Let E! denote the vector bundle E∨ ⊗DensX, where DensX is the bundle of densities. In
the case X is oriented, DensX is isomorphic to the top wedge power of T∗X. Let E!(X)

denote the space of sections of E!. The natural pairing

Ec(X)⊗ E!(X)→ C

that pairs sections of E with the evaluation pairing and integrates the resulting compactly
supported top form exhibits Ec(X) as the continuous dual to E!(X). Likewise, Ec(X) is
the continuous dual to E

!
(X). In this way, the topological vector spaces E(X) and Ec(X)

obtain a natural differentiable structure.
If V is any differentiable vector space then we define the space of linear functionals on

V to be the space of maps V∗ = HomDVS(V, R). Since DVS is enriched over itself this is
again a differentiable vector space. Similarly, we can define the polynomial functions of
homogeneous degree n to be the space

Symn(V∗) = Hommulti
DVS (V × · · · ×V, R)Sn

where the hom-space denotes multi-linear maps, and we have taken Sn-coinvariants on
the right-hand side. The algebra of functions on V is defined by

O(V) = ∏
n

Symn(V∗).

As an application of Equation (33) we have the following identification.

Lemma A.4. Let E be a vector bundle on X. Then, there is an isomorphism

O(E(X)) ∼= ∏
n
Dc(Xn, (E!)�n)Sn

where Dc(Xn, (E!)�n) is the space of compactly supported distributional sections of the vector
bundle (E!)�n. Again, we take Sn-coinvariants on the right hand side.
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