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Chapter 1

Introduction

The topic of this thesis is a mathematically rigorous analysis of a class of quantum field theories
that depend on the complex structure of a manifold in an analogous way that topological theories
depend on the smooth structure. Topological field theories have gained much interest in the
world of mathematics due to their elegant functorial descriptions, as well as their applications
to geometry and topology. Holomorphic theories, as we will define them, often contain strictly
more information than their topological counterparts. We will show how such theories also admit
their own mathematical description using techniques of homological algebra and renormalization
combined with the theory of factorization algebras.

This approach to perturbative quantum field theory is largely based on Costello’s program devel-
oped in [Cos11] which provides a rigorous construction of the path integral where the quantum
parameter h̄ is treated formally. The central mathematical players in this setup are the observables
of a quantum field theory. Physically speaking, the fields ϕ are the objects describing a theory and
the observables are the so-called measurements, or functions on the space of fields, ϕ 7→ O(ϕ),
one can perform on a system. These measurements appear in quantum theory through their
expectation values

〈O〉 =
∫

ϕ∈Fields
Dϕ e−S(ϕ)/h̄ O(ϕ),

where the integral is over the the fields ϕ ∈ Fields, and Dϕ e−S(ϕ)/h̄ is the a priori ill-defined
path integral measure. The main objective of [Cos11] is to give a mathematical definition of this
path integral measure largely inspired by a combination of the Wilsonian perspective of effective
field theory together with Batalin-Vilkovisky approach to studying gauge theories. Building off
of this foundation, the work of Costello-Gwilliam in [CG17, CG] sets up the mathematical theory
of observables in quantum field theory using the language of factorization algebras.

The idea of using factorization algebras to describe the observables of a theory was initiated in
Beilinson-Drinfeld’s work on chiral algebras [BD04]. Their goal, in part, was to provide a geo-
metric interpretation of vertex algebras in chiral conformal field theory. While the setting that
Costello-Gwilliam work in is much more general than the world of conformal field theory, the
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types of quantum field theories we study in this thesis can be viewed as a much more direct
generalization of the chiral conformal field theory situation. In my previous work [Wil17, GGW,
GWb, GWa] I have shown how many elements of conformal field theory, and bosonic string the-
ory, have rigorous interpretations and extensions within the BV formalism. Throughout the the-
sis we stress similarities with structures present in higher dimensional holomorphic theories with
those of two-dimensional chiral conformal field theory. For instance, the state space of a holomor-
phic theory is a natural dg module for the higher sphere algebra. In the other direction, it seems
possible to write down a full algebraic structure that the local operators of a higher dimensional
holomorphic theory, akin to that of a vertex algebra. These “higher dimensional” vertex algebras
are outside of the scope of this thesis, but we hope to return to them in future publications.

While the class of field theories we consider are very natural from a mathematical point of view,
they also provide a unique perspective into well-studied physical theories. Often times, topo-
logical theories provide a useful simplification, or approximation, of supersymmetric field theo-
ries. Perhaps the most well-known example of this are the A and B-models of topological string
theory. These are topological theories that appear as “twists” of the two-dimensional (2, 2)-
supersymmetric σ-model and have shown to be an extremely useful window into supersym-
metric string theory. One issue with this is that for low numbers of supersymmetry, topological
twists may not exist (for example, four-dimensional N = 1). On the other hand, holomorphic
twists almost always exist. In this thesis, we make the argument that holomorphic theories in
the BV formalism can provide insight into various supersymmetric theories while at the same
time admit salient mathematical structures that are readily studied by well-known techniques in
homological algebra.

The primary holomorphic theory we focus on in this thesis is the holomorphic σ-model. The classi-
cal theory pertains to the moduli space of holomorphic maps between complex manifolds Y → X.
In complex dimension one, this theory has appeared as the holomorphic twist of the (0, 2)-
supersymmetric σ-model by Witten [Wit07] and was rigorously shown to recover the Witten
genus by Costello in [Cosa]. In higher dimensions, we find a more sensitive invariant control-
ling the quantization of the model, generalizing the geometric condition for a manifold to be
String. This σ-model appears naturally in many physical theories, most notably as reductions
of (twists of) higher dimensional supersymmetric and supergravity theories. This is one of the
primary motivations we have for considering this class of theories.

A tried and true method for understanding field theory is by characterizing its symmetries. In
conformal field theory there are two important classes of symmetries: gauge symmetries and
chiral conformal symmetries. It is a special fact in two dimensional conformal field theory that
each of these classes admit enhancements to symmetries by infinite dimensional Lie algebras
that have very interesting representation theoretic properties. We find a natural generalization of
these “current algebras” in higher dimensional holomorphic theories that we will arrive at using
factorization algebras.
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1.1 Summary of the results

Here is a summary of the main results of this thesis.

1. The renormalization group flow of holomorphic theories in any dimension is finite at one-
loop. We show that there exists a regularization scheme based on heat kernels that provides
a one-loop renormalization that requires no counterterms. Further, for holomorphic theories
on Cd, we exhibit a general formula for the obstruction to satisfying the quantum master
equation as a sum over wheels of valence (d + 1).

2. For any complex manifold X, we prove that the space of quantizations of the holomorphic
σ-model of maps Cd → X is nonempty if and only if chd+1(T1,0X) = 0. In the case the
component of the Chern character does vanish, we construct an effective BV theory using
Gelfand-Kazhdan formal geometry. We proceed to provide a complete description of the
local operators of the theory using factorization algebras.

3. We classify local extensions of the holomorphic current algebra associated to a Lie algebra g

and the Lie algebra of holomorphic vector fields on any complex manifold. For the current
algebra, we extract from the enveloping factorization algebra a dg Lie algebra extending
the sphere algebra of g. In complex dimension one this recovers the usual affine algebra.
Further, using techniques developed in item (1) we prove a version of the Grothendieck-
Riemann-Roch theorem over the formal moduli space of G-bundles using techniques of
Feynman diagrams and BV quantization. The associated factorization algebras provide
higher dimensional generalizations of the Kac-Moody and Virasoro vertex algebras in two-
dimensional CFT.

1.2 Overview

The remainder of this thesis is divided up into three interrelated chapters.

We begin in Chapter 2 with a recollection of the classical and quantum Batalin-Vilkovisky (BV)
formalism, while also setting up the requisite homological algebra and analysis that we will use
throughout the remainder of the thesis. We give a definition of a holomorphic field theory on a
general complex manifold. On the complex manifold Cd, we discuss a stronger notion of a holo-
morphic theory where one also requires compatibility with translations. With the terminology set
up, we then prove our main result of this chapter: holomorphic theories on Cd are one-loop finite.
In addition, we provide a characterization of anomalies for holomorphic theories. We end with a
recollection of the equivariant BV formalism.

The subject of Chapter 3 is the class of holomorphic theories referred to in the title of this thesis:
the holomorphic σ-model. We construct this theory in a local to global fashion using ideas of
Gelfand-Kazhdan formal geometry which utilizes the Lie algebra of formal vector fields. After
importing the essential ingredients of formal geometry, we develop an extension of the theory
that makes sense for L∞ algebras. We then prove the main result of the chapter which constructs
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a BV quantization (and characterizes all such) of the holomorphic σ-model in any dimension
that respects certain natural symmetries of the theory. We provide a complete description of the
local operators of the theory using factorization algebras, while making comparisons to the use
of vertex algebras to describe one-dimensional holomorphic theories.

In Chapter 4 we study the local symmetries present in holomorphic field theories, with special
emphasis on the holomorphic σ-model. We start with holomorphic gauge symmetries, and with
the language factorization algebras, we are led to a higher dimensional version of the Kac-Moody
vertex algebra. We prove a version of the Grothendieck-Riemann-Roch theorem over the mod-
uli space of holomorphic G-bundles using heat kernel methods and Feynman diagrams. Finally,
we consider symmetries given by holomorphic diffeomorphisms and classify local central ex-
tensions of the Lie algebra of holomorphic vector fields. These central extensions characterize
higher dimensional analogs of the ”central charge” in conformal field theory, and we relate our
construction to versions in the physics literature.
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Chapter 2

Holomorphic quantum field theory

Our main objective in this chapter is two-fold. First we will define the concept of a holomorphic
field theory and set up notation and terminology that we will use throughout the text. Our next
goal is more technical, but will provide the backbone for much of the analysis throughout the
remainder of this thesis. We will show how certain holomorphic theories are surprisingly well-
behaved when it comes to the problem of renormalization.

The starting point of our work is Costello’s [Cos11] mathematical formulation of the Wilsonian
approach to perturbative quantum field theory. The main takeaway is that to construct a full
quantum field theory it suffices to define the theory at each energy (or length) scale and to ask that
these descriptions be compatible as we vary the scale. Concretely, this compatibility is through
the renormalization group (RG) flow and is encoded by an operator W(Pε<L,−) acting on the space
of functionals. The functional W(Pε<L,−) is defined as a sum over weights of graphs which is
how Feynman diagrams appear in Costello’s formalism. The infamous infinities of quantum field
theory arise due to studying behavior of theories at arbitrarily high energies (or small lengths).
In physics this is called the ultra-violet (UV) divergence. Classically, a theory is defined by a local
functional Icl which is a functional on the space of fields obtained by integrating a Lagrangian
density. At each scale L a theory is defined by an action functional I[L], which is a function on the
space of fields.

In some broad generality, there are two main steps to construct a QFT in this formalism.

Renormalization: For each scale L and regulator ε > 0 consider the RG flow from scale ε to L:

W(Pε<L, I). (2.1)

In general, the limit ε → 0 will not be defined, but by Costello’s main result there exists
counterterms ICT(ε) such that the ε→ 0 limit of

W(Pε<L, I − ICT(ε))

is well-defined. Denote this limit by I[L]. The family {I[L]} defines what we call a prequan-
tization.
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Gauge consistency: We then ask if the family {I[L]} defines a consistent quantization. For each L we require
that I[L] satisfy the scale L quantum master equation

QI[L] + h̄∆L I[L] +
1
2
{I[L], I[L]}L = 0,

or, equivalently, (Q + h̄∆L)eI[L]/h̄ = 0.

In this section we are primarily concerned with the first step: renormalization. The complication
here is that even very natural field theories can have a very complicated collections of countert-
erms. For instance, the naive quantization of Chern-Simons theory on a three-manifold has coun-
terterms even at one-loop. For holomorphic theories, however, we will show how the situation
becomes much simpler at least at the level of one-loop.
Lemma 2.0.1. Let E be a holomorphic theory on Cd with classical interaction Icl . Then, there exists a one-
loop prequantization {I[L] | L > 0} of Icl involving no counterterms. That is, we can find a propagator
Pε<L for which the ε→ 0 limit of

W(Pε<L, I) mod h̄2

exisits. Moreover, if I is holomorphically translation invariant we can pick the family {I[L]} to be holo-
morphically translation invariant as well.

We will use this result repeatedly throughout this thesis. This result tells us that the analytic
difficulties encountered in QFT are manageable in the case of holomorphic theories on Cd. Thus,
our main focus will be on obstructions to satisfying the quantum master equation. Indeed, a
corollary of this result will give us a procedure for computing the one-loop obstruction explicitly
in terms of Feynman diagrams. We conjecture that an extension of this result should hold to all
orders in h̄ which would give a constructive way of analyzing the obstruction theory order by
order in h̄. Nevertheless, we will leverage the one-loop behavior to formulate and prove index
theorems in the context of holomorphic QFT.

One surprising aspect of this comes from thinking about holomorphic theories in a different way.
Any supercharge Q of a supersymmetric theory satisfying Q2 = 0 allows one to construct a
“twist”. In some cases, where Clifford multiplication with Q spans all translations such a twist
becomes a topological theory (in the weak sense). In any case, however, such a Q defines a
“holomorphic twist” [Cos13], which results in the type of holomorphic theories we consider. We
will remark on numerous examples of this phenomena throughout the thesis. Regularization in
supersymmetric theories, especially gauge theories, is notoriously difficult. Our result implies
that after twisting the analytic difficulties become much easier to deal with. Consequently, facets
of these theories, such as their anomalies, can be cast in a more algebraic framework. We will see
such an example of this in the case of the holomorphic σ-model in the next chapter.

Already, in [Li] Li has proved a stronger complex one-dimensional version of this fact to all orders
in h̄. He uses this to give an elegant interpretation of the quantum master equation for two-
dimensional chiral conformal field theories using vertex algebras. Although we do not make any
statements in this thesis past one-loop quantizations, the higher loop behavior remains a rich and
subtle problem that we hope to return to.
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2.1 The definition of a quantum field theory

In this section we will give an expedient review of the classical and quantum Batalin-Vilkovisky
formalisms. We will also set up the requisite conventions and notations that we will use through-
out the thesis.

2.1.1 Classical field theory

Classical field theory is a formalism for describing a physical system in terms of objects called
fields. Mathematically, the space of fields is a (most often infinite dimensional) vector space E.
Classical physics is described by the critical locus of a (usually real or complex valued) linear
functional on the space of fields

S : E→ R or C, (2.2)

called the action functional. The critical locus is the locus of fields that have zero variation

Crit(S) := {ϕ ∈ E | dS(ϕ) = 0}. (2.3)

A field ϕ satisfying the equation dS(ϕ) = 0 is said to be a solution to the classical equations of motion.

Even in the finite dimensional case, if the functional S is not sufficiently well-behaved the critical
locus can be still be highly singular. The starting point of the classical Batalin-Vilkovisky formalism
is to instead consider the derived critical locus. To get a feel for this, we review the finite dimen-
sional situation. Let M be a manifold, which is our ansatz for E at the moment, and suppose
S : M → R is a smooth map. The critical locus is the intersection of the graph of dS in T∗M with
the zero section 0 : M→ T∗M. Thus, functions on the critical locus are of the form

O(Crit(S)) = O(Γ(dS))⊗O(T∗M) O(M).

The derived critical locus is a derived space whose dg ring of functions is

O(Crith(S)) = O(Γ(dS))⊗L
O(T∗M) O(M).

We have replaced the strict tensor product with the derived one. Using the Koszul resolution of
O(M) as a O(T∗M)-module one can write this derived tensor product as a complex of polyvector
fields equipped with some differential:

O(Crith(S)) '
(
PV−∗(M), ιdS

)
.

In cohomological degree −i we have PV−i(M) = Γ(M,∧iTM) and ιdS denotes contraction with
the one-form dS (which raises cohomological degree with our regrading convention). With our
grading convention we have O(T∗[−1]M) = PV−∗(M). The space O(T∗[−1]M) has natural
shifted Poisson structure, which takes the form of the familiar Schouten-Nijenhuis bracket of
polyvector fields.

The takeaway is that the derived critical locus of a functional S : M → R has the structure of
a (−1)-symplectic space. This will be the starting point for our definition of a theory in the BV
formalism in the general setting.
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In all non-trivial examples the space of fields E is infinite dimensional and we must be careful
with what functionals S we allow. The space of fields we consider will always have a natural
topology, and we will choose functionals that are continuous with respect to it. We divert for a
moment to discuss these issues of infinite dimensional linear algebra.

2.1.1.1 Some functional analysis

Homological algebra will play a paramount role in our approach to perturbative field theory. A
problem with this is that the category of topological vector spaces is not an abelian category. It is
therefore advantageous to enlarge this to the category of differentiable vector spaces. The details of
this setup are carried out in the Appendix of [CG17], but we will recall some key points.

Let Mfld be the site of smooth manifolds. The covers defining the Grothendieck topology are
given by surjective local diffeomorphisms. There is a natural sheaf of algebras on this site given
by smooth functions C∞ : M 7→ C∞(M).

For any p the assignment Ωp : M 7→ Ωp(M) defines a C∞-module. Similarly, if F is any C∞-
module we have the C∞-module of p-forms with values on F defined by the assignment

Ω1(F) : M ∈ Mfld 7→ Ωp(M, F) = Ωp(M)⊗C∞(M) F(M).

Definition 2.1.1. A differentiable vector space is a C∞-module equipped with a map of sheaves on
Mfld

∇ : F → Ω1(F)

such that for each M,∇(M) defines a flat connection on the C∞(M)-module F(M). A map of dif-
ferentiable vector spaces is one of C∞-modules that intertwines the flat connections. This defines
a category that we denote DVS.

Our favorite example of differentiable vector spaces are imported directly from geometry.
Example 2.1.2. Suppose E is a vector bundle on a manifold X. Let E(X) denote the space of smooth
global sections. Let C∞(M,E(X)) be the space of sections of the bundle π∗XE on M × X where
πX : M × X → X is projection. The assignment M 7→ C∞(M,E(X)) is a C∞-module with flat
connection, so defines a differentiable vector space. Similarly, the space of compactly supported
sections Ec(X) is a DVS.

Many familiar categories of topological vector spaces embed inside the category of differentiable
vector spaces. Consider the category of locally convex topological vector spaces LCTVS. If V
is such a vector space, there is a notion of a smooth map f : U ⊂ Rn → V. One can show,
Proposition B.3.0.6 of [CG17], that this defines a functor dift : LCTVS → DVS sending V to
the C∞-module M 7→ C∞(M, V). If BVS ⊂ LCTVS is the subcategory with the same objects
but whose morphisms are bounded linear maps, this functor restricts to embed BVS as a full
subcategory BVS ⊂ DVS.

There is a notion of completeness that is useful when discussing tensor products. A topological
vector space V ∈ BVS is complete if every smooth map c : R → V has an anti-derivative [KM97].
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There is a full subcategory CVS ⊂ BVS of complete topological vector spaces. The most familiar
example of a complete topological vector space will be the smooth sections E(X) of a vector
bundle E→ X.

We let Ch(DVS) denote the category of cochain complexes in differentiable vector spaces (we
will refer to objects as differentiable vector spaces). It is enriched over the category of differential
graded vector spaces in the usual way. We say that a map of differentiable cochain complexes
f : V →W is a quasi-isomorphism if and only if for each M the map f : C∞(M, V)→ C∞(M, W)

is a quasi-isomorphism.
Theorem 2.1.3 (Appendix B [CG17]). The full subcategory difc : CVS ⊂ DVS is closed under limits,
countable coproducts, and sequential colimits of closed embeddings. Furthermore, CVS has the structure
of a symmetric monoidal category with respect to the completed tensor product ⊗̂β.

We will not define the tensor product ⊗̂βhere, but refer the reader the cited reference for a com-
plete exposition. We will recall its key properties below. Often times we will write ⊗ for ⊗̂β

where there is no potential conflict of notation. The fundamental property of the tensor product
that we use is the following. Suppose that E, F are vector bundles on manifolds X, Y respectively.
Then, E(X),F(Y) lie in CVS, so it makes sense to take their tensor product using ⊗̂β. There is an
isomorphism

E(X)⊗̂βF(Y) ∼= Γ(X×Y, E� F) (2.4)

where E� F denotes the external product of bundles, and Γ is smooth sections.

If E is a vector bundle on a manifold X, then the spaces E(X),Ec(X) both lie in the subcategory
CVS ⊂ DVS. The differentiable structure arises from the natural topologies on the spaces of
sections.

We will denote by E(X) (Ec(X)) the space of (compactly supported) distributional sections. It is
useful to bear in mind the following inclusions

Ec(X)

Ec(X) E(X)

E(X) .

When X is compact the bottom left and top right arrows are equalities.

Denote by E∨ the dual vector bundle whose fiber over x ∈ X is the linear dual of Ex. Let E! denote
the vector bundle E∨ ⊗DensX , where DensX is the bundle of densities. In the case X is oriented,
DensX is isomorphic to the top wedge power of T∗X. Let E!(X) denote the space of sections of
E!. The natural pairing

Ec(X)⊗ E!(X)→ C

that pairs sections of E with the evaluation pairing and integrates the resulting compactly sup-
ported top form exhibits Ec(X) as the continuous dual to E!(X). Likewise, Ec(X) is the continuous
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dual to E
!
(X). In this way, the topological vector spaces E(X) and Ec(X) obtain a natural differ-

entiable structure.

If V is any differentiable vector space then we define the space of linear functionals on V to be the
space of maps V∗ = HomDVS(V, R). Since DVS is enriched over itself this is again a differentiable
vector space. Similarly, we can define the polynomial functions of homogeneous degree n to be
the space

Symn(V∗) = Hommulti
DVS (V × · · · ×V, R)Sn

where the hom-space denotes multi-linear maps, and we have taken Sn-coinvariants on the right-
hand side. The algebra of functions on V is defined by

O(V) = ∏
n

Symn(V∗).

As an application of Equation (2.4) we have the following identification.
Lemma 2.1.4. Let E be a vector bundle on X. Then, there is an isomorphism

O(E(X)) ∼= ∏
n

Dc(Xn, (E!)�n)Sn

where Dc(Xn, (E!)�n) is the space of compactly supported distributional sections of the vector bundle
(E!)�n. Again, we take Sn-coinvariants on the right hand side.

2.1.1.2 Local functionals

In our approach, the space of fields will always be equal to the space of smooth sections of a
Z-graded vector bundle E → X on a manifold E = Γ(X, E). The class of functionals S : E → R

defining the classical theories we consider are required to be local, or given by the integral of a
Lagrangian density. We define this concept now.

Let DX denote the sheaf of differential operators on X. The ∞-jet bundle Jet(E) of a vector bundle
E is the vector bundle whose fiber over x ∈ X is the space of formal germs at x of sections of
E. It is a standard fact that Jet(E) is equipped with a flat connection giving its space of sections
J(E) = Γ(X, Jet(E)) the structure of a DX-module.

Above, we have defined the algebra of functions O(E(X)) on the space of sections E(X). Similarly,
let Ored(E(X)) = O(E(X))/R be the quotient by the constant polynomial functions. The space
Ored(J(E)) inherits a natural DX-module structure from J(E). We refer to Ored(J(E)) as the space
of Lagrangians on the vector bundle E. Every element F ∈ Ored(J(E)) can be expanded as F =

∑n Fn where each Fn is an element

Fn ∈ HomC∞
X
(J(E)⊗n, C∞

X )Sn
∼= PolyDiff(E⊗n, C∞(X))Sn

where the right-hand side is the space of polydifferential operators. The proof of the isomorphism
on the right-hand side can be found in Chapter 5 of [Cos11].

A local functional is given by a Lagrangian densities modulo total derivatives. The mathematical
definition is the following.

12



Definition 2.1.5. Let E be a graded vector bundle on X. Define the sheaf of local functionals on X
to be

Oloc(E) = DensX ⊗DX Ored(J(E)),

where we use the natural right DX-module structure on densities.

Note that we always consider local functionals coming from Lagrangians modulo constants. We
will not be concerned with local functions associated to constant Lagrangians.

From the expression for functionals in Lemma 2.1.4 we see that integration defines an inclusion
of sheaves

i : Oloc(E) ↪→ Ored(Ec). (2.5)

Often times when we describe a local functional we will write down its value on test compactly
supported sections, then check that it is given by integrating a Lagrangian density, which amounts
to lifting the functional along i.

2.1.1.3 The definition of a classical field theory

Before giving the definition, we need to recall what the proper notion of a shifted symplectic
structure is in the geometric setting that we work in.
Definition 2.1.6. Let E be a graded vector bundle on X. A k-shifted symplectic structure is an
isomorphism of graded vector spaces

E ∼=ω E![k] =
(
DensX ⊗ E∨

)
[k]

that is graded anti-symmetric.

If ω∗ is the formal adjoint of the isomorphism ω∗ : E ∼= E![k], anti-symmetry amounts to the con-
dition ω∗ = −ω. In general, ω does not induces a Poisson structure on the space of all functionals
O(E). This is because, as we have seen above, elements of this space are given by distributional
sections and hence we cannot pair elements with overlapping support. The symplectic struc-
ture does, however, induce a Poisson bracket on local functionals. 1 We will denote the bracket
induced by a shifted symplectic structure by {−,−}.

We are now ready to give the precise definition of a classical field theory.
Definition 2.1.7. A classical field theory in the BV formalism on a smooth manifold X is a Z-graded
vector bundle E equipped with a (−1)-shifted symplectic structure together with a local func-
tional S ∈ Oloc(E) such that:

1. the functional S satisfies the classical master equation

{S, S} = 0;

2. S is at least quadratic, so we can write it (in a unique way) as

S(ϕ) = ω(ϕ, Qϕ) + I(ϕ)

1Note that Oloc(E) is not a shifted Poisson algebra since there is no natural commutative product.
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where Q is a linear differential operator such that Q2 = 0, and I ∈ Oloc(E) is at least cubic;

3. the complex (E, Q) is elliptic.

In the physics literature, the operator Q is known as the linearized BRST operator, and {S,−} =
Q + {I,−} is the full BRST operator. Ellipticity of the complex (E, Q) is a technical requirement
that will be very important in our approach to the issue of renormalization in perturbative quan-
tum field theory. The classical master equation is equivalent to

QI +
1
2
{I, I} = 0.

A free theory is a classical theory with I = 0 in the notation above. Thus, a free theory is a simply
an elliptic complex equipped with a (−1)-shifted symplectic pairing where the differential in the
elliptic complex is graded skew-self adjoint for the pairing.

Although the space O(E) does not have a well-defined shifted Possoin bracket induced from the
symplectic pairing, the operator {S,−} : O(E) → O(E)[1] is well-defined since S is local by
assumption. By assumption, it is also square zero. The complex of global classical observables of
the theory is defined by

Obscl
E(X) = (O(E(X)), {S,−}).

This complex is the field theoretic replacement for functions on the derived locus of S from the
beginning of this section. Although it does not have a P0-structure, there is a subspace that does.
This is sometimes referred to as the BRST complex in the physics literature.

2.1.1.4 A description using L∞ algebras

There is a completely equivalent way to describe a classical field theory that helps to illuminate
the mathematical meaningfulness of the definition given above. The requisite concept we need to
introduce is that of a local Lie algebra (or local L∞ algebra).

First, recall that an L∞ algebra is a modest generalization of a dg Lie algebra where the Jacobi
identity is only required to hold up to homotopy. The data of an L∞ algebra is a graded vector
space V with, for each k ≥ 1, a k-ary bracket

`k : V⊗k → V[2− k]

of cohomological degree 2− k. These maps are required to satisfy a series of conditions, the first
of which says `2

1 = 0. The next says that `2 is a bracket satisfying the Jacobi identity up to a
homotopy given by `3. For a detailed definition see we refer the reader to [Sta92, Get09].

We now give the definition of a local L∞ algebra on a manifold X. This has appeared in Chapter
4 of [CG].
Definition 2.1.8. A local L∞ algebra on X is the following data:

(i) a Z-graded vector bundle L on X, whose sheaf of smooth sections we denote Lsh, and
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(ii) for each positive integer n, a polydifferential operator in n inputs

`n : L× · · · ×L︸ ︷︷ ︸
n times

→ L[2− n]

such that the collection {`n}n∈N satisfy the conditions of an L∞ algebra. In particular, L is a sheaf
of L∞ algebras.

The simplest example of a local Lie algebra starts with the data of an ordinary Lie algebra g.
We can then take the constant bundle gX with fiber g. The Lie bracket on g extends to define
the structure of a local Lie algebra. In this case, the sheaf of Lie algebras is C∞

X ⊗ g. Another
important example of a local Lie algebra is given by the Lie algebra of vector fields Vect(X) on
a smooth manifold. The Lie bracket of vector fields is a bidifferential operator on the tangent
bundle and this equips the sheaf of sections with the structure of a sheaf of Lie algebras. We will
study the holomorphic version of this local Lie algebra in Chapter 4.

Just as in the case of an ordinary graded vector bundle, we can discuss local functionals on a
local Lie algebra L. In this case, the L∞ structure maps give this the structure of a sheaf of com-
plexes, providing a local version of the Chevalley-Eilenberg cochain complex. Indeed, the ∞-jet
bundle JL is an L∞ algebra object in DX-modules and so we can define the DX-module of re-
duced Chevalley-Eilenberg cochains C∗Lie,red(JL). Mimicking the definition above, we arrive at
the following local version of Lie algebra cohomology that will come up again and again in this
thesis.
Definition 2.1.9. Let L be a local Lie algebra. The local Chevalley-Eilenberg cochain complex is
the sheaf of cochain complexes

C∗loc(L) = DensX ⊗DX C∗Lie,red(L).

We denote the global sections by C∗loc(L(X)).

The local cohomology of a local Lie algebra is the cohomology of the local CE complex, which we
will denote H∗loc(L(X)).
Remark 2.1.10. We have already remarked that for a graded vector bundle E there is an embedding
Oloc(E) ↪→ Ored(E). This translates to an embedding of sheaves of cochain complexes C∗loc(L) ↪→
C∗Lie,red(Lc) for any local Lie algebra L. In the case of vector fields, there is a related cochain
complex that has been studied extensively in the context of characteristic classes of foliations
[Fuk86, Gui73, Los98, BR73]. Suppose, for simplicity, that X is a compact smooth manifold. If
Vect(X) is the Lie algebra of vector fields on X then the (reduced) diagonal cochain complex is the
subcomplex

C∗∆,red(Vect(X)) ⊂ C∗Lie,red(Vect(X))

consisting of cochains ϕ : Vect(X)⊗k → C satisfying ϕ(X1, . . . , Xk) = 0 if
⋂k

i=1 Supp(Xi) = ∅.
That is, the cocycle vanishes unless all of the supports of the inputs overlap nontrivially. The
inclusion of the local cochain complex C∗loc(Vect(X)) ⊂ C∗Lie,red(Vect(X)) factors through this
subcomplex to give a sequence of inclusions

C∗loc(Vect(X)) ↪→ C∗∆,red(Vect(X)) ↪→ C∗Lie,red(Vect(X)).

15



This is because the cochain of Vect(X) defined from a local cochain involves the integral of local
operators applied to the inputs.

It turns out that the definition of a classical field theory can be repackaged in terms of certain
structures on a local L∞ algebra. The first piece of data we need to transport to the L∞ side is that
of a symplectic pairing. The underlying data of a local L∞ algebra L is a graded vector bundle. In
Definition 2.1.6 we have already defined a k-shifted symplectic pairing. On the local Lie algebra
sign, we ask for k = −3 shifted symplectic structures that are also invariant for the L∞ structure
maps.

Also, an important part of a classical field theory is ellipticity. We say a local L∞ algebra is elliptic
if the complex (L, d = `1) is an elliptic complex.
Proposition 2.1.11. The following structures are equivalent:

1. a classical field theory in the BV formalism (E, ω, S);

2. an elliptic local Lie algebra structure on L = E[1] equipped with a (−3)-shifted symplectic pairing.

Proof. (Sketch) The underlying graded vector bundle of the space of fields E is E and we obtain
the bundle underlying the local L∞ algebra by shifting this down L = E[1]. The (−1)-shifted
symplectic structure on E transports to a (−3)-shifted on on L. The L∞ structure maps for L come
from the Taylor components of the action functional S. The exterior derivative of S is a section

dS ∈ C∗loc(L,L![−1]),

where on the right-hand side we have zero differential. The Taylor components are of the form
(dS)n : L⊗n → L![−1]. Using the shifted symplectic pairing we can identify these Taylor compo-
nents with maps (dS)n : L⊗n → L[2]. Thus, dS can be viewed as a section of C∗loc(L,L[2]). This is
precisely the space controlling deformations of L as a local Lie algebra. One checks immediately
that the classical master equation is equivalent to the fact that dS is a derivation, hence it deter-
mines the structure of a local Lie algebra. The first Taylor component `1 is precisely the operator
Q before, so ellipticity of (E, Q) is equivalent to ellipticity of (L, `1).

2.1.1.5 Deformation theory

There is a deep relationship to the way in which we formulate perturbative classical field theories
and deformation theory. We diverge a bit from our discussion of field theory to explain this.
Theorem 2.1.12. There is an equivalence (of ∞-categories) between the category of formal (pointed) moduli
problems and the category of dg Lie algebras.
Remark 2.1.13. Every L∞ algebra is equivalent (in a functorial way) to a dg Lie algebra. Often
times this theorem is formulated in terms of L∞ algebras.

The ideas of deformation theory leading up to this theorem have been developed by many in-
fluential mathematicians in the past forty years including Quillen, Deligne, Kontsevich, Drinfeld,
and Feigin. The modern formulation of the theorem above and its proof is due to Lurie [Lur11].
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By definition, a formal moduli problem over C (valued in simplicial sets) is a functor (of simplicially
enriched categories) of the form

F : dgArtC → sSets

where dgArtC is the category of dg Artin algebras. These are finite dimensional C-linear dg
algebras A concentrated in cohomological degrees ≤ 0 such that H0 A is Artinian in the usual
sense. One requires that F satisfies the following conditions:

1. F(C) ' ∗ (F is pointed);

2. F takes surjective maps of dg Artin algebras to fibrations of simplicial sets;

3. if A → B, C → B are maps of dg Artin algebras such that one of them is surjective on H0,
then F preserves the fiber product: F(A×B C) '−→ F(A)×F(B) F(C).

The most important way in which formal moduli problems arise is through the Maurer-Cartan
equation. Suppose g is an L∞ algebra (over C) and (R,m) a dg Artin algebra. Define the simplicial
set

MC(g⊗m) ∈ sSet

which assigns to an n-simplex the set of Maurer-Cartan elements α ∈ g⊗ m⊗ Ω∗(∆n). It is a
classical result that MC(g) : (A,m) 7→ MC(g⊗m) defines a formal moduli problem, see [Get09].
In fact, the functor g 7→ MC(g) is the one which provides the equivalence of the main theorem of
deformation theory above. Sometimes, we will use the notation Bg to denote this formal moduli
problem associated to g. Since a Maurer-Cartan element of g⊗m is equivalent to a map of com-
mutative dg algebras C∗Lie(g)→ A preserving the maximal ideals, we see that C∗Lie(g) is precisely
the space of functions on Bg.
Remark 2.1.14. There are many natural instances of formal moduli problems. For instance, if X
is any derived scheme then and x ∈ X is a point, then the formal neighborhood X∧x is a formal
moduli problem.

Local Lie algebras, as we’ve introduced above, provide a natural ”sheafy” version of dg Lie, or
L∞, algebras over smooth manifolds. If L is a local Lie algebra on a manifold X, then for each
open U ⊂ X one can define the Maurer-Cartan space B(L(U))(A) = MC(L(U) ⊗ m) just as
above. This defines a (homotopy) sheaf of formal moduli problems on X. Motivated by the
ordinary case we can make the following definition.
Definition 2.1.15. An elliptic moduli problem is a sheaf of formal moduli problems represented by
an elliptic L∞ algebra L.

According the previous section, we see that a classical theory in the BV formalism is simply a
elliptic moduli problem that is equipped with the data of a shifted symplectic pairing.

2.1.2 Quantum field theory

We now recall the notion of a quantum field theory in the BV formalism. We follow the effective
approach defined by Costello in [Cos11].
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2.1.2.1 Regularization

We have seen that part of the data of a classical field theory is that of a (−1)-shifted symplectic
structure on the space of fields. If E is the graded vector bundle underlying the theory, the sym-
plectic form determined an isomorphism of bundles E ∼= E![−1]. We can represent the inclusion
Ec ↪→ E via its integral kernel K0 ∈ E⊗ E

!. Using the symplectic pairing this is further identified
with an element

K0 ∈ E⊗ E[−1].

That is, K0 is a degree one element in E⊗ E. The naı̈ve BV Laplacian ∆ = ∆K0 is ill-defined acting
on functions on E, O(E). The point of regularization is to find a replacement for this operator.

The first step in regularization is to find a replacement of K0 as a smooth, i.e. non-distributional,
section in the tensor product E⊗ E. This is a reasonable thing to ask, since by ellipticity we know
that the inclusion E⊗ E ↪→ E⊗ E is a quasi-isomorphism. So, we can replace K0 by such a smooth
section up to homotopy. We refer to this as a regularization of the kernel.

We use a systematic way of regularization using heat kernels, which can be found in [Cos11] or
Chapter 8 of [CG]. First, we fix the following data, that of a gauge fixing operator. This is an
operator

QGF : E→ E[−1]

of cohomological degree −1. We require that D = [Q, QGF] is a generalized Laplacian acting on
sections E in the sense of [BGV04], in addition to other conditions that can be found in Definition
5.4.0.5 in [CG].

The utility of introducing the gauge fixing operator is that it allows us to introduce the operator
e−tD which has a kernel that we denote Kt ∈ E⊗ E for any t ≥ 0. This kernel satisfies the usual
conditions of a heat kernel:

1. Kt satisfies the heat equation
∂

∂t
Kt + DKt = 0

2. K0 is the kernel for the identity operator as above.

Moreover, when t > 0 the operator e−tD is smoothing so that Kt ∈ E⊗ E ⊂ E⊗ E.

The point of introducing this heat kernel is that it provides a regularization of K0. Indeed, for any
ε, L ≥ 0 introduce the propagator

Pε<L =
∫ L

t=ε
(QGF ⊗ 1)Ktdt ∈ E⊗ E.

Then, one immediately checks that

KL − Kε = QPε<L,

so that Pε<L is a homotopy between KL and Kε. In particular, P0<L provides a homotopy between
the identity kernel K0 and KL.
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Definition 2.1.16. The scale L > 0 BV Laplacian is the order two operator

∆L = ∂KL : O(E)→ O(E)

given by contraction with the kernel KL ∈ E⊗ E.

We have already mentioned that the bracket {−,−} is not defined on the whole space of func-
tionals. The regularized BV operator allows us to define the following scale L bracket:

{I, J}L := ∆L(I J)− ∆L(I)J − (−1)|I| I∆L(J).

For L > 0 this bracket is defined on all of O(E), just as ∆L is.

2.1.2.2 Effective BV quantization

Fix a free BV theory together with a gauge fixing operator. This is the data of an elliptic complex
(E, Q) with a (−1)-shifted symplectic form ω. In addition, let QGF be a gauge fixing operator so
that the regularized heat kernels KL and propagators Pε<L are defined.

We introduce the formal variable h̄ and consider h̄-dependent functionals O(E)[[h̄]]. Let O+(E)[[h̄]] ⊂
O(E)[[h̄]] be the subset of functionals that are at least cubic modulo h̄. We define a map

W(Pε<L,−) : O+(E)[[h̄]]→ O+(E)[[h̄]],

renormalization group flow. Formally, W(Pε<L, I) is defined by the formula

eW(Pε<L ,I)/h̄ = eh̄∂Pε<L eI/h̄.

Concretely, W(Pε<L, I) can be written as a sum over graphs Γ

W(Pε<L, I) = ∑
Γ

h̄g(Γ)

|Aut(Γ)|WΓ(Pε<L, I),

where WΓ(Pε<L, I) is the weight of the graph Γ whose edges are labeled by Pε<L and vertices
labeled by I. This is our mathematical definition of the Feynman weight of the graph Γ, and the
precise definition can be found in Chapter 2 of [Cos11].

In the BV formalism, as developed in [Cos11, CG17, CG], one has the following definition of a
quantum field theory.
Definition 2.1.17. A quantum field theory in the BV formalism consists of a free BV theory (E, Q, ω)

and an effective family of functionals

{I[L]}L∈(0,∞) ⊂ O+
P,sm(E)[[h̄]]

that satisfy:

(a) the exact renormalization group (RG) flow equation

I[L′] = W(PL<L′ , I[L]);
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(b) the scale L quantum master equation (QME) at every length scale L:

(Q + h̄∆L)eI[L]/h̄ = 0.

Equivalently,

QI[L] + h̄∆L I[L] +
1
2
{I[L], I[L]}L = 0;

(c) as L→ 0, the functional S[L] has an asymptotic expansion that is local.

The subspace O+
P,sm(E)[[h̄]] ⊂ O(E)[[h̄]] is the one of smooth and proper functionals that are at

least cubic modulo h̄. Smooth and properness is a technical condition that we will not delve into
in this section, but refer to the original reference of Costello-Gwilliam.

Condition (a) ensures that the scale L action functional S[L] determines the functional at every
other scale. Condition (b) can be interpreted as saying that we have a proper path integral mea-
sure at scale L (i.e., the QME can be seen as a definition of the measure). Finally, condition (c)
implies that the effective action is a quantization of a classical field theory, since a defining prop-
erty of a classical theory is that its action functional is local. (A full definition is available in
Section 8.2 of [CG].)
Remark 2.1.18. The length scale is often associated with a choice of Riemannian metric on the
underlying manifold, but the formalism of [Cos11] keeps track of how the space of quantum BV
theories depends upon such a choice (and other choices that might go into issues like renormal-
ization). Hence, when the choices should not be essential — such as with a topological field
theory — one can typically show rigorously that different choices give equivalent answers. The
length scale is also connected with the use of heat kernels in [Cos11], but one can work with more
general parametrices (and hence more general notions of “scale”), as explained in Chapter 8 of
[CG]. We use a natural length scale in this section; when it becomes relevant, in the context of
factorization algebras, one must switch to general parametrices.

The locality condition ensures that the limit Icl = limL→0 I[L] mod h̄ exists and is a local func-
tional. The QME modulo h̄ implies that Icl satisfying the CME, so that (E, Q, ω, Icl) defines a
classical theory in the BV formalism.

2.1.2.3 Deformation theory for quantizations

There is a well-established deformation theory for studying quantizations of a fixed classical field
theory. If (E, Q, ω, I) is a fixed classical theory, one would like to study the problem of finding
quantizations which modulo h̄ are equal to this classical theory.

According to the definition of a QFT there are two main steps.

1. Find an effective family {I[L]} which, modulo h̄, agrees with the classical theory I, and
satisfies the RG flow equation. The main result of [Cos11] is that this step always has a
solution. Naively, the proposed family is of the form I[L] = W(P0<L, I), but since P0<L is
distributional this functional may not be well-defined. (This is the problem of UV diver-
gence in QFT) The key fact is that there exists a family of counterterms ICT(ε) ∈ O(E)[[h̄]]
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such that the limit
I[L] = lim

ε→0
W(Pε<L, I − ICT(ε))

does exist. Moreover, it automatically satisfies the RG flow equation.

2. Once we have the effective family {I[L]}, the remaining condition to defining a QFT is the
quantum master equation. In general this equation is not satisfied, and there may in fact be
obstructions to having a solution.

For holomorphic theories we will study both problems above. We will show that the analysis
involved in renormalization for holomorphic theories is extremely well-behaved. In fact, the
counterterms for holomorphic theories on Cd can be taken to be zero. Using this, we will show
how solving the QME for holomorphic theories can be done a systematic way.

To study the problem of solving the quantum master equation in general, we work order by order
in the formal parameter h̄. Suppose that I[L] is defined modulo h̄n+2 and sastisfies the QME
modulo h̄n+1. The obstruction to satisfying the QME at scale L modulo h̄n+2 is the functional

Θn+1[L] = h̄−n−1(QI[L] +
1
2
{I[L], I[L]}L + h̄∆L).

The obstruction Θ[L] satisfies the classical master equation and hence the limit Θn+1 = limL→0 Θ[L]
is a local functional and is closed for the differential Q + {I,−}. It is thus a closed element of de-
gree one of the deformation complex

DefE = (Oloc(E), Q + {I,−}) .

If Θn+1 is cohomologically trivial in H1(DefE), the space of possible lifts of {I[L]} to a solution of
the QME modulo h̄n+2 is a torsor for H0(DefE).

2.2 Holomorphic field theories

The goal of this section is to define the notion of a holomorphic field theory. This is a variant of
Costello’s definition of a BV theory, see the previous section, and we will take for granted that the
reader is familiar with the general format. In summary, we modify the definition of a theory by
inserting the word “holomorphic” in front of most objects (bundles, differential operators, etc..).
By applying the Dolbeault complex in appropriate locations, we will recover Costello’s definition
of a theory, but with a holomorphic flavor, see Table 2.1.

There are many references in the physics literature to codify the concept of a holomorphic field
theory. See, most closely related to our approach, special cases of this in the work of Nekrasov
and collaborators in [Nek96, LMNS97, LMNS96]. We will discuss in more detail the relationship
of our analysis of holomorphic theories to this work in Chapters 3 and 4.
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2.2.1 The definition of a holomorphic theory

We give a general definition of a classical holomorphic theory on a general complex manifold X
of complex dimension d. We start with the definition of a free holomorphic field theory. After that
we will go on to define what an interacting holomorphic theory is.

2.2.1.1 Free holomorphic theories

The fields of any theory are always expressed as sections of some Z-graded vector bundle. Here,
the Z-grading is the cohomological, or BRST, grading of the theory. For a holomorphic theory
we take this graded vector bundle to be holomorphic. By a holomorphic Z-graded vector bundle
we mean a Z-graded vector bundle V = ⊕iVi such that each graded piece Vi is a holomorphic
vector bundle. Thus, the data we start with is the following:

(1) a Z-graded holomorphic vector bundle V∗ = ⊕iVi[−i], so that the finite dimensional holo-
morphic vector bundle Vi is in cohomological degree i.

A free classical theory is made up of a space of fields as above together with the data of a lin-
earized BRST differential QBRST and a symplectic pairing. Ordinarily, the BRST operator is a
differential operator on the vector bundle defining the fields. For the class of theories we are
considering, we want this operator to be holomorphic.

If E and F are two holomorphic vector bundles on X, we can speak of holomorphic differential
operators between E and F. First, note that the Hom-bundle Hom(E, F) inherits a natural holo-
morphic structure. By definition, a holomorphic differential operator of order m is a linear map

D : Γhol(X; E)→ Γhol(X; F)

such that, with respect to a holomorphic coordinate chart {zi} on X, D can be written as

D|{zi} = ∑
|I|≤m

aI(z)
∂|I|

∂zI
(2.6)

where aI(z) is a local holomorphic section of Hom(E, F). Here, the sum is over all multi-indices
I = (i1, . . . , id) and

∂|I|

∂zI
:=

d

∏
k=1

∂ik

∂zik
k

.

The length is defined by |I| := i1 + · · ·+ id.
Example 2.2.1. The most basic example of a holomorphic differential operator is the ∂ operator for
the trivial vector bundle. For each 1 ≤ ` ≤ d = dimC(X), it is a holomorphic differential operator
from E = ∧`T1,0∗X to F = ∧`+1T1,0∗X which on sections is

∂ : Ω`,hol(X)→ Ω`+1,hol(X).

Locally, of course, it has the form

∂ =
d

∑
i=1

(dzi ∧ (−)) ∂

∂zi
,
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where dzi ∧ (−) is the vector bundle homomorphism ∧`T1,0∗X → ∧`+1T1,0∗X sending α 7→
dzi ∧ α.

The next piece of data we fix is:

(2) a square-zero holomorphic differential operator

Qhol : Vhol → Vhol

of cohomological degree +1. Here Vhol denotes the holomorphic sections of V.

Finally, to define a free theory we need the data of a symplectic pairing. For reasons to become
clear in a moment, we must choose this pairing to have a strange cohomological degree. The last
piece of data we fix is:

(3) an invertible bundle map
(−,−)V : V ⊗V → KX [d− 1]

Here, KX is the canonical bundle on X.

The definition of the fields of an ordinary field theory are the smooth sections of the vector bundle
V. In our situation this is a silly thing to do since we lose all of the data of the complex structure we
used to define the objects above. The more natural thing to do is to take the holomorphic sections
of the vector bundle V. By construction, the operator Qhol and the pairing (−,−)V are defined on
holomorphic sections, so on the surface this seems reasonable. We will take a natural resolution
of holomorphic sections in order to relate to the usual definition of a classical BV theory.

Given any holomorphic vector bundle V we can define its Dolbeault complex Ω0,∗(X, V) with its
Dolbeault operator

∂ : Ω0,p(X, V)→ Ω0,p+1(X, V).

Here, Ω0,p(X, V) denotes smooth sections of the vector bundle
∧p T0,1∗X ⊗ V. The fundamental

property of the Dolbeault complex is that it provides a resolution for the sheaf of holomorphic
sections Vhol ' Ω0,∗

X (V).

We now take a graded holomorphic vector bundle V as above, equipped with the differential
operator Qhol . We can then define the totalization of the Dolbeault complex with the operator
Qhol :

EV =
(

Ω0,∗(X, E), ∂ + Qhol
)

.

The operator ∂+ Qhol will be the linearized BRST operator of our theory. By assumption, we have
∂Qhol = Qhol∂ so that (∂+ Qhol)2 = 0 and hence the fields still define a complex. The (−1)-shifted
symplectic pairing is obtained by composition of the pairing (−,−)V with integration on Ωd,hol

X .
The thing to observe here is that (−,−)V extends to the Dolbeault complex in a natural way: we
simply combine the wedge product of forms with the pairing on V. The (−1)-shifted pairing ωV
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on E is defined by the diagram

EV ⊗ EV
(−,−)V

//

ωV
((

Ω0,∗(X, KX)[d− 1]∫
X
��

C[−1].

We note that the top Dolbeault forms with values in the canonical bundle KX are precisely the top
forms on the smooth manifold X, so integration makes sense.

We arrive at the following definition.
Definition/Lemma 1. A free holomorphic theory on a complex manifold X is the data (V, Qhol , (−,−)V)

as in (1), (2), (3) above such that Qhol is a square zero elliptic differential operator that is graded
skew self-adjoint for the pairing (−,−)V . The triple (EV , QV = ∂ + Qhol , ωV) defines a free BV
theory in the usual sense.

The usual prescription for writing down the associated action functional holds in this case. If
ϕ ∈ Ω0,∗(X, V) denotes a field the action is

S(ϕ) =
∫

X

(
ϕ, (∂ + Qhol)ϕ

)
V

.

The first example we explain is related to the subject of Chapter 3 and will serve as the funda-
mental example of a holomorphic theory.
Example 2.2.2. The free βγ system. Suppose that

V = C⊕ KX [d− 1].

Let (−,−)V be the pairing

(C⊕ KX)⊗ (C⊕ KX)→ KX ⊕ KX → KX

sending (λ, µ) ⊗ (λ′, µ′) 7→ (λµ′, λ′µ) 7→ λµ′ + λ′µ. In this example we set Qhol = 0. One
immediately checks that this is a holomorphic free theory as above. The space of fields can be
written as

EV = Ω0,∗(X)⊕Ωd,∗(X)[d− 1].

We write γ ∈ Ω0,∗(X) for a field in the first component, and β ∈ Ωd,∗(X)[d− 1] for a field in the
second component. The action functional reads

S(γ + β, γ′ + β′) =
∫

X
β ∧ ∂γ′ + β′ ∧ ∂γ.

When d = 1 this reduces to the ordinary chiral βγ system from conformal field theory. The
βγ system is a bosonic version of the ghost bc system that appears in the quantization of the
bosonic string, see Chapter 6 of [Pol98]. We will study this higher dimensional version further in
Chapter 3. For instance, we will see how this theory is the starting block for constructing general
holomorphic σ-models.
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Of course, there are many variants of the βγ system that we can consider. For instance, if E is any
holomorphic vector bundle on X we can take

V = E⊕ KCd ⊗ E∨

where E∨ is the linear dual bundle. The pairing is constructed as in the case above where we
also use the evaluation pairing between E and E∨. In thise case, the fields are γ ∈ Ω0,∗(X, E) and
β ∈ Ωd,∗(X, E∨)[d− 1]. The action functional is simply

S(γ, β) =
∫

evE(β ∧ ∂γ).

When E is a tensor bundle of type (r, s) this theory is a bosonic version of the bc ghost system
of spin (r, s). For a general bundle E we will refer to it as the βγ system with coefficients in the
bundle E.
Remark 2.2.3. We will only work with a holomorphic theory prescribed by the data (V, (−,−)V , Qhol)

through its associated BV theory. One might propose a definition of a BV theory in the analytic
category based off of holomorphic sections of holomorphic vector bundles. There are numerous
technical reason why this approach fails in our approach to QFT. In particular, the sheaf of holo-
morphic sections of a holomorphic bundle is not fine, and there do not exists partitions of unity
in general.

2.2.1.2 Interacting holomorphic theories

We now define what an interacting holomorphic theory is. In general, an interacting field theory
on a manifold M is prescribed by the data of a free theory plus a local functional I ∈ Oloc(E) that
satisfies the classical master equation. Recall, the sheaf of local functionals on E = Γ(E) is defined
as the sheaf of Lagrangian densities

Oloc(E) = DensM ⊗DM Ored(JE).

In the expression above JE stands for the sheaf of smooth sections of the ∞-jet bundle Jet(E)
which has the structure of a DX-module.

If V is a holomorphic vector bundle we can define the bundle of holomorphic ∞-jets Jethol(V),
[GG80, CW04]. This is a pro-vector bundle that is holomorphic in a natural way. The fibers of this
infinite rank bundle Jethol(V) are isomorphic to

Jethol(V)|w = Vw ⊗C[[z1, . . . , zd]]

where w ∈ X and where {zi} is the choice of a formal coordinate near w. We denote by JholV
denote the sheaf of holomorphic sections of this jet bundle. The sheaf JholV has the structure of a
Dhol

X -module, that is, it is equipped with a holomorphic flat connection ∇hol . This is completely
analogous to the smooth case. Locally, the holomorphic flat connection is of the form

∇hol |w =
d

∑
i=1

dwi

(
∂

∂wi
− ∂

∂zi

)
,
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where {wi} is the local coordinate on X near w and zi is the fiber coordinate labeling the holo-
morphic jet expansion. Using holomorphic jets we can make a completely analogous definition
in our setting.

Differential operators between holomorphic bundles are the same as bundle maps between the
associated jet bundles. Suppose V, W are holomorphic vector bundles with spaces of holomorphic
sections given by Vhol ,Whol respectively. Then we can express polydifferential operators from V
to W as

PolyDiffhol(Vhol × · · · × Vhol ,Whol) ∼= Hom(Jethol(V)⊗ . . .⊗ Jethol(V), W).

Definition 2.2.4. Let V be a vector bundle. The space of holomorphic Lagrangian densities on V is

Ohol
red(V) = ∏

n>0
Hom(Jethol(V)⊗n, KX)Sn ,

where Hom is taken in the category of holomorphic vector bundles.2 Equivalently, a holomor-
phic Lagrangian density is of the form F = ∑n Fn ∈ Ohol

red(V) where each Fn is a holomorphic
polydifferential operator

Fn : Vhol × · · · × Vhol → Ωd,hol
X .

Suppose that V is part of the data of a free holomorphic theory (V, Qhol , (−,−)V). The pairing
(−,−)V endows the space of holomorphic Lagrangians with a sort of bracket. Indeed, suppose
F, F′ ∈ Ohol

red(V). For simplicity suppose F, F′ are of homogenous symmetric degree k, k′ respec-
tively. Then, their product F⊗ F′ is an element in the homomorphism space

Hom(Jethol(V)⊗(k+k′), KX ⊗ KX).

Now, the bundle map (−,−)V : V ⊗V → KX [d− 1] is invertible, hence it determines an element
(−,−)−1

V ∈ V ⊗V ⊗ K∗X , where K∗X is the dual bundle. We can then consider the composition

Hom(Jethol(V)⊗n, KX ⊗ KX)
(−,−)−1

V // Hom(Jethol(V)⊗(k+k′−2), K∗X ⊗ KX ⊗ KX) // Hom(Jethol(V)⊗(k+k′−2), KX).

In the first arrow we have evaluated (−,−)−1
V on the first two factors and the second arrow is sim-

ply the evaluation pairing. We symmetrize this to obtain an element {F, F′}hol ∈ Symk+k′−2(Jethol(V)⊗n, KX)Sk+k′−2
.

In this way, we have produced a map

{−,−}hol : Ohol
red(V)×Ohol

red(V)→ Ohol
red(V)[d− 1].

Note that this bracket is of cohomological degree −d + 1.

We can now state the definition of a classical holomorphic theory.
Definition 2.2.5. A classical holomorphic theory on a complex manifold X is the data of a free holo-
morphic theory (V, Qhol , (−,−)V) plus a functional

Ihol ∈ ∏
n≥3

Hom(Jethol(V)⊗n, KX)Sn ⊂ Ohol
red(V)

of cohomological degree d such that Qhol Ihol + 1
2{Ihol , Ihol}hol = 0.

2The holomorphic vector bundle Jethol(V) is infinite dimensional and can be expressed as a pro-object in the category
of holomorphic vector bundles. We require the bundle maps to be continuous with respect to the natural adic topology.
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Holomorphic theory BV theory

Holomorphic bundle V Space of fields EV = Ω0,∗(X, V)

Holomorphic differential operator Qhol Linear BRST operator ∂ + Qhol

Non-degenerate pairing (−,−)V (−1)-symplectic structure ωV

Holomorphic Lagrangian Ihol Local functional IΩ0,∗ ∈ Oloc(EV)

Table 2.1: From holomorphic to BV

Just as in the free case, we see that classical holomorphic theories define ordinary classical BV
theories with interactions. The underlying space of fields, as we have already seen is EV =

Ω0,∗(X, V). We will write Ihol = ∑k Ihol
k where Ihol

k is symmetric degree k. Now, we know that Ihol
k

is a Ωd,hol
X -valued functional of the form

Ihol
k : (ϕ1, . . . , ϕk) 7→ D1(ϕ1) · · ·Dk(ϕk) ∈ Ωd,hol

X

where ϕi ∈ V = Γhol(X, V) and Di is a holomorphic differential operator on V. Every holomorphic
differential operator on the holomorphic vector bundle V extends to a differential operator on its
Dolbeault complex EV = Ω0,∗(X, V). Thus, we can define the functional

IΩ0,∗
k : (ϕ1, . . . , ϕk) 7→

∫
D1(ϕ1) · · ·Dk(ϕk)

where, now ϕi is a section of the Dolbeault complex Ω0,∗(X, V). The symbol
∫

reminds us that
we are working modulo total derivatives, so that the above expression defines an element of
Oloc(EV). This defines a linear map Ohol

loc(V) → Oloc(EV) that we denote Ihol 7→ IΩ0,∗
. Note that

since Ihol is cohomological degree d, the local functional IΩ0,∗
is degree zero.

Lemma 2.2.6. Every classical holomorphic theory (V, Qhol , (−,−)V , Ihol) determines the structure of a
classical BV theory. The underlying free BV theory is given in Definition/Lemma 1 (EV , Q, ωV) and the
interaction is IΩ0,∗

.

Proof. We must show that Qhol Ihol + 1
2{Ihol , Ihol}hol = 0 implies the ordinary classical master

equation for IΩ0,∗
:

∂IΩ0,∗
+ Qhol IΩ0,∗

+
1
2
{IΩ0,∗

, IΩ0,∗} = 0.

Since IΩ0,∗
is defined using holomorphic differential operators, the first term vanishes. The fact

that Qhol Ihol + 1
2{Ihol , Ihol}hol = 0 implies Qhol IΩ0,∗

+ 1
2{IΩ0,∗

, IΩ0,∗} = 0 follows immediately
from our definitions.

Table 2.1 is a useful summary showing how we are producing a BV theory from a holomorphic
theory.
Example 2.2.7. Holomorphic BF-theory Let g be a Lie algebra and X any complex manifold. Consider
the following holomorphic vector bundle on X:

V = gX [1]⊕ KX ⊗ g∗[d− 2].
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The notation gX denotes the constant bundle with fiber g. The pairing V ⊗ V → KX [d − 1] is
similar to the pairing for the βγ system, except we use the evaluation pairing 〈−.−〉g between g

and its dual. In this example, Qhol = 0. Write f ∈ Ohol
X and β ∈ KX and consider

Ihol( f1 ⊗ X1, f2 ⊗ X2, β⊗ X∨) = f1 f2β〈X∨, [X1, X2]〉g + · · ·

where the · · · means that we symmetrize the inputs. This defines an element Ihol ∈ Ohol
loc(V)+ and

the Jacobi identity ensures {Ihol , Ihol}hol = 0. The fields of the corresponding BV theory are

EV = Ω0,∗(X, g)[1]⊕Ωd,∗(X, g∗)[d− 2].

The induced local functional IΩ0,∗
on EV is

IΩ0,∗
(α, β) =

∫
X
〈β, [α, α]〉g.

The total action is S(α, β) =
∫
〈β, ∂α〉+ 〈β, [α, α]〉g. This is formally similar to BF theory (see be-

low) and for that reason we refer to it as holomorphic BF theory. The moduli problem this describes
is the cotangent theory to the moduli space of holomorphic connections on the trivial G-bundle
near the trivial bundle. There is an obvious enhancement that works near any holomorphic prin-
cipal bundle. When d = 2, in [Joh94a], or for a more mathematical treatment see [Cosb], it is
shown that this theory is a twist of N = 1 supersymmetric Yang-Mills on R4.
Example 2.2.8. Topological BF-theory This is a deformation of the previous example that has ap-
peared throughout the physics literature. Suppose we take as our graded holomorphic vector
bundle

V =
(
gX ⊗

(
⊕d

k=0 ∧
k T∗1,0X[1− k]

))
⊕
(
g∗X ⊗

(
⊕d

k=0 ∧
k T∗1,0X[2(d− 1)− k]

))
.

Here ∧0T∗1,0X is understood as the trivial bundle CX . The pairing is given by combining the
evaluation pairing between g and g∗ and taking the wedge product and projecting onto the com-
ponents isomorphic to KX . Explicitly, the pairing is equal to the sum of bundle maps of the form

evg ⊗∧ :
(
gX ⊗∧

kT∗1,0X[1− k]
)
⊗
(
g∗X ⊗∧

d−kT∗1,0X[d− 1 + k]
)
→ KX [d− 1].

The differential is of the form
Qhol = idg ⊗ ∂ + idg∗ ⊗ ∂,

where ∂ is the holomorphic de Rham differential. The holomorphic interaction is given by com-
bining the Lie algebra structure on g with the wedge product of the holomorphic bundles∧kT∗1,0X.
We observe that the associated BV theory has classical space of fields given by

(A, B) ∈ EV = Ω∗(X, g[1]⊕ g∗[2d− 2])

where Ω∗ is now the full de Rham complex. The action functional is

S =
∫

X
〈B, dA〉g +

1
3
〈B, [A, A]〉g.

As above, 〈−,−〉g denotes the pairing between g and its dual. This is the well-known topological
BF theory on the even dimensional real manifold X (of real dimension 2d). It might seem silly that
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we have used the formalism of holomorphic field theory to describe a very simple topological
theory. We will discuss advantages of this approach at the send of the next section. In particular,
the theory of regularization for holomorphic theories we will employ has peculiar consequences
for renormalizing certain classes of topological theories such as Topological BF theory.

When we construct a BV theory from a holomorphic theory V  EV it is natural to expect that
deformations of the theory must come from holomorphic data. In the special case that Qhol = 0
we have the following result which relates the deformation complex of the classical theory EV to
a sheaf built from holomorphic differential operators.
Lemma 2.2.9. Suppose (V, 0, (−,−)V , Ihol) is the data of a holomorphic theory with Qhol = 0. Let
(EV , Q = ∂, ωV , I) be the corresponding BV theory. Then, there is a quasi-isomorphism of sheaves

DefEV ' Ωd,hol
X ⊗L

Dhol
X

Ored(JholV)[d]

that is compatible with the brackets and {−,−} and {−,−}hol on both sides.

Proof. This follows from the following observation about D-modules. If M is a holomorphic Dhol
X -

module, then clearly it forgets down to an ordinary smooth DX-module that we denote MC∞
.

Moreover, there is a quasi-isomorphism of D-modules

Ωd,d
X ⊗

L
DX

MC∞ ' Ωd,hol
X ⊗Dhol

X
M[d].

We apply this to the case M = Ored(JholV), where V is a holomorphic vector bundle. To com-
plete the proof, we need to show that for any holomorphic vector bundle V that there is a quasi-
isomorphism of DX-modules between Ored(JΩ0,∗(X, V)) and Ored(JholV). For this, it suffices to
show that the space of linear functionals are quasi-ismorphic. For any vector bundle E there al-
ways exists a (non-canonical) splitting JE ∼= E⊗C∞

X
JX , where E is the sheaf of sections and JX is

the sheaf of ∞-jets of the trivial bundle. Thus, we can assume that V is the trivial vector bundle,
where the claim is now (JΩ0,∗(X))∨ ' (Jhol

X )∨. Both sides are quasi-isomorphic to the smooth
sections of the bundle of holomorphic differential operators Dhol , so we are done.

Remark 2.2.10. Just as in the ordinary case we can formulate the data of a classical holomorphic
theory in terms of sheaves of L∞ algebras. We will not do that here, but hope the idea of how to
do so is clear.

2.2.2 Holomorphically translation invariant theories

When working on affine space Rn one can ask for a theory to be invariant with respect to trans-
lations. In this section, we consider the affine manifold Cd = R2d equipped with its standard
complex structure and define what a holomorphically translation invariant theory is on it. It will be
a very special case of a general holomorphic theory as defined above.

Let V be a holomorphic vector bundle on Cn and suppose we fix an identification of bundles

V ∼= Cd ×V0
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where V0 is the fiber of V at 0 ∈ Cd. We want to consider a classical theory with space of fields
given by Ω0,∗(Cd, V) ∼= Ω0,∗(Cd) ⊗C V0. Moreover, we want this theory to be invariant with
respect to the group of translations on Cd. Per usual, it is best to work with the corresponding Lie
algebra of translations. Using the complex structure, we choose a presentation for the complex
Lie algebra of translations given by

C2d ∼= spanC

{
∂

∂zi
,

∂

∂zi

}
1≤i≤d

.

To define a theory, we need to fix a non-degenerate pairing on V. Moreover, we want this to be
translation invariant. So, suppose

(−,−)V : V ⊗V → KCd [d− 1] (2.7)

is a skew-symmetric bundle map that is equivariant for the Lie algebra of translations. The shift
is so that the resulting pairing on the Dolbeault complex is of the appropriate degree. Here,
equivariance means that for sections v, v′ we have

(
∂

∂zi
v, v′)V = L∂zi

(v, v′)V

where the right-hand side denotes the Lie derivative applied to (v, v′)V ∈ Ωd,hol
Cd . There is a similar

relation for the anti-holomorphic derivatives. We obtain a C-valued pairing on Ω0,∗
c (Cd, V) via

integration: ∫
Cd
◦(−,−)V : Ω0,∗

c (Cd, V)⊗Ω0,∗
c (Cd, V)

∧·(−,−)V−−−−−→ Ωd,∗(Cd)

∫
−→ C. (2.8)

The first arrow is the wedge product of forms combined with the pairing on V. The second arrow
is only nonzero on forms of type Ωd,d. Clearly, integration is translation invariant, so that the
composition is as well.

The pairing (2.8) together with the differential ∂ are enough to define a free theory. However,
it is convenient to consider a slightly generalized version of this situation. We want to allow
deformations of the differential ∂ on Dolbeault forms of the form

Q = ∂ + Qhol

where Qhol is a holomorphic differential operator of the form

Qhol = ∑
I

∂

∂zI µI (2.9)

where I is some multi-index and µI : V → V is a linear map of cohomological degree +1. Note
that we have automatically written Qhol in a way that it is translation invariant. Of course, for
this differential to define a free theory there needs to be some compatibility with the pairing on
V.

We can summarize this in the following definition, which should be viewed as a slight modifica-
tion of a free theory to this translation invariant holomorphic setting.
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Definition 2.2.11. A holomorphically translation invariant free BV theory is the data of a holomorphic
vector bundle V together with

1. an identification V ∼= Cd ×V0;

2. a translation invariant skew-symmetric pairing (−,−)V as in (2.7);

3. a holomorphic differential operator Qhol as in (2.9);

such that the following conditions hold

1. the induced C-valued pairing
∫
◦(−,−)V is non-degenerate;

2. the operator Qhol satisfies (∂ + Qhol)2 = 0 and is skew self-adjoint for the pairing:∫
(Qholv, v′)V = ±

∫
(v, Qholv′).

The first condition is required so that we obtain an actual (−1)-shifted symplectic structure on
Ω0,∗(Cd, V). The second condition implies that the derivation Q = ∂ + Qhol defines a cochain
complex

EV =
(

Ω0,∗(Cd, V), ∂ + Qhol
)

,

and that Q is skew self-adjoint for the symplectic structure. Thus, in particular, EV together with
the pairing define a free BV theory in the ordinary sense. In the usual way, we obtain the action
functional via

S(ϕ) =
∫
(ϕ, (∂ + Qhol)ϕ)V .

Before going further, we will give a familiar example from the last section.
Example 2.2.12. The free βγ system on Cd. Consider the βγ system with coefficients in any holo-
morphic vector bundle from Example 2.2.2 (and the remarks after it) specialized to the manifold
X = Cd. One immediately checks that this is a holomorphically translation invariant free theory.

2.2.2.1 Translation invariant interactions

Let’s fix a general free holomorphically translation invariant theory (V, (−,−)V , Qhol) as above.
We now define what a holomorphically translation invariant interacting theory is. Recall, trans-
lations span a 2d-dimensional abelian Lie algebra C2d = C

{
∂

∂zi
, ∂

∂zi

}
. The first condition that an

interaction be holomorphically translation invariant is that it be translation invariant, so invariant
for this Lie algebra. The additional condition is a bit more involved.

Let ηi denote the operator on Dolbeault forms given by contraction with the antiholomorphic
vector field ∂

∂zi
. Note that ηi acts on the Dolbeault complex on Cd with values in any vector

bundle. In particular it acts on the fields of a free holomorphically translation invariant theory as
above, in addition to functionals on fields.
Definition 2.2.13. A holomorphically translation invariant local functional is a translation invariant
local functional I ∈ Oloc(EV)

C2d
such that ηi I = 0 for all 1 ≤ i ≤ d.
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There is a succinct way of expressing holomorphic translation invariance as the Lie algebra in-
variants of a certain dg Lie algebra. Denote by Cd[1] the abelian d-dimensional graded Lie algebra
in concentrated in degree −1 by the elements {ηi}. We want to consider deformations that are
invariant for the action by the total dg Lie algebra C2d|d = C2d ⊕ Cd[1]. The differential sends
ηi 7→ ∂

∂zi
. The space of holomorphically translation invariant local functionals are denoted by

Oloc(EV)
C2d|d

. The enveloping algebra of C2d|d is of the form

U(C2d|d) = C

[
∂

∂zi
,

∂

∂zi
, ηi

]
with differential induced from that in C2d|d. Note that this algebra is quasi-isomorphic to the
algebra of constant coefficient holomorphic differential operators C[∂/∂zi]

'−→ U(C2d|d).

Any translation invariant local functional is a sum of functionals of the form

ϕ 7→
∫

Cd
F(D1 ϕ, . . . , Dk ϕ)

where F : V⊗k → C · ddz is a linear map and each Dα is an operator in the space

C

[
dzi,

∂

∂zi
,

∂

∂zi
, ηi

]
.

The condition ηi I = 0 means that none of the Di’s have any dzj-dependence. Using this descrip-
tion we can exhibit the space of holomorphically translation functionals as follows. Note that if E
is any vector bundle on Cd we can consider the fiber at zero of its jet bundle that we denote J0E.
Lemma 2.2.14. Let V be a holomorphic vector bundle on Cd and denote EV = Ω0,∗(X, V). Then

Oloc(EV)
C2d|d ∼= C · ddz⊗U(C2d|d) Ored(J0EV)

where EV is the vector bundle on Cd such that EV = Γ(EV).

This description of holomorphically translation invariant local functionals allows us to give a con-
venient description of deformations of holomorphically translation invariant theories. Suppose
(V, Qhol , (−,−)V , I) be the data of an interacting holomorphically translation invariant theory on
Cd. We have already encountered the space of local functionals Oloc(EV) and the deformation
complex of the interacting BV theory is

DefEV =
(
Oloc(EV), ∂ + Qhol + {I,−}

)
.

We’d like to characterize deformations that preserve holomorphically translation invariance.

Recall that in the holomorphic case there is the holomorphic jet bundle JholV. The fiber at zero
of this jet bundle may be identified as Jhol

0 V = V0[[z1, . . . , zd]] where the zi’s denote the formal jet
coordinate.
Corollary 2.2.15. Suppose that Qhol = 0. Then, there is a quasi-isomorphism(

DefEV

)C2d|d
' C · ddz⊗L

C[∂z1 ,...,∂zd ]
Ored(V0[[z1, . . . , zd]])[d].

Equipped with differential {Ihol ,−} where Ihol only depends on holomorphic differential operators. Here,
∂zi =

∂
∂zi

and C · ddz denotes the trivial right C[∂zi ]-module.
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The local functional I defining the classical holomorphic theory endows JholV[−1] the structure of
a L∞ algebra in DCd -modules. Repackaging the statement using Lie algebraic data we can rewrite
the equivalence in the lemma as

(
DefEV

)C2d|d
' C · ddz⊗L

C[∂z1 ,...,∂zd ]
C∗Lie,red (V0[[z]][−1])) [d].

Proof. By Lemma 2.2.14 we have an expression for the holomorphically translation local function-
als (

DefEV

)C2d|d
=
(

C · ddz⊗U(C2d|d) Ored(J0EV)[d], ∂ + {I,−}
)

.

Since Ored(J0EV) is flat as a U(C2d|d)-module, it follows that we can replaces the tensor product
by the derived tensor product ⊗L up to quasi-isomorphism so that

(
DefEV

)C2d|d
'
(

C · ddz⊗L

U(C2d|d)
Ored(J0EV)[d], ∂ + {I,−}

)
.

Consider the complex
(
Ored(J0EV), ∂ + {I,−}

)
. This complex is graded by symmetric degree,

and the associated spectral sequence has first page the associated graded of Ored(J0EV) equipped
with the ∂ differential. Moreover, at the E1-page, we have the quasi-isomorphism(

O(J0EV), ∂
)
=
(
Ored(V0[[zi, zi]][dzi]), ∂

)
' Ored(V0[[zi]]).

Finally, we have already remarked that there is a quasi-isomorphism of algebras U(C2d|d) '
U(Cd) where the right-hand site is generated by the constant holomorphic vector fields. The
proof of the claim follows.

2.3 Renormalization of holomorphic theories

In this section we study the renormalization of holomorphically translation invariant field the-
ories on Cd for any d ≥ 1. We start with a classical interacting holomorphic theory on Cd and
consider one-loop homotopy RG flow from some finite scale ε to scale L. That is, we consider
the sum over graphs of genus zero and one where at each vertex we place the holomorphic in-
teraction. To obtain a prequantization of a classical theory one must make sense of the ε → 0
limit of this construction. In general, this involves introducing a family of counterterms. Our
main result is that for a holomorphic theory no such counterterms are required, and one obtains
a well-defined ε→ 0 limit.

We can write the fields of a holomorphic theory on Cd as

EV =
(

Ω0,∗(Cd, V), ∂ + Qhol
)

where V is a graded holomorphic vector bundle and Qhol is a holomorphic differential operator.
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Since the theory is holomorphically translation invariant we have an identification Ω0,∗(Cd, V) ∼=
Ω0,∗(Cd) ⊗C V0 where V0 is the fiber of V over 0 ∈ Cd. Further, we can write the (−1)-shifted
symplectic structure defining the classical BV theory in the form

ωV(α⊗ v, β⊗ w) = (v, w)V0

∫
ddz(α ∧ β)

where (−,−)V0 is a degree (d− 1)-shifted pairing on the finite dimensional vector space V0.

We will assume that the holomorphic Lagrangian Ihol is also translation invariant and so defines
an interaction of the form I = ∑k Ik where Ik is symmetric degree k and

Ik =
∫

Ihol
k (ϕ) =

∫
Dk,1(ϕ) · · ·Dk,k(ϕ)ddz

where each Di,j is a translation invariant holomorphic differential operator Di,j ∈ C
[

∂
∂zi

]
.

2.3.1 Holomorphic gauge fixing

To begin the process of renormalization we must fix the data of a gauge fixing operator. Recall, a
gauge fixing operator is an operator on fields

QGF : EV → EV [−1]

of cohomological degree −1 such that [Q, QGF] is a generalized Laplacian on E where Q is the
linearized BRST operator.

For holomorphic theories there is a convenient choice for a gauge fixing operator. To construct it
we fix the standard flat metric on Cd. Doing this, we let ∂

∗
be the adjoint of the operator ∂. Using

the coordinates on (z1, . . . , zd) ∈ Cd we can write this operator as

∂
∗
=

d

∑
i=1

∂

∂(dzi)

∂

∂zi
.

Equivalently ∂
∂(dzi)

is equal to contraction with the anti-holomorphic vector field ∂
∂zi

. The operator

∂
∗

extends to the complex of fields via the formula

QGF = ∂
∗ ⊗ idV : Ω0,∗(X, V)→ Ω0,∗−1(X, V),

We claim that this is a gauge fixing operator for our holomorphic theory. Indeed, since Qhol is a
translation invariant holomorphic differential operator we have

[∂ + Qhol , QGF] = [∂, ∂
∗
]⊗ idV .

The operator [∂, ∂
∗
] is simply the Dolbeault Laplacian on Cd, which is certainly a generalized

Laplacian. In coordinates it is

[∂, ∂
∗
] = −

d

∑
i=1

∂

∂zi

∂

∂zi
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By definition, the scale L > 0 heat kernel KV
L ∈ EV(C

d)⊗ EV(C
d) satisfies

ωV(KL, ϕ) = e−L[Q,QGF ]ϕ

for any field ϕ ∈ EV . Pick a basis {ei} of V0 and let

CV0 = ∑
i,j

ωij(ei ⊗ ej) ∈ V0 ⊗V0

be the quadratic Casimir. Here, (ωij) is the inverse matrix to the pairing (−,−)V0 . We see that for
the holomorphic theory we can write this regularized heat kernel as

KV
L (z, w) = Kan

L (z, w) · CV0

where the analytic part is independent of V and equal to

Kan
L (z, w) =

1
(4πL)d e−|z−w|2/4L

d

∏
i=1

(dzi − dzj) ∈ Ω0,∗(Cd)⊗Ω0,∗(Cd) ∼= Ω0,∗(Cd ×Cd).

The propagator is defined by

PV
ε<L(z, w) =

∫ L

t=ε
dt(QGF ⊗ 1)KV

L (z, w).

Since CV0 is independent of the coordinate on C this propagator is of the form PV
ε<L(z, w) =

Pan
ε<L(z, w) · CV0 where

Pan
ε<L(z, w) =

∫ L

t=ε
dt(∂

∗ ⊗ 1)KV
L (z, w)

=
∫ L

t=ε
dt

1
(4πt)d

d

∑
j=1

( zj − wj

4t

)
e−|z−w|2/4t

d

∏
i 6=j

(dzi − dzj).

Our goal in this section is to show that one-loop RG flow produces a prequantization modulo
h̄2 that requires no counterterms. The one-loop RG flow from ε to L is defined by the weight
expansion

W(PV
ε<L, I) = ∑

Γ

h̄g(Γ)

|Aut(Γ)|WΓ(PV
ε<L, I)

where the sum is over graphs of genus ≤ 1 and WΓ is the weight associated to the graph Γ.

For the genus zero graphs, or trees, we do not have any analytic difficulties to worry about. The
propagator PV

ε<L is smooth so long as ε, L > 0 but when ε → 0 it inherits a singularity along
the diagonal z = w. But, if Γ is a tree the weight WΓ(PV

0<L, I) only involves multiplication of
distributions with transverse singular support, so is well-defined. Thus we have observed the
following.
Lemma 2.3.1. If Γ is a tree then limε→0 WΓ(Pε<L, I) exists.

35



2.3.2 One-loop weights

The only possible divergences in the ε → 0 limit, then, must come from graphs of genus one.
Every graph of genus one is a wheel with some trees protruding from the external edges of the
tree. Thus, we can write the weight of a genus one graph as a product of weights associated to
trees times the weight associated to a wheel. As we just saw, the weights associated to trees are
automatically convergent in the ε→ 0 limit, thus it suffices to focus on genus one graphs that are
purely wheels with some number of external edges.

The definition of the weight of the wheel involves placing the propagator at each internal edge
and the interaction I at each vertex. The weights are evaluated by placing compactly supported
fields ϕ ∈ EV,c = Ω0,∗

c (Cd, V) at each of the external edges. We will make two simplifications:

1. the only ε dependence appears in the analytic part of the propagator Pan
ε<L, so we can forget

about the combinatorial factor CV0 and assume all external edges are labeled by compactly
supported Dolbeault forms in Ω0,∗

c (Cd);

2. each vertex labeled by I is a sum of interactions of the form∫
Cd

D1(ϕ) · · ·Dk(ϕ)ddz

where Di is a translation invariant differential operator. Some of the differential operators
will hit the compactly supported Dolbeault forms placed on the external edges of the graph.
The remaining operators will hit the internal edges labeled by the propagators. Since a
holomorphic differential operator preserves the space of compactly supported Dolbeault
forms that is independent of ε, we replace each input by an arbitrary compactly supported
Dolbeault form.

Thus, for the ε → 0 behavior it suffices to look at weights of wheels with arbitrary compactly
supported functions as inputs where each of the internal edges are labeled by some translation
invariant holomorphic differential operator

D = ∑
n1,...nd

∂n1

∂zn1
1
· · · ∂nd

∂znd
d

applied to the propagator Pan
ε<L. This motivates the following definition.

Definition 2.3.2. Let ε, L > 0. In addition, fix the following data.

(a) An integer k ≥ 1 that will be the number of vertices of the graph.

(b) For each α = 1, . . . , k a sequence of integers

~nα = (nα
1 , . . . , nα

d).

We denote by (~n) = (nj
i) the corresponding d× k matrix of integers.

The analytic weight associated to the pair (k, (~n)) is the smooth distribution

Wk,(n)
ε<L : C∞

c ((Cd)k)→ C,
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that sends a smooth compactly supported function Φ ∈ C∞
c ((Cd)k) = C∞

c (Cdk) to

Wk,(n)
ε<L (Φ) =

∫
(z1,...,zk)∈(Cd)k

k

∏
α=1

ddzαΦ(z1, . . . , zα)
k

∏
α=1

(
∂

∂zα

)~nα

Pan
ε<L(z

α, zα+1). (2.10)

In the above expression, we use the convention that zk+1 = z1.

The coordinate on (Cd)k is given by {zα
i } where α = 1, . . . , k and i = 1, . . . , d. For each α,

{zα
1 , . . . , zα

d} is the coordinate for the space Cd sitting at the vertex labeled by α. We have also
used the shorthand notation (

∂

∂zα

)~nα

=
∂nα

1

∂zα
1
· · · ∂nα

d

∂zα
d

.

We will refer to the collection of data (k, (~n)) in the definition as wheel data. The motivation for
this is that the weight Wk,(n)

ε<L is the analytic part of the full weight WΓ(PV
ε<L, I) where Γ is a wheel

with k vertices.

As explained above the proof of Lemma 2.0.1 has been reduced to showing that the ε → 0 limit
of the analytic weight Wk,(n)

ε<L (Φ) exists for any choice of wheel data (k, (~n)). To do this, there are
two steps. First, we show a vanishing result that says when k ≥ d the weights vanish for purely
algebraic reasons. The second part is the most technical aspect of the chapter where we show that
for k > d the weights have nice asymptotic behavior as a function of ε.
Lemma 2.3.3. Let (k, (~n)) be a pair of wheel data. If the number of vertices k satisfies k ≤ d then

Wk,(n)
ε<L = 0

as a distribution on Cdk for any ε, L > 0.

Proof. In the integral expression for the weight (2.10) there is the following factor involving the
product over the edges of the propagators:

k

∏
α=1

(
∂

∂zα

)~nα

Pan
ε<L(z

α, zα). (2.11)

We will show that this expression is identically zero. To simplify the expression we first make the
following change of coordinates on Cdk:

wα = zα+1 − zα , 1 ≤ α < k (2.12)

wk = zk. (2.13)

Introduce the following operators

ηα =
d

∑
i=1

wα
i

∂

∂(dwα
i )

acting on differential forms on Cdk. The operator ηα lowers the anti-holomorphic Dolbuealt type
by one : η : (p, q) → (p, q− 1). Equivalently, ηα is contraction with the anti-holomorphic Euler
vector field wα

i ∂/∂wα
i .
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Once we do this, we see that the expression (2.11) can be written as((
k−1

∑
α=1

ηα

)
d

∏
i=1

(
k−1

∑
α=1

dwα
i

))
k−1

∏
α=1

(
ηα

d

∏
i=1

dwα
i

)
.

Note that only the variables wα
i for i = 1, . . . , d and α = 1, . . . , k− 1 appear. Thus we can consider

it as a form on Cd(k−1). As such a form it is of Dolbeault type (0, (d − 1) + (k − 1)(d − 1)) =

(0, (d − 1)k). If k < d then clearly (d − 1)k > d(k − 1) so the form has greater degree than the
dimension of the manifold and hence it vanishes.

The case left to consider is when k = d. In this case, the expression in (2.11) can be written as((
d−1

∑
α=1

ηα

)
d

∏
i=1

(
d−1

∑
α=1

dwα
i

))
d−1

∏
α=1

(
ηα

d

∏
i=1

dwα
i

)
. (2.14)

Again, since only the variables wα
i for i = 1, . . . , d and α = 1, . . . , d − 1 appear, we can view

this as a differential form on Cd(d−1). Furthermore, it is a form of type (0, d(d − 1)). For any
vector field X on Cd(d−1) the interior derivative iX is a graded derivation. Suppose ω1, ω2 are
two (0, ∗) forms on Cd(d−1) such that the sum of their degrees is equal to d2. Then, ω1ιXω2 is
a top form for any vector field on Cd(d−1). Since ω1ω2 = 0 for form type reasons, we conclude
that ω1ιXω2 = ±(iXω1)ω2 with sign depending on the dimension d. Applied to the vector field
z1

i ∂/∂w1
i in (2.14) we see that the expression can be written (up to a sign) as

η1

(
d−1

∑
α=1

ηα
d

∏
i=1

(
d−1

∑
α=1

dwα
i

))(
d

∏
i=1

dw1
i

)
d−1

∏
α=2

(
ηα

d

∏
i=1

dwα
i

)
.

Repeating this, for α = 2, . . . , k− 1 we can write this expression (up to a sign) as(
ηk−1 · · · η2η1

k−1

∑
α=1

ηα
d

∏
i=1

(
k−1

∑
α=1

dwα
i

))
k−1

∏
α=1

d

∏
i=1

dwα
i

The expression inside the parentheses is zero since each term in the sum over α involves a term
like ηβηβ = 0. This completes the proof for k = d.

Lemma 2.3.4. Let (k, (~n)) be a pair of wheel data such that k > d. Then the ε → 0 limit of the analytic
weight

lim
ε→0

Wk,(n)
ε<L

exists as a distribution on Cdk.

Proof. We will bound the absolute value of the weight in Equation (2.10) and show that it has a
well-defined ε → 0 limit. First, consider the change of coordinates as in Equations (2.12),(2.13).
For any compactly supported function Φ we see that Wk,(n)

ε<L (Φ) has the form

∫
wk∈Cd

ddwk
∫
(w1,...,wk−1)∈(Cd)k−1

(
k−1

∏
α=1

ddwα

)
Φ(w1, . . . , wk)

(
k−1

∏
α=1

(
∂

∂wα

)~nα

Pan
ε<L(w

α)

)
k−1

∑
α=1

(
∂

∂wα

)~nk

Pan

(
k−1

∑
α=1

wα

)
.

(2.15)
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For α = 1, . . . , k− 1 the notation Pan
ε<L(w

α) makes sense since Pan
ε<L(z

α, zα+1) is only a function of
wα = zα+1 − zα. Similarly Pan

ε<L(z
k+1, z1) is a function of

zk − z1 =
k−1

∑
α=1

wα.

Expanding out the propagators the weight takes the form

∫
wk∈Cd

d2dwk
∫
(w1,...,wk−1)∈(Cd)k−1

(
k−1

∏
α=1

d2dwα

)
Φ(w1, . . . , wk)

∫
(t1,...,tk)∈[ε,L]k

k

∏
α=1

dtα

(4πtα)d

×
d

∑
i1,...,ik−1=1

εi1··· ,ik

(
w1

i1
4t1

(w1)n1

4t|n1|

)
· · ·

wk−1
ik−1

4tk−1

(wk−1)nk−1

4t|nk−1|

k−1

∑
α=1

wα
ik

4tk
· 1

t|nk |

(
k−1

∑
α=1

wα

)nk
× exp

− k−1

∑
α=1

|wα|2
4tα

− 1
4tk

∣∣∣∣∣k−1

∑
α=1

wα

∣∣∣∣∣
2


The notation used above warrants some explanation. Recall, for each α the vector of integers is
defined as nα = (nα

1 , . . . , nα
d). We use the notation

(wα)nα
= wnα

1
1 · · ·w

nα
d

d .

Furthermore, |nα| = nα
1 + · · ·+ nα

d . Each factor of the form
wα

iα
tα

comes from the application of the

operator ∂
∂zi

in ∂
∗

applied to the propagator. The factor (wα)nα

t|nα | comes from applying the operator(
∂

∂w

)nα

to the propagator. Note that ∂
∗

commutes with any translation invariant holomorphic
differential operator, so it doesn’t matter which order we do this.

To bound this integral we will recognize each of the factors

wα
iα

4tα

(wα)nα

4t|nα |

as coming from the application of a certain holomorphic differential operator to the exponential
in the last line. We will then integrate by parts to obtain a simple Gaussian integral which will
give us the necessary bounds in the t-variables. Let us denote this Gaussian factor by

E(w, t) := exp

− k−1

∑
α=1

|wα|2
4tα

− 1
4tk

∣∣∣∣∣k−1

∑
α=1

wα

∣∣∣∣∣
2


For each α, iα introduce the t = (t1, . . . , tk)-dependent holomorphic differential operator

Dα,iα(t) :=

 ∂

∂wα
iα
−

k−1

∑
β=1

tβ

t1 + · · ·+ tk

∂

∂wβ
iα

 d

∏
j=1

 ∂

∂wα
j
−

k−1

∑
β=1

tβ

t1 + · · ·+ tk

∂

∂wβ
j

nα
j

.

The following lemma is an immediate calculation

Lemma 2.3.5. One has

Dα,iα E(w, t) =
wα

iα
4tα

(wα)nα

t|nα | E(w, t).
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Note that all of the Dα,iα operators mutually commute. Thus, we can integrate by parts iteratively
to obtain the following expression for the weight:

±
∫

wk∈Cd
d2dwk

∫
(w1,...,wk−1)∈(Cd)k−1

(
k−1

∏
α=1

d2dwα

) ∫
(t1,...,tk)∈[ε,L]k

k

∏
α=1

dtα

(4πtα)d

×
(

∑
i1,...,ik

εi1··· ,id D1,i1 · · ·Dk−1,ik−1

k−1

∑
α=1

Dα,ik Φ(w1, . . . , wk)

)
× exp

− k−1

∑
α=1

|wα|2
tα
− 1

tk

∣∣∣∣∣k−1

∑
α=1

wα

∣∣∣∣∣
2
 .

Thus, the absolute value of the weight is bounded by

|Wk,(n)
ε<L (Φ)| ≤ C

∫
wk∈Cd

d2dwk
∫
(w1,...,wk−1

k−1

∏
α=1

d2dwαΨ(w1, . . . , wk−1, wk)
∫
(t1,...,tk)∈[ε,L]k

dt1 . . . dtk
1

(4π)dk
1

td
1 · · · td

k
×E(w, t)

(2.16)
where Ψ is some compactly supported functnio on Cdk that is independent of t.

To compute the right hand side we will perform a Gaussian integration with respect to the vari-
ables (w1, . . . , wk−1). To this end, notice that the exponential can be written as

E(w, t) = exp
(
−1

4
Mαβ(wα, wβ)

)
where (Mαβ) is the (k− 1)× (k− 1) matrix given by

a1 b b · · · b
b a2 b · · · b
b b a3 · · · b
...

...
...

. . .
...

b b b · · · ak−1


where aα = t−1

α + t−1
k and b = t−1

k . The pairing (wα, wβ) is the usual Hermitian pairing on Cd,
(wα, wβ) = ∑i wα

i wβ
i . After some straightforward linear algebra we find that

det(Mαβ)
−1 =

t1 · · · tk
t1 + · · ·+ tk

.

We now perform a Wick expansion for the Gaussian integral in the variables (w1, . . . , wk−1). For
a reference similar to the notation used here see the Appendix of our work in [EWY18]. The
inequality in (2.16) becomes

|Wk,(n)
ε<L (Φ)| ≤ C′

∫
wk∈Cd

d2dwkΨ(0, . . . , 0, wk)
∫
(t1,...,tk)∈[ε,L]k

dt1 . . . dtk
1

(4π)dk
1

(t1 · · · tk)d

(
t1 · · · tk

t1 + · · ·+ tk

)d
+ O(ε)

(2.17)

= C′
∫

wk∈Cd
d2dwkΨ(0, . . . , 0, wk)

∫
(t1,...,tk)∈[ε,L]k

dt1 . . . dtk
1

(4π)dk
1

(t1 + · · ·+ tk)d + O(ε).

(2.18)

The first term in the Wick expansion is written out explicitly. The O(ε) refers to higher terms
in the Wick expansion, which one can show all have order ε, so disappear in the ε → 0 limit.
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The expression Ψ(0, . . . , 0, wk) means that we have evaluate the function Ψ(w1, . . . , wk) at w1 =

. . . = wk−1 = 0 leaving it as a function only of wk. In the original coordinates this is equivalent to
setting z1 = · · · = zk−1 = zk.

Our goal is to show that ε → 0 limit of the right-hand side exists. The only ε dependence on the
right hand side of (2.17) is in the integral over the regulation parameters t1, . . . , tk. Thus, it suffices
to show that the ε→ 0 limit of ∫

(t1,...,tk)∈[ε,L]k

dt1 . . . dtk

(t1 + · · ·+ tk)d

exists. By the AM/GM inequality we have (t1 + · · · + tk)
d ≥ (t1 · · · td)

d/k. So, the integral is
bounded by∫

(t1,...,tk)∈[ε,L]k

dt1 . . . dtk

(t1 + · · ·+ tk)d ≤
∫
(t1,...,tk)∈[ε,L]k

dt1 . . . dtk

(t1 · · · tk)d/k =
1

(1− d/k)k

(
ε1−d/k − L1−d/k

)k
.

By assumption, d < k, so the right hand side has a well-defined ε → 0 limit. This concludes the
proof.

2.3.3 A general result about chiral anomalies

Once any theory has been renormalized, the next step to constructing a quantization is to solve
the quantum master equation. In general, there may be an obstruction to solving this equation.
Such obstructions in the physics literature are known as anomalies. In general, it may be diffi-
cult to characterize such anomalies, but in the case of holomorphic theories on Cd our result in
the previous section makes this problem much easier. Indeed, since there are no counterterms
requires, we can plug in the RG flow of the classical action functional and study the quantum
master equation directly. As is usual in perturbation theory, we work order by order in h̄ to con-
struct a quantization. In this section we will study the first step, which is to promote a classical
theory to a solution of the quantum master equation modulo h̄2.

As above, E will be a holomorphically translation invariant theory on Cd and I will be the holo-
morphic interaction. The linearized BRST operator is of the form Q = ∂ + Qhol where Qhol is a
holomorphic differential operator. For this section, it will be most convenient to set Qhol = 0.

Define I[L] = W(Pε<L, I) mod h̄2 as in the last section. Recall, from Section 2.1.2.2 that the
regularized quantum master equation at scale L is

QI[L] + h̄∆L I[L] +
1
2
{I[L], I[L]}L = 0.

This is equivalent to the equation (Q + h̄∆L)eI[L]/h̄ = 0. Therefore, the obstruction to satisfying the
quantum master equation modulo h̄2 at scale L is

Θ[L] = h̄−1
(

QI[L] + h̄∆L I[L] +
1
2
{I[L], I[L]}L

)
,
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or, equivalently Θ[L] = e−I[L]/h̄(Q+ h̄∆L)eI[L]/h̄. By definition, I[L] = limε→0 W(Pε<L, I) mod h̄2

which is equivalent to eI[L]/h̄ = limε→0 eh̄∂Pε<L eI/h̄ mod h̄2 as a formal series in h̄. Thus, we can
rewrite

(Q + h̄∆L)eI[L]/h̄ = lim
ε→0

(Q + h̄∆L)
(

eh̄∂Pε<L eI/h̄
)

.

The operator Q commutes with eh̄∂Pε<L , and one has ∆Leh̄∂Pε<L = eh̄∂Pε<L ∆ε acting on functionals.
Thus,

lim
ε→0

(Q + h̄∆L)
(

eh̄∂Pε<L eI/h̄
)
= lim

ε→0
eh̄∂Pε<L (Q + h̄∆ε)eI/h̄.

Since ∆ε is a BV operator for the bracket {−,−}ε, we can rewrite the right-hand side as

1
h̄

lim
ε→0

eh̄Pε<L(QI + h̄∆ε I +
1
2
{I, I}ε)eI/h̄.

For every ε > 0 we have ∆ε I = 0. Moreover, since I is holomorphic (and since Qhol = 0) we have
QI = ∂I = 0.

We conclude that the one-loop anomaly is

Θ = lim
L→0

Θ[L] =
1
2

lim
L→0

lim
ε→0

e−I/h̄eh̄∂Pε<L

(
{I, I}εeI/h̄

)
mod h̄2

The main result of this section is the following.
Lemma 2.3.6. The obstruction Θ = limL→0 Θ[L] to satisfying the one-loop quantum master equation is
given by the expression

Θ = lim
L→0

lim
ε→0

∑
Γ∈Wheeld+1

WΓ(Pε<L, Kε, I)

where the sum is over all wheels with (d + 1)-vertices.

Proof. Like the proof of the non-existence of counterterms for holomorphic theories, the proof
of this result will be the consequence of an explicit calculations and bounds of certain Feynman
diagrams.

Consider the quantity
lim
ε→0

e−I/h̄eh̄∂Pε<L

(
{I, I}εeI/h̄

)
mod h̄2 (2.19)

which can be thought of as a sum over graphs. By assumption, we are only looking at graphs of
genus one which look like wheels with possible trees attach. Graphically, the quantity {I, I}ε is
the graph of two vertices with a separating edge labeled by the heat kernel Kε. Thus, all weights
appearing in the expansion of (2.19) attach the propagator Pε<L to all edges besides a single distin-
guished edge e, which is labeled by Kε. Thus, as a over a sum of graphs, we see that the following
two types of weights occur in the expansion of (2.19).

(a) the distinguished edge e is separating;

(b) the distinguished edge e is not separating, and so appears as the internal edge of the wheel
portion of the graph.
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By the classical master equation, we see that the ε → 0 limit of weights of Type (a) go to zero.
Thus, we must only consider the weights of Type (b).

The result will follow from two steps. These should seem familiar from the proof of the main
result about the existence of no counterterms.

1. If Γ is a wheel with k < d + 1 vertices, then WΓ(Pε<L, Kε, I) = 0 identically.

2. If Γ is a wheel with k > d + 1 vertices, then limε→0 WΓ(Pε<L, Kε, I) = 0.

The proof of both of these facts is only dependent on the analytic part of the weights. Thus,
it suffices to make the same reduction as we did in the previous section. To extract that analytic
part of the graph we proceed as in Definition 2.3.2. If (k, (~n)) is a pair of wheel data (recall k labels
the number of vertices and~n labels the derivatives at each vertex) define the smooth distribution

W̃k,(n)
ε<L : C∞

c ((Cd)k)→ C,

that sends a smooth compactly supported function Φ ∈ C∞
c ((Cd)k) = C∞

c (Cdk) to

W̃k,(n)
ε<L (Φ) =

∫
(z1,...,zk)∈(Cd)k

k

∏
α=1

ddzαΦ(z1, . . . , zα)

(
∂

∂zk

)~nk

Kε(z1, zk)
k−1

∏
α=1

(
∂

∂zα

)~nα

Pan
ε<L(z

α, zα+1).

(2.20)

Item (1) follows from the following observation.

Lemma 2.3.7. Let (k, (~n)) be a pair of wheel data. If the number of vertices k satisfies k ≤ d then

W̃k,(n)
ε<L = 0

as a distribution on Cdk for any ε, L > 0.

Proof. In fact, the integrand of (2.20) is identically zero provided k ≤ d by a simple observation of
the differential form type. Consider the factor in the integrand of W̃k,(n)

ε<L given by

(
∂

∂zk

)~nk

Kε(z1, zk)
k−1

∏
α=1

(
∂

∂zα

)~nα

Pan
ε<L(z

α, zα+1).

Making the usual change of coordinates wα = zα+1 − zα and wk = zk we see that this factor is
proportional to the following constant coefficient differential form(

d

∏
i=1

(
k−1

∑
α=1

dwα
i

))
k−1

∏
α=1

(
ηα

d

∏
i=1

dwα
i

)
.

Note that this differential form only involves the coordinates (wα
i ) for α = 1, . . . , k− 1. Thus, we

may consider it as a Dolbeualt form on Cd(k−1). As such, it is of the type (0, d + (k− 1)(d− 1)) =
(0, (d− k + 1) + d(k− 1)). Clearly, (d− k + 1) + d(k− 1) > d(k− 1) provided k ≤ d. Thus, the
weight is identically zero provided k ≤ d, as desired.

Item (2) follows from the following technical lemma that the analytic weight associated to the
wheels of valency k > d + 1 vanish in the limit ε→ 0.
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Lemma 2.3.8. Let (k, (~n)) be a pair of wheel data such that k > d + 1. Then the ε → 0 limit of the
analytic weight

lim
ε→0

W̃k,(n)
ε<L = 0

is identically zero as a distribution on Cdk.

Proof. The proof is very similar to the argument we gave in the proof of Lemma 2.3.4, so we will be
a bit more concise. First, we make the familiar change of coordinates as in Equations (2.12),(2.13).
Using the explicit form the heat kernel and propagator we see that for any Φ ∈ C∞

c (Cdk) the
weight is

W̃k,(n)
ε<L (Φ) =

∫
wk∈Cd

d2dwk
∫
(w1,...,wk−1)∈(Cd)k−1

(
k−1

∏
α=1

d2dwα

)
Φ(w1, . . . , wk)

∫
(t1,...,tk)∈[ε,L]k−1

1
(4πε)d

k−1

∏
α=1

dtα

(4πtα)d

×
d

∑
i1,...,ik−1=1

εi1,...,id

(
w1

i1
t1

(w1)n1

4t|n1|

)
· · ·

wk−1
ik−1

4tk−1

(wk−1)nk−1

4t|nk−1|

 1
4t|nk |

(
k−1

∑
α=1

wα

)nk
× exp

− k−1

∑
α=1

|wα|2
4tα

− 1
4ε

∣∣∣∣∣k−1

∑
α=1

wα

∣∣∣∣∣
2
 .

We will integrate by parts to eliminate the factors of wα
i .

For each 1 ≤ α < k and iα, define the ε and t = (t1, . . . , tk−1)-dependent holomorphic differential
operator

Dα,iα(t) :=

 ∂

∂wα
iα
−

k−1

∑
β=1

tβ

t1 + · · ·+ tk−1 + ε

∂

∂wβ
iα

 d

∏
j=1

 ∂

∂wα
j
−

k−1

∑
β=1

tβ

t1 + · · ·+ tk−1 + ε

∂

∂wβ
j

nα
j

.

And the ε, t-dependent holomorphic differential operator

Dk(t) =
d

∏
j=1

 ∂

∂wk
j
−

k−1

∑
β=1

tβ

t1 + · · ·+ tk−1 + ε

∂

∂wβ
j

nk
j

.

By a completely analogous version of Lemma the operators above allow us to integrate by parts
and express the weight in the form

W̃k,(n)
ε<L (Φ) = ±

∫
wk∈Cd

d2dwk
∫
(w1,...,wk−1)∈(Cd)k−1

(
k−1

∏
α=1

d2dwα

) ∫
(t1,...,tk−1)∈[ε,L]k−1

1
(4πε)d

k−1

∏
α=1

dtα

(4πtα)d

×
(

∑
i1,...,ik−1

εi1··· ,id D1,i1(t) · · ·Dk−1,ik−1
(t)Dk(t)Φ(w1, . . . , wk)

)
× exp

− k−1

∑
α=1

|wα|2
4tα

− 1
4ε

∣∣∣∣∣k−1

∑
α=1

wα

∣∣∣∣∣
2
 .

Observe that the operators Dα,iα(t), Dk(t) are uniformly bounded in t. Thus, there exists a constant
C = C(Φ) > 0 depending only on the function Φ such that we can bound the weight as

|W̃k,(n)
ε<L (Φ)| ≤ C

∫
(w1,...,wk−1

k−1

∏
α=1

d2dwα
∫
(t1,...,tk−1)∈[ε,L]k−1

dt1 . . . dtk
1

εdtd
1 · · · td

k−1

× exp

− k−1

∑
α=1

|wα|2
4tα

− 1
4ε

∣∣∣∣∣k−1

∑
α=1

wα

∣∣∣∣∣
2
 .

(2.21)
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Thus, to show that the limit limL→0 limε→0 W̃k,(n)
ε<L (Φ) = 0 it suffices to show that the limit of the

right-hand side vanishes.

The Gaussian integral over the variables wα
i contributes the following factor

∫
(w1,...,wk−1

k−1

∏
α=1

d2dwα exp

− k−1

∑
α=1

|wα|2
4tα

− 1
4ε

∣∣∣∣∣k−1

∑
α=1

wα

∣∣∣∣∣
2
 = C′

(
εt1 · · · tk−1

ε + t1 + · · ·+ tk−1

)d
.

Where C′ involves factors of 2 and π. Plugging this back in to the right-hand side of (2.21) we see
that

|W̃k,(n)
ε<L (Φ)| ≤ CC′

∫
[ε,L]k−1

dt1 · · ·dtk−1

(ε + t1 + · · ·+ tk−1)d ≤ CC′
k−1

∏
α=1

∫ L

tα=ε
dtαt−d/(k−1)

α .

In the second inequality we have used the fact that ε > 0 and the AM-GM inequality. It is
immediate to see that the ε → 0 limit of the above exists provided k > d + 1, which is the
situation we are in, and that the L→ 0 limit vanishes.

This completes the proof of Lemma 2.3.6

2.3.3.1 Relation to the ABJ anomaly

The lemma we have just proved implies that for holomorphic theories on Cd the anomaly is given
by evaluating a collection of wheel diagrams with exactly d + 1 vertices. This expression for the
obstruction fits into a generic class of of one-loop anomalies from gauge theory called the Adler-
Bell-Jackiw (ABJ) anomaly [Adl69, BJ69]. This anomaly is most commonly associated with four
dimensional gauge theory.

We recall the basic setup for the ABJ anomaly. Consider a free Dirac fermion Ψ on R4 coupled to
a background gauge field A ∈ Ω1(R4)⊗ g. For this to make sense, Ψ is taken to be in valued in a
representation V of the Lie algebra g so we may think of it as an element Ψ ∈ S(R4)⊗ V. Here,
S(R4) is the space of sections of the full spinor bundle on R4. The action functional is

S(A, Ψ) =
∫
〈Ψ, /∂ AΨ〉V

where /∂ A = /∂ + [A,−] is the A-coupled Dirac operator. We are implicitly using the canonical spin
invariant symplectic pairing S⊗ S → Ω4(R4) = C∞(R4)d4x and a g-invariant pairing 〈−,−〉V :
V ⊗V → C, to obtain a local functional.

For any smooth map α : R4 → g, the infinitesimal transformation Ψ → Ψ + ε[α, Ψ] (where ε is
an even parameter of square zero) is a classical symmetry of S(A, Ψ). Quantum mechanically,
there is a one-loop anomaly which measures the failure of the path integral to be invariant with
respect to this symmetry. It is a well-known calculation, see for instance [FS04], that this anomaly
is measured by the following local functional∫

TrV (αFAFA) . (2.22)
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The trace is taken in the representation V. The fundamental calculation is the infamous ”triangle
diagram”, where two vertices are labeled by the gauge field and the third by α. In practice,
physicists express the anomaly as a failure for the Noether current associated to the symmetry α

to be divergenceless.

There is the following holomorphic version of this anomaly. Again, let V be a g representation.
Consider the following action functional on C2:

S(A, β, γ) =
∫
〈β, ∂Aγ〉V

where γ : C2 → V, β ∈ Ω2,1(C2, V), and A ∈ Ω0,1(C2, g). Since A is a (0, 1) form it defines a
deformation of the trivial holomorphic G-bundle. Although we have not put this theory in the
BV formalism, there is a natural way to do so. The infinitesimal symmetry we contemplate is of
the form γ → γ + ε[α, γ] where α : C2 → g. We study the anomaly to quantizing this symmetry
to one-loop. Following the result for the anomaly given in the previous section, one sees that it is
computed by a wheel with three vertices. For type reasons, one vertex is labeled α and the other
two are labeled by the gauge fields A. A special case of a general calculation performed later in
Chapter 4 of this thesis computes the value of the diagram as∫

TrV(α∂A∂A).

This is the holomorphic version of ABJ anomaly (2.22). Note that there are no terms of order A3

or above. In fact, the functional
∫

Tr(αFAFA) is cohomologous to the expression above in the local
deformation complex.
Remark 2.3.9. In the next section, using the concept of the ”equivariant” BV formalism, we will
make coupling background fields to a classical theory precise. Then, Lemma 2.3.6 above applies
rigorously to give the form of anomaly we have given. We will see a precise statement of this
for the holomorphic current algebra in our proof of the Grothendieck-Riemann-Roch theorem in
Chapter 4.
Remark 2.3.10. We have already shown how familiar topological theories can be cast in a holomor-
phic language. For instance, topological BF theory is a holomorphic deformation of holomorphic
BF theory. It is a peculiar consequence of the above result that such topological theories also
admit a simple regularization procedure. Without much more difficulty, one can extend this to
certain topological theories to odd dimensional manifolds of the form X × S, where X is a com-
plex manifold and S is a real one-dimensional manifold. We consider the theory as a product
of a holomorphic theory on X and a one-dimensional topological theory on S. This can be fur-
ther extended to transversely holomorphic foliations [Bru96, Ghy96], which we will study in a
future publication. Further, often topological BF theory further deforms to Yang-Mills. It would
be interesting to apply our analysis above to such gauge theories.

2.4 Equivariant BV quantization

Equivariant BV quantization is an enhancement of ordinary BV quantization where one takes
into account an additional action of a group or Lie algebra. We will heavily rely on techniques of
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equivariant BV quantization throughout this thesis, notably in the construction of the holomor-
phic σ-model in Chapter 3 and in the proof of a local version of the Grothendieck-Riemann-Roch
theorem in Chapter 4 using Feynman diagrammatic expansions.

We motivate the definition of the equivariant BV formalism through a central result in classical
field theory: Noether’s theorem. Roughly speaking, this states that symmetries of a theory are
encoded by a conserved quantity. For instance, a symmetry by translations gives rise to conser-
vation of energy through the the stress-energy momentum tensor. There is an enhancement of
Noether’s theorem using the language of factorization algebras proved in [CG] that we will not
review here, but will recall in Chapter 4. For us, the manifestation of Noether’s theorem will come
from a description of a symmetry through a functional satisfying a certain equivariant version of
the classical or quantum master equations.

The symmetries of BV theories that we consider is a direct analog of symmetries in ordinary
Hamiltonian mechanics, which we briefly recall. Suppose that h is a Lie algebra on (M, ω) is an
ordinary symplectic manifold. A symplectic action of h on X is a map of Lie algebras

ρ : h→ SympVect(M)

where SympVect(M) is the Lie algebra of symplectic vector fields; those vector fields X which
preserve the symplectic form LXω = 0. On any symplectic manifold, the Poisson algebra of func-
tions admits a Lie algebra map O(M) → SympVect(M) sending a function f to its Hamiltonian
vector field X f = { f ,−}, where {−,−} is the Poisson bracket. An action ρ is said to be inner if it
lifts to a map of Lie algebras ρ̃ : h→ O(M). Recall that on any symplectic manifold the kernel of
f 7→ X f is precisely the constant functions.

Classical theories in the BV formalism arise as (−1)-shifted symplectic formal moduli problems.
Hence, suppose we replace the symplectic manifold M by a formal moduli problem Bg, where g

is some dg Lie (or L∞ algebra), equipped with a (−1)-shifted symplectic structure. Functions on
Bg are precisely the Chevalley-Eilenberg cochains O(Bg) = C∗Lie(g). The (−1)-shifted symplectic
structure equips C∗Lie(g)[−1] with the structure of a dg Lie algebra. Since all symplectic vector
fields are Hamiltonian in this case we see that

SympVect(Bg) = C∗Lie(g)[−1]/C = C∗Lie,red(g)[−1]

where we have taken the quotient by the constants, which by definition is the reduced cochains.
We modify the notion of a symplectic action slightly to allow for more general maps of Lie alge-
bras. A symplectic action of h on the (−1)-shifted symplectic formal moduli space Bg is a map of
L∞ algebras, or a homotopy coherent map of dg Lie algebras

ρ : h C∗Lie,red(g)[−1].

Such a map ρ is equivalent to a Maurer-Cartan element in the dg Lie algebra

Ih ∈ C∗Lie(h)⊗C∗Lie,red(g)[−1].

This is a cohomological degree +1 element Ih such that dIh + 1
2{Ih, Ih} = 0. Here {−,−} is the

bracket on C∗Lie,red(g) and d is the sum of the Chevalley-Eilenberg differentials on h and g. This is
a version of the classical master equation over the base ring C∗Lie(h).
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2.4.1 Classical equivariance

We proceed to mimic the above discussion to define the notion of equivariance for a general
classical BV theory. Again, let h be an L∞ algebra. A classical field theory, in the BV formalism, is
given by an elliptic formal moduli problem satisfying some conditions. In the beginning of this
chapter, we saw that this is encoded by a space of fields E, an action functional S ∈ Oloc(E), and
a (−1)-shifted symplectic structure.

We have just seen that we can express an action of h using a Maurer-Cartan element that is a
functional of both h and g. The additional requirement in this situation is that we require our
functionals to be local with respect to their dependence on the fields E. Recall that the shifted
symplectic structure induced a P0-bracket on local functionals Oloc(E). Thus, Oloc(E)[−1] has the
structure of a dg Lie algebra with differential given by {S,−}.
Definition 2.4.1. An action of a Lie algebra h on a classical theory (E, S, ω) is a Maurer-Cartan
element of the dg Lie algebra

Ih ∈ C∗Lie,red(h)⊗Oloc(E)[−1].

In other words, Ih satisfies the equivariant classical master equation:

dh Ih + {S, Ih}+ 1
2
{Ih, Ih} = 0.

Analogous to the manipulations above, we see that such an Ih defines a sequence of maps

h⊗m ⊗ E(X)⊗n → E(X)

combining to give E(X) the structure of an L∞-module over h. The equivariant classical master
equation exhibits Ih as a conserved quantity encoding the symmetry by the Lie algebra h. This is
the fundamental idea of Noether’s theorem.
Remark 2.4.2. There is a natural map C∗Lie(h) → C∗Lie,red(h). An inner action of h on E is a lift of
an action Ih to an Maurer-Cartan element of the dg Lie algebra C∗Lie(h)⊗ Oloc(E)[−1]. Note that
there is, in general, an obstruction to lifting which lives in the cohomology H1

Lie(h). Thus, if h is
semi-simple we see that actions always lift to inner actions. We will be more interested in this
problem in the case that h is a local Lie algebra, where the obstruction theory is more interesting.

2.4.2 Quantum equivariance

If we start with an h-equivariant classical BV theory with fields E with action functional S — so
that h has an L∞ action on the fields that preserves the pairing and the action functional S —
then we can encode the action of h as a Maurer-Cartan element Ih in C∗Lie(h)⊗ Oloc(E). We then
view the sum S + Ih as the equivariant action functional: the operator {S + Ih,−} is the twisted
differential on C∗Lie(h)⊗ Oloc(E) with Ih as the twisting cocycle, and this operator is square-zero
because {S + Ih, S + Ih} is a “constant” (i.e., lives in C∗Lie(h) and hence is annihilated by the BV
bracket).
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This perspective suggests the following definition of an equivariant quantum BV theory. The
starting data is two-fold: an h-equivariant classical BV theory with equivariant action functional
S + Ih, and a BV quantization {S[L]} of the non-equivariant action functional S. Following
Costello, it is convenient to write S as Sfree + I, where the first “free” term is a quadratic func-
tional and the second “interaction” term is cubic and higher. In this situation, the effective action
S[L] = Sfree + I[L], i.e., only the interaction changes with the length scale.

As in Section 2.1.2.2 we let O+
P,sm(E) be the functionals that are at least cubic, have proper support,

and have smooth first derivative.
Definition 2.4.3. An h-equivariant BV quantization is a collection of effective interactions {Ih[L]}L∈(0∞) ⊂
C∗Lie,red(h)⊗O+

P,sm(E)[[h̄]] satisfying

(a) the RG flow equation
W(PL

ε , I[ε] + Ih[ε]) = I[L] + Ih[L]

for all 0 < ε < L,

(b) the equivariant scale L quantum master equation, which is that

Q(I[L] + Ih[L]) + dh Ih[L] +
1
2
{I[L] + Ih[L], I[L] + Ih[L]}L + h̄∆L(I[L] + Ih[L])

lives in C∗Lie(h) for every scale L, and

(c) the locality axiom, with the additional condition that as L → 0, we recover the equivariant
classical action functional S + Ih modulo h̄.

In other words, we simply follow the constructions of [Cos11] working over the base ring C∗Lie(h).
A careful reading of those texts shows that the freedom to work over interesting dg commutative
algebras is built into the formalism.

2.4.3 The case of a local Lie algebra

The above formalism works equally well, with some slight modifications, if we replace the Lie
algebra h by a local Lie algebra L on the manifold where the theory E lives. This is done in detail
in Chapter 11 of [CG], and we refer the reader there for more details.

For the classical case, the first thing we must define is where the classical Noether current Ih ↔ IL

lives. Naively, we expect this to live in the space

C∗Lie,red(Lc(X))⊗Oloc(E)[−1]. (2.23)

This is not quite good enough for our purposes since we have not taken into account the locality
in the Lie algebra direction. Note that (2.23) is a still a dg Lie algebra, just as above. The inclusion
(2.5) determines an inclusion of vector spaces

Oloc(L[1]⊕ E) ↪→ C∗Lie,red(Lc(X))⊗Oloc(E)
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We can further quotient this subspace by Oloc(L[1])⊕Oloc(E) ⊂ Oloc(L[1]⊕E) consisting of those
local functionals that depend solely on L or E to obtain an inclusion of vector spaces

Act(L,E) := Oloc(L[1]⊕ E)/Oloc(L[1])⊕Oloc(E) ↪→ C∗Lie,red(Lc(X))⊗Oloc(E).

Thus, Act(L,E) consists of functionals on L[1]⊕ E that are local as both a function of L[1] and E

and do not depend solely on L[1] and E.
Lemma 2.4.4 (Chapter 12 [CG]). The differential and bracket defining the dg Lie algebra C∗Lie,red(Lc(X))⊗
Oloc(E)[−1] in (2.23) restricts to give a dg Lie algebra structure on the subspace Act(L,E)[−1].

Using this lemma, the following definition is well-posed.
Definition 2.4.5. Let L be a local Lie algebra and E a classical field theory. An L action on E is a
Maurer-Cartan element

IL ∈ Act(L,E)[−1].

In other words, IL satisfies the equivariant classical master equation

dL IL + {S, IL}+ 1
2
{IL, IL} = 0.

Remark 2.4.6. Given any L∞ algebra h one can define the local Lie algebra Ω∗X ⊗ h on X. The data
of an action of h on a theory as in Definition 2.4.1 is equivalent (up to homotopy) to the data of an
action of the local Lie algebra Ω∗X ⊗ h in the definition above. In fact, there is an equivalence of
dg Lie algebras C∗Lie,red(h)⊗Oloc(E)[−1] ' Act(Ω∗X ⊗ h,E).

2.4.3.1 The action of a local Lie algebra on a QFT

The quantum story for an action by a local Lie algebra is also similar to the case of an ordinary
Lie algebra. There are two spaces of functionals that appear when discussing actions of a local Lie
algebra L on a quantum field theory. We will fix the data of a quantum field theory as in Definition
2.1.17. This is the data of a free BV theory (E, Q, ω) together with a family of functionals {I[L]}
satisfying RG flow and the QME (plus a locality condition).
Definition 2.4.7. An L-action on the quantum field theory (E, Q, ω, {I[L]}) is the data of a family
of functionals

{IL[L]} ⊂ O+
P,sm(L[1]⊕ E)/OP,sm(L[1])[[h̄]]

satisfying the following properties:

(a) The RG equation W(PL<L′ , IL[L]) = IL[L′];

(b) The equivariant quantum master equation at scale L:

dL IL[L] + QIL[L] +
1
2
{IL[L], IL[L]}L + h̄∆L IL[L] = 0

where dL is the Chevalley-Eilenberg differential on L;

(c) the locality axiom as in Definition 2.1.17;
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(d) under the natural quotient map

O+
P,sm(L[1]⊕ E)/OP,sm(L[1])[[h̄]]→ O+

P,sm(E)[[h̄]]

sends IL[L] 7→ I[L] for each L > 0.

In the definition above we require IL[L] to be an element in O+
P,sm(L[1] ⊕ E)/OP,sm(L[1])[[h̄]],

which is the space of smooth and proper functionals on L[1]⊕ E that are at least cubic modulo h̄
and do not depend solely on L. A stricter definition is that of an inner action, where we allow the
functionals that depend solely on L[1].
Definition 2.4.8. An inner action of L on the QFT (E, Q, ω, {I[L]}) is an effective family

{IL[L]} ⊂ O+
P,sm(L[1]⊕ E)

satisfying conditions (a)-(c) above and under the natural map

O+
P,sm(L[1]⊕ E)[[h̄]]→ O+

P,sm(E)[[h̄]]

we have IL[L] 7→ I[L] for each L > 0.

Every inner action clearly defines an ordinary action on a QFT. In practice, we will study the
problem of lifting an ordinary action to an inner action. Just as in the obstruction theory discussed
in Section 2.1.2.2 there is a deformation complex controlling this lifting problem. Indeed, suppose
IL[L] ∈ O+

P,sm(L[1]⊕ E)/OP,sm(L[1])[[h̄]] is a family satisfying the condition of having an action
by L. We can lift this to a family of functionals

ĨL[L] ∈ O+
P,sm(L[1]⊕ E)[[h̄]]

that satisfy RG flow and the locality axioms, but in general they do not satisfy the equivariant
quantum master equation. The obstruction is an element

Θ[L] = dL ĨL[L] + QĨL[L] +
1
2
{ ĨL[L], ĨL[L]}L + h̄∆L ĨL[L].

Since the right-hand side is zero modulo O(L[1])[[h̄]], by assumption, we must have Θ[L] ∈
O(L[1])[[h̄]]. By homotopy RG flow it suffices to solve this equation at any scale L. Moreover,
by the locality axiom the limit limL→0 Θ[L] exists and is a local functional of L[1]. Thus we arrive
at the following.
Lemma 2.4.9. Suppose {IL[L]} is an effective family defining an action of L on a QFT. Then, the ob-
struction to lifting this action to an inner action, that is the anomaly to solving the equvariant quantum
master equation, is the degree +1 cocycle in Θ = limL→0 Θ[L] ∈ C∗loc(L).
Remark 2.4.10. Equivariant quantization is essentially a version of the background field method
in QFT. One treats elements of L as background fields and the interaction terms IL[L] encode the
variation of the path integral measure with respect to these background fields. (Solving the QME
is our definition of well-posedness of the measure.) This should not be confused with gauging a
theory by L, which involves putting the elements of L in the theory as propagating fields.
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Chapter 3

The holomorphic σ-model

This chapter contains a detailed analysis of one of the most fundamental holomorphic field theo-
ries: the holomorphic σ-model. This theory is appealing from both the perspective of mathematics
and physics. It is an elegant nonlinear σ-model of maps complex d-fold Y into a complex man-
ifold X (of any complex dimension). The equations of motion pick out the holomorphic maps.
Thus, from a purely mathematical perspective, it is a compelling example to study because the
classical theory naturally involves complex geometry and so must the quantization, although the
meaning is less familiar.

From a physical perspective, this class of theories is intimately related to supersymmetric field
theories in various dimensions. The most familiar supersymmetric σ-model is the two-dimensional
N = (2, 2) theory which admits two topological twists, the A and B-twists. In two dimensions,
the theory we consider arises naturally as a close cousin: it is a half-twist of the N = (0, 2), see
for instance [Wit07]. The N = (0, 2) does not admit a twist that is topological, but does twist
to a complex one-dimensional holomorphic theory more commonly referred to as the curved βγ

system. In complex dimension two, we will see, in a similar vein, how the holomorphic σ-model
arises as a twist of N = 1 supersymmetry in four real dimensions. There is a similar result in
dimension six. In a different direction, we show in [GGW] that the holomoprhic σ-model is the
chiral sector of the infinite volume limit of the usual (non-supersymmetric) σ-model.

In complex dimension one, this theory has appeared in a hidden form in the work of Beilinson-
Drinfeld and Malikov-Schechtman-Vaintrob [BD04, MSV99], and it was subsequently developed
by many mathematicians (see [KV, Che12, Bre07] among much else). The chiral differential opera-
tors (CDOs) on a complex n-manifold X are a sheaf of vertex algebras locally resembling a vertex
algebra of n free bosons, and the name indicates the analogy with the differential operators, a
sheaf of associative algebras on X locally resembling the Weyl algebra for T∗Cn. Unlike the sit-
uation for differential operators, which exist on any manifold X, such a sheaf of vertex algebras
exists only if ch2(X) = 0 in H2(X, Ω2

cl), and each choice of trivialization α of this characteristic
class yields a different sheaf CDOX,α. In other words, there is a gerbe of vertex algebras over X,
[GMS00]. The appearance of this topological obstruction (essentially the first Pontryagin class,
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but non-integrally) was surprising, and even more surprising was that the character of this ver-
tex algebra was the Witten genus of X, up to a constant depending only on the dimension of X
[BL00]. These results exhibited the now-familiar rich connections between conformal field theory,
geometry, and topology, but arising from a mathematical process rather than a physical argument.

Witten [Wit07] explained how CDOs on X arise as the perturbative piece of the chiral algebra
of the curved βγ system, by combining standard methods from physics and mathematics. (In
elegant lectures on the curved βγ system [Nek], with a view toward Berkovit’s approach to the
superstring, Nekrasov also explains this relationship. Kapustin [Kap] gave a similar treatment of
the closely-related chiral de Rham complex.) This approach also gave a different understanding
of the surprising connections with topology, in line with anomalies and elliptic genera as seen
from physics. Let us emphasize that only the perturbative sector of the theory appears (i.e., one
works near the constant maps from Σ to T∗X, ignoring the nonconstant holomorphic maps); the
instanton corrections are more subtle and not captured just by CDOs (see [KO03] for a treatment
of the instanton corrections for complex tori).

In this paper we construct mathematically the perturbative sector of the holomorphic σ-model
where the source is allowed to have arbitrary complex dimension. We use the approach to quan-
tum field theory developed in [Cos11, CG17, CG], thus providing a rigorous construction of the
path integral for the holomorphic σ-model. That means we work in the homotopical framework
for field theory known as the Batalin-Vilkovisky (BV) formalism, in conjunction with Feynman
diagrams and renormalization methods. Just as CDO’s have an anomaly we find that the higher
dimensional theory admits a quantized action satisfying the quantum master equation only if the
target manifold X has chd+1(X) = 0, where chd+1(X) is the (d + 1)st component of the Chern
character.

One key feature of the framework in [CG] is that every BV theory yields a factorization algebra
of observables. (We mean here the version of factorization algebras developed in [CG17], not the
version of Beilinson and Drinfeld [BD04].) In our situation, locally speaking the theory produces
a factorization algebra living on the source manifold Cd. When d = 1 the machinery of [CG17]
allows one to extract a vertex algebra from this factorization algebra. It is the main result of our
work in [GGW] that this vertex algebra is precisely the sheaf of CDOs. One can interpret this as
showing that in a wholly mathematical setting, one can start with the action functional for the
curved βγ system and recover the sheaf CDOX,α of vertex algebras on X via the algorithms of
[Cos11, CG17, CG]. In higher dimensions we take the sheaf on X of factorization algebras on Cd

produced via our work as a definition of higher dimensional chiral differential operators. The
higher dimensional theory of vertex algebras has not been fully developed, but we still show
how to extract sensitive algebraic objects from this factorization algebras, such as an A∞-algebra
which one can view as a deformation quantization of the mapping space Map(S2d−1, X).

Let us explain a little about our methods before stating our theorems precisely. The main tech-
nical challenge is to encode the nonlinear σ-model in a way so that the BV formalism of [Cos11]
applies. In [Cosa], Costello introduces a sophisticated approach by which he recovers the anoma-
lies and the Witten genus as partition function, but it seems difficult to relate the local operators
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(e.g. CDO’s in dimension one) directly to the factorization algebra of observables of his quan-
tization. Instead, we use formal geometry à la Gelfand and Kazhdan [GK71], as applied to the
Poisson σ-model by Kontsevich [Kon03] and Cattaneo-Felder [CF00]. The basic idea of Gelfand-
Kazhdan formal geometry is that every n-manifold X looks, very locally, like the formal n-disk,
and so any representation V of the formal vector fields and formal diffeomorphisms determines
a vector bundle V → X, by a sophisticated variant of the associated bundle construction. (Ev-
ery tensor bundle arises in this way, for instance.) In particular, the Gelfand-Kazhdan version of
characteristic classes for V live in the Gelfand-Fuks cohomology H∗Lie(Wn) and map to the usual
characteristic classes for V. There is, for instance, a Gelfand-Fuks version of the Witten class for
every tensor bundle.

Thus, we start with the βγ system on Cd with target the formal n-disk D̂n = Spec C[[t1, . . . , tn]]

and examine whether it quantizes equivariantly with respect to the actions of formal vector fields
Wn and formal diffeomorphisms on the formal n-disk.1 (These actions are compatible, so that
we have a representation of a Harish-Chandra pair.) We call this theory the equivariant formal βγ

system of rank n.
Theorem 3.0.1. The Wn-equivariant formal βγ system on Cd of rank n has a one-loop anomaly given
by the cocycle chd+1(D̂n) in the Gelfand-Fuks complex C∗Lie(Wn; Ω̂d+1

n,cl ). This cocycle determines an L∞

algebra extension W̃n,d of Wn and yields a W̃n,d-equivariant BV quantization, unique up to homotopy.
When d = 1, the partition function of this theory over the moduli of elliptic curves is the formal Witten
class in the Gelfand-Fuks complex C∗Lie(Wn,

⊕
k Ω̂k

n[k])[[h̄]].

Throughout this paper, C∗Lie means the continuous Lie algebra cohomology, thus C∗Lie(Wn, M) is
the well-known cohomology studied by Gelfand and Fuks [Fuk86].

Gelfand-Kazhdan formal geometry is used often in deformation quantization. See, for instance,
the elegant treatment by Bezrukavnikov-Kaledin [BK04]. Here we develop a version suitable for
vertex algebras and factorization algebras, which requires allowing homotopical actions of the Lie
algebra Wn. (Something like this appears already in [BD04, KV, Mal08], but we need a method
with the flavor of differential geometry and compatible with Feynman diagrammatics. It would
be interesting to relate directly these different approaches.) In consequence, our equivariant the-
orem implies the following global version.
Theorem 3.0.2. Let d ≥ 1, and let X be a complex manifold. The holomorphic σ-model of maps Cd → X
admits a BV quantization if the class

chd+1(T1,0X) ∈ Hd+1(X; Ωd+1
cl ) ↪→ H2d+2

dR (X),

vanishes. Moreover, when this class vanishes the space of all quantizations is a torsor for the abelian group
Hd(X, Ωd+1

cl ).

When d = 1 we showed in [GGW] how the resulting factorization algebra produced by this result
recovers CDO’s. Further, when we place the theory on an elliptic curve we recover the Witten
genus of the target manifold. In higher dimensions we provide a detailed analysis of the local

1In fact, we will see that it is enough to consider formal vector fields along with the finite dimensional Lie group of
linear changes of frame GLn
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operators in this theory that is similar in nature to the operators of a chiral CFT. Indeed, we show
how the state space is a natural module for the operators on higher dimensional annuli (neigh-
borhoods of spheres). A full theory of higher dimensional vertex algebras has not been fully
developed. It is an interesting question to relate our higher dimensional holomorphic factoriza-
tion algebras to the more algebro-geometric theory of higher dimensional chiral algebras as in
Francis-Gaitsgory [FG12].

Our techniques for assembling BV theories in families — and their factorization algebras in fam-
ilies — apply to many σ-models already constructed , such as the topological B-model [LL16],
Rozansky-Witten theory [CLL], and topological quantum mechanics [GG14, GLL17]. They also
allow us to recover quickly nearly all the usual variants on CDOs and structures therein, such as
the chiral de Rham complex and the Virasoro actions. In complex dimension one we recover the
usual requirement that the target be Calabi-Yau. One can also study the problem of quantizing
a higher dimensional version of the Virasoro action, which we leave to a later publication. In
general there is a more sensitive obstruction, which is still satisfied so long as the target admits a
flat connection.

In the final section of this chapter we turn to a description of the local operators of the theory.
The factorization algebra of observables is holomorphically translation invariant, in the sense of
Section 2.2.2. We show that there is a subspace of the operators supported on the sphere in Cd

that the factorization product endows with the structure of an associative algebra. Further, we
show that the state space is a natural dg module for this associative algebra, and we express it as
a vacuum representation of the sphere algebra.

3.1 Gelfand-Kazhdan formal geometry

In this section we review the theory of Gelfand-Kazhdan formal geometry and its use in natural
constructions in differential geometry, organized in a manner somewhat different from the stan-
dard approaches. We emphasize the role of the frame bundle and jet bundles. We conclude with
a treatment of the Atiyah class, which may be our only novel addition (although unsurprising) to
the formalism. We refer to our treatment of Harish-Chandra pairs and Harish-Chandra geometry
given in Part I of [GGW].

We remark that from hereon we will work with complex manifolds and holomorphic vector bun-
dles.

3.1.1 A Harish-Chandra pair for the formal disk

Let Ôn denote the algebra of formal power series

C[[t1, . . . , tn]],
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which we view as “functions on the formal n-disk D̂n.” It is filtered by powers of the maximal
ideal mn = (t1, . . . , tn), and it is the limit of the sequence of artinian algebras

· · · → Ôn/(t1, . . . , tn)
k → · · · Ôn/(t1, . . . , tn)

2 → Ôn/(t1, . . . , tn) ∼= C.

We equip Ôn and its modules with the associated adic topology.

We use Wn to denote the Lie algebra of derivations of Ôn, which consists of first-order differential
operators with formal power series coefficients:

Wn =

{
n

∑
i=1

fi
∂

∂ti
: fi ∈ Ôn

}
.

The group GLn also acts naturally on Ôn: for M ∈ GLn and f ∈ Ôn,

(M · f )(t) = f (Mt),

where on the right side we view t as an element of Cn and let M act linearly. In other words, we
interpret GLn as acting “by diffeomorphisms” on D̂n and then use the induced pullback action on
functions on D̂n. The actions of both Wn and GLn intertwine with multiplication of power series,
since “the pullback of a product of functions equals the product of the pullbacks.”

3.1.1.1 Formal automorphisms

Let Autn be the group of filtration-preserving automorphisms of the algebra Ôn, which we will see
is a pro-algebraic group. Explicitly, such an automorphism φ is a map of algebras that preserves
the maximal ideal, so φ is specified by where it sends the generators t1, . . . , tn of the algebra.
In other words, each φ ∈ Autn consists of an n-tuple (φ1, . . . , φn) such that each φi is in the
maximal ideal generated by (t1, . . . , tn) and such that there exists an n-tuple (ψ1, . . . , ψn) where
the composite

ψj(φ1(t), . . . , φn(t)) = tj

for every j (and likewise with ψ and φ reversed). This second condition can be replaced by veri-
fying that the Jacobian matrix

Jac(φ) = (∂φi/∂tj) ∈ Matn(Ôn)

is invertible over Ôn, by a version of the inverse function theorem.

Note that this group is far from being finite-dimensional, so it does not fit immediately into the
setting of Harish-Chandra pairs described above. It is, however, a pro-Lie group in the following
way. As each φ ∈ Autn preserves the filtration on Ôn, it induces an automorphism of each partial
quotient Ôn/mk

n. Let Autn,k denote the image of Autn in Aut(Ôn/mk
n); this group Autn,k is clearly

a quotient of Autn. Note, for instance, that Autn,1 = GLn. Explicitly, an element φ of Autn,k is
the collection of n-tuples (φ1, . . . , φn) such that each φi is an element of mn/mk

n and such that the
Jacobian matrix Jac(φ) is invertible in Ôn/mk

n. The group Autn,k is manifestly a finite dimensional
Lie group, as the quotient algebra is a finite-dimensional vector space.
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The group of automorphisms Autn is the pro-Lie group associated with the natural sequence of
Lie groups

· · · → Autn,k → Autn,k−1 → · · · → Autn,1 = GLn.

Let Aut+n denote the kernel of the map Autn → GLn so that we have a short exact sequence

1→ Aut+n → Autn → GLn → 1.

In other words, for an element φ of Aut+n , each component φi is of the form ti +O(t2). The group
Aut+n is pro-nilpotent, hence contractible.

The Lie algebra of Autn is not the Lie algebra of formal vector fields Wn. A direct calculation
shows that the Lie algebra of Autn is the Lie algebra W0

n ⊂ Wn of formal vector fields with zero
constant coefficient (i.e., that vanish at the origin of D̂n).

Observe that the group GLn acts on the Lie algebra Wn by the obvious linear “changes of frame.”
The Lie algebra Lie(GLn) = gln sits inside Wn as the linear vector fields{

∑
i,j

aj
i ti

∂

∂tj
: ai

j ∈ C

}
.

We record these compatibilities in the following statement.
Lemma 3.1.1. The pair (Wn, GLn) form a Harish-Chandra pair.

Proof. The only thing to check is that the derivative of the action of GLn corresponds with the
adjoint action of gln ⊂Wn on formal vector fields. This is by construction.

3.1.2 Formal coordinates

In this section we review the central object in the Gelfand-Kazhdan picture of formal geometry:
the coordinate bundle.

3.1.2.1 The coordinate bundle

Given a complex manifold, its coordinate space Xcoor is the (infinite-dimensional) space parametriz-
ing jets of holomorphic coordinates of X. (It is a pro-complex manifold, as we’ll see.) Explicitly,
a point in Xcoor consists of a point x ∈ X together with an ∞-jet class of a local biholomorphism
φ : U ⊂ Cn → X sending a neighborhood U of the origin to a neighborhood of x such that
φ(0) = x.

There is a canonical projection map πcoor : Xcoor → X by remembering only the underlying
point in X. The group Autn acts on Xcoor by “change of coordinates,” i.e., by precomposing a
local biholomorphism φ with an automorphism of the disk around the origin in Cn. This action
identifies πcoor as a principal bundle for the pro-Lie group Autn.

One way to formalize these ideas is to realize Xcoor as a limit of finite-dimensional complex man-
ifolds. Let Xcoor

k be the space consisting of points (x, [φ]k), where φ is a local biholomorphism as
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above and [−]k denotes taking its k-jet equivalence class. Let πcoor
k : Xcoor

k → X be the projection.
By construction, the finite-dimensional Lie group Autn,k acts on the fibers of the projection freely
and transitively so that πcoor

k is a principal Autn,k-bundle. The bundle Xcoor → X is the limit of
the sequence of principal bundles on X

· · · // Xcoor
k

//

πcoor
k

,,

Xcoor
k−1

πcoor
k−1

++

// · · · // Xcoor
2

πcoor
2

##

// Xcoor
1

πcoor
1
��

X.

In particular, note that the GLn = Autn,1-bundle πcoor
1 : Xcoor

1 → X is the frame bundle

π f r : FrX → X,

i.e., the principal bundle associated to the tangent bundle of X.

3.1.2.2 The Grothendieck connection

We can also realize the Lie algebra Wn as an inverse limit. Recall the filtration on Wn by powers
of the maximal ideal mn of Ôn. Let Wn,k denote the quotient Wn/mk+1

n Wn. For instance, Wn,1 =

affn = Cn n gln, the Lie algebra of affine transformations of Cn. We have Wn = limk→∞ Wn,k.

The Lie algebra of Autn,k is
W0

n,k := mn ·Wn/mk+1
n W0

n.

That is, the Lie algebra of vector fields vanishing at zero modulo the k + 1 power of the maximal
ideal. Thus, the principal Autn,k-bundle Xcoor

k → X induces an exact sequence of tangent spaces

W0
n,k → T(x,[ϕ]k)X

coor → TxX;

by using ϕ, we obtain a canonical isomorphism of tangent spaces Cn ∼= T0Cn ∼= TxX. Combining
these observations, we obtain an isomorphism

Wn,k
∼= T(x,[ϕ]k)X

coor
k .

In the limit k→ ∞ we obtain an isomorphism Wn ∼= T(x,[ϕ]∞)Xcoor.
Proposition 3.1.2 (Section 5 of [NT95a], Section 3 of [CF01]). There exists a canonical action of Wn

on Xcoor by holomorphic vector fields, i.e., there is a Lie algebra homomorphism

θ : Wn → X hol(Xcoor),

where X hol(Xcoor) is the Lie algebra of holomorphic vector fields. Moreover, this action induces the iso-
morphism Wn ∼= T(x,[φ]∞)Xcoor at each point.

Here, X (Xcoor) is understood as the inverse limit of the finite-dimensional Lie algebras X (Xcoor
k ).

The inverse of the map θ provides a connection one-form

ωcoor ∈ Ω1
hol(Xcoor; Wn),
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which we call the universal Grothendieck connection on X. As θ is a Lie algebra homomorphism,
ωcoor satisfies the Maurer-Cartan equation

∂ωcoor +
1
2
[ωcoor, ωcoor] = 0. (3.1)

Note that the proposition ensures that this connection is universal on all complex manifolds of
dimension n and indeed pulls back along local biholomorphisms.
Remark 3.1.3. We can view ωcoor as an element of the full de Rham complex ωcoor ∈ Ω1(Xcoor; Wn)

where the Maurer-Cartan equation reads dω + 1
2 [ω

coor, ωcoor] = 0.
Remark 3.1.4. Both the pair (Wn, Aut) and the bundle Xcoor → X together with ωcoor do not fit
in the finite dimensional models for Harish-Chandra geometry. They are, however, objects in a
larger category of pro-Harish-Chandra pairs and pro-Harish-Chandra bundles, respectively. We
do not fully develop this theory here, but it is inherent in the work of [BK04]. Indeed, by working
with well-behaved representations for the pair (Wn, Aut), Gelfand, Kazhdan, and others use this
universal construction to produce many of the natural constructions in differential geometry. As
we remarked earlier, it is a kind of refinement of tensor calculus.

3.1.2.3 A Harish-Chandra structure on the frame bundle

Although the existence of the coordinate bundle Xcoor is necessary in the remainder of this paper,
it is convenient for us to use it in a rather indirect way. Rather, we will work with the frame bundle
FrX → X equipped with the structure of a module for the Harish-Chandra pair (Wn, GLn). The
Wn-valued connection on FrX is induced from the Grothendieck connection above.
Definition 3.1.5. Let Exp(X) denote the quotient Xcoor/GLn. A holomorphic section of Exp(X)

over X is called a formal exponential.
Remark 3.1.6. The space Exp(X) can be equipped with the structure of a principal Aut+n -bundle
over X. This structure on Exp(X) depends on a choice of a section of the short exact sequence

1→ Aut+n → Autn → GLn → 1.

It is natural to use the splitting determined by the choice of coordinates on the formal disk.

Note that Aut+n is contractible, and so sections always exist. A formal exponential is useful be-
cause it equips the frame bundle with a (Wn, GLn)-module structure, as follows.
Proposition 3.1.7. A formal exponential σ pulls back to a GLn-equivariant map σ̃ : FrX → Xcoor,
and hence equips (Frx, σ∗ωcoor) with the structure of a principal (Wn, GLn)-bundle with flat connection.
Moreover, any two choices of formal exponential determine (Wn, GLn)-structures on X that are gauge-
equivalent.

For a full proof, see [NT95a], [NT95b], or [Kho07] but the basic idea is easy to explain.

Sketch of proof. The first assertion is tautological, since the data of a section is equivalent to such
an equivariant map, but we explicate the underlying geometry. A map ρ : FrX → Xcoor assigns to
each pair (x, y) ∈ FrX , with x ∈ X and y : Cn ∼=−→ TxX a linear frame, an ∞-jet of a biholomorphism
φ : Cn → X such that φ(0) = x and Dφ(0) = y. Being GLn-equivariant ensures that these
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biholomorphisms are related by linear changes of coordinates on Cn. In other words, a GLn-
equivariant map σ̃ describes how each frame on TxX exponentiates to a formal coordinate system
around x, and so the associated section σ assigns a formal exponential map σ(x) : TxX → X to
each point x in X. (Here we see the origin of the name “formal exponential.”)

The second assertion would be immediate if Xcoor were a complex manifold, since the flat bundle
structure would pull back, so all issues are about carefully working with pro-manifolds.

The final assertion is also straightforward: the space of sections is contractible since Aut+n is con-
tractible, so one can produce an explicit gauge equivalence.

Remark 3.1.8. In [Wil] Willwacher provides a description of the space Exp(X) of all formal expo-
nentials. He shows that it is isomorphic to the space of pairs (∇0, Φ) where ∇0 is a torsion-free
connection on X for TX and Φ is a section of the bundle

FrX ×GLn W3
n

where W3
n ⊂ Wn is the subspace of formal vector fields whose coefficients are at least cubic.

In particular, every torsion-free affine connection determines a formal exponential. The familiar
case above that produces a formal coordinate from a connection corresponds to choosing the zero
vector field.
Definition 3.1.9. A Gelfand-Kazhdan structure is a complex manifold X of dimension n together
with a formal exponential σ, which makes the frame bundle FrX into a flat (Wn, GLn)-bundle with
connection one-form ωσ, the pullback of ωcoor along the GLn-equivariant lift σ̃ : FrX → Xcoor.
Example 3.1.10. Consider the case of an open subset U ⊂ Cn. There are thus natural holomorphic
coordinates {z1, . . . , zn} on U. These coordinates provides a natural choice of a formal exponen-
tial. Moreover, with respect to the isomorphism

Ω1
hol(FrU ; Wn)

GLn ∼= Ω1
hol(U; Wn) ∼= Ohol(U)[dzi]⊗Wn,

we find that the connection 1-form has the form

ωcoor =
n

∑
i=1

dzi ⊗
∂

∂ti
,

where the {ti} are the coordinates on the formal disk D̂n.

A Gelfand-Kazhdan structure allows us to apply a version of Harish-Chandra descent, which will
be a central tool in our work.

Although we developed Harish-Chandra descent on all flat (g, K)-bundles, it is natural here to
restrict our attention to manifolds of the same dimension, as the notions of coordinate and affine
bundle are dimension-dependent. Hence we replace the underlying category of all complex man-
ifolds by a more restrictive setting.
Definition 3.1.11. Let Holn denote the category whose objects are complex manifolds of dimen-
sion n and whose morphisms are local biholomorphisms. In other words, a map f : X → Y in
Holn is a map of complex manifolds such that each point x ∈ X admits a neighborhood U on
which f |U is biholomorphic with f (U).
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There is a natural inclusion functor i : Holn → CplxMan (not fully faithful) and the frame bundle
Fr defines a section of the fibered category i∗VB, since the frame bundle pulls back along local
biholomorphisms. For similar reasons, the coordinate bundle is a pro-object in i∗VB.
Definition 3.1.12. Let GKn denote the category fibered over Holn whose objects are a Gelfand-
Kazhdan structure — that is, a pair (X, σ) of a complex n-manifold and a formal exponential —
and whose morphisms are simply local biholomorphisms between the underlying manifolds.

Note that the projection functor from GKn to Holn is an equivalence of categories, since the space
of formal exponentials is affine.

3.1.3 The category of formal vector bundles

For most of our purposes, it is convenient and sufficient to work with a small category of (Wn, GLn)-
modules that is manifestly well-behaved and whose localizations appear throughout geometry
in other guises, notably as ∞-jet bundles of vector bundles on complex manifolds. (Although it
would undoubtedly be useful, we will not develop here the general theory of modules for the
Harish-Chandra pair (Wn, GLn), which would involve subtleties of pro-Lie algebras and their
representations.)

We first start by describing the category of (Wn, GLn)-modules that correspond to modules over
the structure sheaf of a manifold. Note that Ôn is the quintessential example of a commutative
algebra object in the symmetric monoidal category of (Wn, GLn)-modules, for any natural version
of such a category. We consider modules that have actions of both the pair and the algebra Ôn

with obvious compatibility restrictions.
Definition 3.1.13. A formal Ôn-module is a vector space V equipped with

(i) the structure of a (Wn, GLn)-module;

(ii) the structure of a Ôn-module;

such that

(1) for all X ∈Wn, f ∈ Ôn and v ∈ V we have X( f · v) = X( f ) · v + f · (X · v);

(2) for all A ∈ GLn we have A( f · v) = (A · f ) · (A · v), where A acts on f by a linear change of
frame.

A morphism of formal Ôn-modules is a Ôn-linear map of (Wn, GLn)-modules f : V → V ′. We
denote this category by ModÔn

(Wn ,GLn)
.

Just as the category of D-modules is symmetric monoidal via tensor over Ô, we have the following
result.
Lemma 3.1.14. The category ModÔn

(Wn ,GLn)
is symmetric monoidal with respect to tensor over Ôn.

Proof. The category of Ôn-modules is clearly symmetric monoidal by tensoring over Ôn. We sim-
ply need to verify that the Harish-Chandra module structures extend in a natural way, but this is
clear.
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We will often restrict ourselves to considering Harish-Chandra modules as above that are free as
underlying Ôn-modules. Indeed, let

VBn ⊂ ModÔn
(Wn ,GLn)

be the full subcategory spanned by objects that are free and finitely generated as underlying Ôn-
modules. Upon descent these will correspond to ordinary vector bundles and so we refer to this
category as formal vector bundles.

The category of formal Ôn-modules has a natural symmetric monoidal structure by tensor product
over Ô. The Harish-Chandra action is extended by

X · (s⊗ t) = (Xs)⊗ t + s⊗ (Xt).

This should not look surprising; it is the same formula for tensoring D-modules over Ô.

The internal hom Hom
Ô
(V ,W) also provides a vector bundle on the formal disk, where the

Harish-Chandra action is extended by

(X · φ)(v) = X · (φ(v))− φ(X · v).

Observe that for any D-module M, we have an isomorphism

HomD(Ô, M) ∼= HomWn(C, M)

since a map of D̂-modules out of Ô is determined by where it sends the constant function 1. Hence
we find that there is a quasi-isomorphism

RHomD(Ô,V) ' C∗Lie(Wn;V),

or more accurately a zig-zag of quasi-isomorphisms. Here C∗Lie(Wn;V) is the continuous coho-
mology of Wn with coefficients in V . This is known as the Gelfand-Fuks cohomology of V and is
what we use for the remainder of the paper.

This relationship extends to the GLn-equivariant setting as well, giving us the following result.
Lemma 3.1.15. There is a quasi-isomorphism

C∗Lie(Wn, GLn;V) ' RHomD(Ô,V)GLn−eq,

where the superscript GLn − eq denotes the GLn-equivariant maps.
Remark 3.1.16. One amusing way to understand this category is as Harish-Chandra descent to
the formal n-disk itself. Consider the frame bundle F̂r = D̂n ×GLn → D̂n of the formal n-disk
itself, which possesses a natural flat connection via the Maurer-Cartan form ωMC on GLn. Let
ρ : GLn → GL(V) be a finite-dimensional representation. Then the subcomplex of Ω∗(F̂r)⊗ V
given by the basic forms is isomorphic to(

Ω∗(D̂n)⊗V, ddR + ρ(ωMC)
)

.

This equips the associated bundle F̂r×GLn V with a flat connection and hence makes its sheaf of
sections a D-module on the formal disk.
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Many of the important Ôn-modules we will consider simply come from linear tensor represen-
tations of GLn. Given a finite-dimensional GLn-representation V, we construct a Ôn-module
V ∈ VBn as follows.

Consider the decreasing filtration of Wn by vanishing order of jets

· · · ⊂ m2
n ·Wn ⊂ m1

n ·Wn ⊂Wn.

The induced map m1
n ·Wn → m1

n ·Wn/m2
n ·Wn ∼= gln allows us to restrict V to a m1

n ·Wn-
module. We then coinduce this module along the inclusion m1 ·Wn ⊂ Wn to get a Wn-module
V = Homm1

n ·Wn
(Wn, V). There is an induced action of GLn on V . Indeed, as a GLn-representation

one has V ∼= Ôn ⊗C V. Moreover, this action is compatible with the Wn-module structure, so that
V is actually a (Wn, GLn)-module. Thus, the construction provides a functor from RepGLn

to VBn.
Definition 3.1.17. We denote by Tensn the image of finite-dimensional GLn-representations in
VBn along this functor. We call it the category of formal tensor fields.

As mentioned Ôn is an example, associated to the trivial one-dimensional GLn representation.
Another key example is T̂n, the vector fields on the formal disk, which is associated to the defining
GLn representation Cn; it is simply the adjoint representation of Wn. Other examples include Ω̂1

n,
the 1-forms on the formal disk; it is the correct version of the coadjoint representation, and more
generally the space of k-forms on the formal disk Ω̂k

n.

The category Tensn can be interpreted in two other ways, as we will see in subsequent work.

1. They are the ∞-jet bundles of tensor bundles: for a finite-dimensional GLn-representation,
construct its associated vector bundle along the frame bundle and take its ∞-jets.

2. They are the flat vector bundles of finite-rank on the formal n-disk that are equivariant with
respect to automorphisms of the disk. In other words, they are GLn-equivariant D-modules
whose underlying Ô-module is finite-rank and free.

It should be no surprise that given a Gelfand-Kazhdan structure on the frame bundle of a non-
formal n-manifold X, a formal tensor field descends to the ∞-jet bundle of the corresponding
tensor bundle on X. The flat connection on this descent bundle is, of course, the Grothendieck
connection on this ∞-jet bundle. (For some discussion, see section 1.3, pages 12-14, of [Fuk86].)

Note that the subcategories
Tensn ↪→ VBn ↪→ ModÔn

(Wn ,GLn)

inherit the symmetric monoidal structure constructed above.

3.1.4 Gelfand-Kazhdan descent

We will focus on defining descent for the category VBn of formal vector bundles.

Fix an n-dimensional manifold X. The main result of this section is that the associated bundle
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construction along the frame bundle FrX ,

FrX ×GLn (−) : Rep(GLn) f in → VB(X)

V 7→ FrX ×GLn V
,

which builds a tensor bundle from a GLn representation, arises from Harish-Chandra descent for
(Wn, GLn). This result allows us to equip tensor bundles with interesting structures (e.g., a vertex
algebra structure) by working (Wn, GLn)-equivariantly on the formal n-disk. In other words, it
reduces the problem of making a universal construction on all n-manifolds to the problem of
making an equivariant construction on the formal n-disk, since the descent procedure automates
extension from the formal to the global.

Note that every formal vector bundle V ∈ VB(Wn ,GLn) is naturally filtered via a filtration inherited
from Ôn. Explicitly, we see that V is the limit of the sequence of finite-dimensional vector spaces

· · · → Ôn/mk
n ⊗V → · · · → Ôn/mn ⊗V ∼= V

where V is the underlying GLn-representation. Each quotient Ôn/mk
n⊗V is a module over Autn,k,

and hence determines a vector bundle on X by the associated bundle construction along Xcoor
k . In

this way, V produces a natural sequence of vector bundles on X and thus a pro-vector bundle on
X.

Given a formal exponential σ on X, we obtain a GLn-equivariant map from FrX to Xcoor
k for every

k, by composing the projection map Xcoor → Xcoor
k with the GLn-equivariant map from FrX to

Xcoor.
Definition 3.1.18. Gelfand-Kazhdan descent is the functor

desc : GKop
n ×VB(Wn ,GLn) → Pro(VB) f lat

sending (X, σ) — a Gelfand-Kazhdan structure — and a formal vector bundle V to the pro-vector
bundle FrX ×GLn V with flat connection induced by the Grothendieck connection.

When the Gelfand-Kazhdan structure (X, σ) is fixed we will denote the corresponding functor
desc((X, σ),−) : VB(Wn ,GLn) → Pro(VB) f lat by descX,σ.

By Proposition we see that for any two choices of formal exponentials σ, σ′ on the same complex
manifold X that there is an equivalence of functors

desc((X, σ),−) ' desc((X, σ′),−) : VB(Wn ,GLn) → Pro(VB) f lat.

Thus, we will often abuse notation and write descX,σ = descX when a formal exponential is
understood.

This functor is, in essence, Harish-Chandra localization [BlB93, JB95], but in a slightly exotic con-
text. It has several nice properties.
Lemma 3.1.19. For any choice of Gelfand-Kazhdan structure (X, σ), the descent functor desc((X, σ),−)
is lax symmetric monoidal.
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Proof. For every V ,W in VB(Wn ,GLn), we have natural maps

(Ω∗(FrX)⊗V)basic⊗ (Ω∗(FrX)⊗W)basic → (Ω∗(FrX)⊗ (V ⊗W))basic → (Ω∗(FrX)⊗ (V ⊗
Ôn
W))basic

and the composition provides the natural transformation producing the lax symmetric monoidal
structure.

In particular, we observe that the de Rham complex of desc((X, σ), Ôn) is a commutative algebra
object in Ω∗(X)-modules. As every object of VB(Wn ,GLn) is an Ôn-module and the morphisms
are Ôn-linear, we find that descent actually factors through the category of desc((FrX , σ), Ôn)-
modules. In sum, we have the following.
Lemma 3.1.20. The descent functor desc((X, σ),−) factors as a composite

VBn
desc((X,σ),−)−−−−−−−−→ Moddesc((X,σ),Ôn)

forget
−−−→ VB f lat(X)

and the functor desc((X, σ),−) is symmetric monoidal.

As before, we let Desc denote the associated local system obtained from desc by taking horizontal
sections. This functor is well-known: it recovers the tensor bundles on X.

If E → X is a holomorphic vector bundle on X we denote by Jethol(E) the holomorphic ∞-jet
bundle of E. If Ex is the fiber of E over a point x ∈ X, then the fiber of this pro-vector bundle over
x can be identified with

Jethol(E)|x ∼= Ex ×C[[t1, . . . , tn]].

This pro-vector bundle has a canonical flat connection.
Proposition 3.1.21. For V ∈ VBn corresponding to the GLn-representation V, there is a natural isomor-
phism of flat pro-vector bundles

desc((X, σ),V) ∼= Jethol(FrX ×GLn V)

In other words, the functor of descent along the frame bundle is naturally isomorphic to the functor of
taking ∞-jets of the associated bundle construction.

As a corollary, we see that the associated sheaf of flat sections is

Desc((X, σ),V) ∼= Γhol(FrX ×GLn V)

where Γhol(−) denotes holomorphic sections.

In other words, Gelfand-Kazhdan descent produces every tensor bundle. For example, for the
defining representation V = Cn of GLn, we have V = T̂n, i.e., the vector fields on the formal
disk viewed as the adjoint representation of Wn. Under Gelfand-Kazhdan descent, it produces
the tangent bundle T on Holn.
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3.1.5 Formal characteristic classes

3.1.5.1 Recollection

In [Ati57], Atiyah examined the obstruction — which now bears his name — to equipping a
holomorphic vector bundle with a holomorphic connection from several perspectives. To start, as
he does, we take a very structural approach. He begins by constructing the following sequence
of vector bundles (see Theorem 1).
Definition 3.1.22. Let G be a complex Lie group. Let E → X be a holomorphic vector bundle
on a complex manifold and E its sheaf of sections. The Atiyah sequence of E is the exact sequence
holomorphic vector bundles given by

0→ E⊗ T∗X → J1(E)→ E→ 0,

where J1(E) the bundle of first-order jets of E The Atiyah class is the element At(E) ∈ H1(X, Ω1
X ⊗

EndOX (E)) associated to the extension above.
Remark 3.1.23. Taking linear duals we see tha above short exact sequence is equivalent to one of
the form

0→ End(E)→ A(E)→ TX → 0

where A(E) is the so-called Atiyah bundle associated to E.

We should remark that the sheaf A(E) of holomorphic sections of the Atiyah bundle A(E) is a
Lie algebra by borrowing the Lie bracket on vector fields. By inspection, the Atiyah sequence of
sheaves (by taking sections) is a sequence of Lie algebras; in fact, A(E) is a central example of a
Lie algebroid, as the quotient map to vector fields TX on X is an anchor map.

Atiyah also examined how this sequence relates to the Chern theory of connections.
Proposition 3.1.24. A holomorphic connection on E is a splitting of the Atiyah sequence (as holomor-
phic vector bundles).

Atiyah’s first main result in the paper is the following.
Proposition 3.1.25 (Theorem 2, [Ati57]). A connection exists on E if and only if the Atiyah class At(E)
vanishes.

He observes immediately after this statement that the construction is functorial in maps of bun-
dles. Later, he finds a direct connection between the Atiyah class and the curvature of a smooth
connection. A smooth connections always exists (i.e., the sequence splits as smooth vector bun-
dles, not necessarily holomorphically), and one is free to choose a connection such that the local
1-form only has Dolbeault type (1, 0), i.e., is an element in Ω1,0(X; End(E)). In that case, the (1, 1)-
component Θ1,1 of the curvature Θ is a 1-cocycle in the Dolbeault complex (Ω1,∗(X; End(E)), ∂)

for End(E) and its cohomology class [Θ1,1] is the Atiyah class At(E). In consequence, Atiyah
deduces the following.
Proposition 3.1.26. For X a compact Kähler manifold, the kth Chern class ck(E) of E is given by the
cohomology class of (2πi)−kSk(At(E)), where Sk is the kth elementary symmetric polynomial, and hence
only depends on the Atiyah class.
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This assertion follows from the degeneracy of the Hodge-to-de Rham spectral sequence. More
generally, the term (2πi)−kSk(At(E)) agrees with the image of the kth Chern class in the Hodge
cohomology Hk(X; Ωk,hol).

The functoriality of the Atiyah class means that it makes sense not just on a fixed complex man-
ifold, but also on the larger sites Holn and GKn. We thus immediately obtain from Atiyah the
following notion.
Definition 3.1.27. For each V ∈ VB(Holn), the Atiyah class At(V) is the equivalence class of the
extension of the tangent bundle T by End(V) given by the Atiyah sequence.

Moreover, we have the following.
Lemma 3.1.28. The cohomology class of (2πi)−kSk(At(V)) provides a section of the sheaf Hk(X; Ωk,hol).
On any compact Kähler manifold, it agrees with ck(V).

3.1.5.2 The formal Atiyah class

We show that Gelfand-Kazhdan descent sends an exact sequence in VB(Wn ,GLn) to an exact se-
quence in VB(GKn) (and hence in VB(Holn)). It will then remain to verify that for each tensor
bundle on Holn, there is an exact sequence over the formal n-disk that descends to the Atiyah
sequence for that tensor bundle.

We will use the notation desc(V) to denote the functor desc(−,V) : GKop
n → Pro(VB) f lat, since

we want to focus on the sheaf on GKn (or Holn) defined by each formal vector bundle V . Taking
flat sections we get an O-module Desc(V) which is locally free of finite rank and so determines
an object in VB(GKn).
Lemma 3.1.29. If

A → B → C

is an exact sequence in VB(Wn ,GLn), then

Desc(A)→ Desc(B)→ Desc(C)

is exact in VB(GKn).

Proof. A sequence of vector bundles is exact if and only if the associated sequence of O-modules
is exact (i.e., the sheaves of sections of the vector bundles). But a sequence of sheaves is exact
if and only if it is exact stalkwise. Observe that there is only one point at which to compute a
stalk in the site Holn, since every point x ∈ X has a small neighborhood isomorphic to a small
neighborhood of 0 ∈ Cn. As we are working in an analytic setting, the stalk of a O-module at a
point x injects into the ∞-jet at x. Hence, it suffices to verifying the exactness of the sequence of
∞-jets. Hence, we consider the ∞-jet at 0 ∈ Cn of the sequence desc(A) → desc(B) → desc(C).
But this sequence is simply A→ B→ C, which is exact by hypothesis.

Corollary 3.1.30. There is a canonical map from Ext1
(Wn ,GLn)

(B,A) to Ext1
GKn

(Desc(B),Desc(A)).

In particular, once we produce the (Wn, GLn)-Atiyah sequence for a formal tensor field V , we will
have a very local model for the Atiyah class living in C∗Lie(Wn, GLn; Ω̂1

n ⊗Ôn
End

Ôn
(V)).
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3.1.5.3 The formal Atiyah sequence

Let V be a formal vector bundle. We will now construct the “formal” Atiyah sequence associated
to V . First, we need to define the (Wn, GLn)-module of first order jets of V . Let’s begin by recalling
the construction of jets in ordinary geometry.

If X is a manifold, we have the diagonal embedding ∆ : X ↪→ X×X. Correspondingly, there is the
ideal sheaf I∆ on X × X of functions vanishing along the diagonal. Let X(k) be the ringed space
(X,OX×X/Ik

∆) describing the kth order neighborhood of the diagonal in X×X. Let ∆(k) : X(k) →
X × X denote the natural map of ringed spaces. The projections π1, π2 : X × X → X compose
with ∆(k) to define maps π

(k)
1 , π

(k)
2 : X(k) → X. Given an OX-module V , “push-and-pull” along

these projections,
Jk
X(V) = (π

(k)
1 )∗(π

(k)
2 )∗V ,

defines the OX-module of kth order jets of V .

There is a natural adaptation in the formal case. The diagonal map corresponds to an algebra
map ∆∗ : Ô2n → Ôn. Fix coordinatizations Ôn = C[[t1, . . . , tn]] and Ô2n = C[[t′1, . . . , t′n, t′′1 , . . . , t′′n ]].
Then the map is given by ∆∗(t′i) = ∆∗(t′′i ) = ti.

Let În = ker(∆∗) ⊂ Ô2n be the ideal given by the kernel of ∆∗. For each k there is a quotient map

∆(k)∗ : Ô2n → Ô2n/ Îk+1
n ,

The projection maps have the form

π
(k)∗
1 , π

(k)∗
2 : Ôn → Ô2n/ Îk+1

n ,

which in coordinates are π∗1 (ti) = t′i and π∗2 (ti) = t′′i .
Definition 3.1.31. Let V be a formal vector bundle on D̂n. Consider the Ô2n/ Îk+1

n -module V ⊗
Ôn(

Ô2n/ Îk+1
n

)
, where the tensor product uses the Ôn-module structure on the quotient Ô2n/ Îk+1

n

coming from the map π
(k)∗
2 . We define the kth order formal jets of V , denoted Jk(V), as the restriction

of this Ô2n/ Îk+1
n -module to a Ôn-module using the map π

(k)∗
1 : Ôn → Ô2n/ Îk+1

n .
Lemma 3.1.32. For any V ∈ VBn the kth order formal jets Jk(V) is an element of VBn.

Proof. For V in VBn there is an induced action of (Wn, GLn) on the tensor product V ⊗
Ôn

Ô2n/ Îk+1
n .

For fixed k we see that Ô2n/ Îk+1
n is finite rank as a Ôn module. Thus it is immediate that this

module satisfies the conditions of a formal vector bundle.

As a C-linear vector space we have J1(V) = V ⊕ (V ⊗
Ôn

Ω̂1
n). For f ∈ Ôn and (v, β) ∈ V ⊕ (V ⊗

Ω̂1
n), the Ôn-module structure is given by

f · (v, β) = ( f v, ( f β + v⊗ d f )).

(This formula is the formal version of Atiyah’s description in Section 4 of [Ati57], where he uses
the notation D.) The following is proved in exact analogy as in the non-formal case which can
also be found in Section 4 of [Ati57], for instance.
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Proposition 3.1.33. For any V ∈ VB(Wn ,GLn), the Ôn-module J1(V) has a compatible action of the pair
(Wn, GLn) and hence determines an object in VB(Wn ,GLn). Moreover, it sits in a short exact sequence of
formal vector bundles

V ⊗ Ω̂1
n → J1(V)→ V . (3.2)

Finally, the Gelfand-Kazhdan descent of this short exact sequence is isomorphic to the Atiyah sequence

DescGK(V)⊗Ω1
hol → J1DescGK(V)→ DescGK(V).

In particular, J1descGK(V) = descGK(J1V).

We henceforth call the sequence (3.2) the formal Atiyah sequence for V .
Remark 3.1.34. Note that J1(V) is an element of the category VBn but it is not a formal tensor field.
That is, it does not come from a linear representation of GLn via coinduction.
Remark 3.1.35. A choice of a formal coordinate defines a splitting of the first-order jet sequence as
Ôn-modules. If we write V = Ôn ⊗C V , then one defines

j1 : V → J1V , f ⊗C v 7→ ( f ⊗C v, (1⊗C v)⊗O d f ).

It is a map of Ôn-modules, and it splits the obvious projection J1(V) → V . We stress, however,
that it is not a splitting of Wn-modules. We will soon see that this is reflected by the existence of a
certain characteristic class in Gelfand-Fuks cohomology.

Note the following corollary, which follows from the identification

Ext1(V ⊗
Ôn

Ω̂1
n,V) ∼= C1

Lie(Wn, GLn; Ω̂1
n ⊗Ôn

End
Ôn

(V))

and from the observation that an exact sequence in VB(D̂n) maps to an exact sequence in VB(GKn).
Corollary 3.1.36. There is a cocycle AtGF(V) ∈ C1

Lie(Wn, GLn; Ω̂1
n ⊗Ôn

End
Ôn

(V)) representing the
Atiyah class At(desc(V)).

We call this cocycle the Gelfand-Fuks-Atiyah class of V since it descends to the ordinary Atiyah
class for desc(V) as a sheaf of O-modules.
Definition 3.1.37. The Gelfand-Fuks-Chern character is the formal sum chGF(V) = ∑k≥0 chGF

k (V),
where the kth component

chGF
k (V) :=

1
(−2πi)kk!

Tr(AtGF(V)k)

lives in Ck
Lie(Wn, GLn; Ω̂k

n).

It is a direct calculation to see that chGF
k (V) is closed for the differential on formal differential

forms, i.e., it lifts to an element in Ck
Lie(Wn, GLn; Ω̂k

n,cl).

3.1.5.4 An explicit formula

In this section we provide an explicit description of the Gelfand-Fuks-Atiyah class

AtGF(V) ∈ C1
Lie(Wn, GLn; Ω̂1

n ⊗Ôn
End

Ô
(V)).
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of a formal vector bundle V .

By definition, any formal vector bundle has the form V = Ôn ⊗ V, with V a finite-dimensional
vector space. We view V as the “constant sections” in V by the inclusion i : v 7→ 1⊗ v. This map
then determines a connection on V : we define a C-linear map ∇ : V → Ω̂1

n ⊗Ôn
V by saying that

for any f ∈ Ôn and v ∈ V,
∇( f v) = d( f )v,

where d : Ôn → Ω̂1
n denote the de Rham differential on functions. This connection appeared

earlier when we defined the splitting of the jet sequence j1 = 1⊕∇.

The connection ∇ determines an element in C1
Lie(Wn; Ω̂1

n ⊗Ô
End

Ô
(V)), as follows. Let

ρV : Wn ⊗ V → V

denote the action of formal vector fields and consider the composition

Wn ⊗V id⊗i−−→Wn ⊗ V
ρV−→ V ∇−→ Ω̂1

n ⊗Ô
V .

Since V spans V over Ôn, this composite map determines a C-linear map

αV ,∇ : Wn → Ω̂1
n ⊗Ô

End
Ô
(V)

by
αV ,∇(X)( f v) = f∇(ρV (X)(i(v))),

with f ∈ Ôn and v ∈ V.
Proposition 3.1.38. Let V be a formal vector bundle. Then αV ,∇ is a representative for the Gelfand-Fuks-
Atiyah class AtGF(V).

Proof. We begin by recalling some general facts about the Gelfand-Fuks-Atiyah class as an exten-
sion class of an exact sequence of modules. Viewing Ôn as functions on the formal n-disk, we can
ask about the jets of such functions. A choice of formal coordinates corresponds to an identifica-
tion Ôn ∼= C[[t1, . . . , tn]], and that choice provides a trivialization of the jet bundles by providing
a preferred frame. This frame identifies, for instance, J1 with Ôn ⊕ Ω̂1

n, and the1-jet of a formal
function f can be understood as ( f , d f ).

For a formal vector bundle V = Ôn ⊗ V, something similar happens after choosing coordinates.
We have J1(V) ∼= V ⊕ Ω̂1

n ⊗Ôn
V and the 1-jet of an element of V can be written as

j1 : V → J1(V)
f v 7→ ( f v, d( f )v).

where f ∈ Ôn and v ∈ V. The projection onto the second summand is precisely the connection∇
on V determined by V = Ôn ⊗V, the defining decomposition.

The Gelfand-Fuks-Atiyah class is the failure for this map ∇ to be a map of Wn-modules. Indeed,
∇ determines a map of graded vector spaces

1⊗∇ : C#
Lie(Wn;V)→ C#

Lie(Wn; Ω̂1
n ⊗Ô

V).
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Let dV denote the differential on C∗Lie(Wn;V) and dΩ1⊗V denote the differential on C∗Lie(Wn; Ω̂1
n⊗Ω̂

V). The failure for 1⊗∇ is precisely the difference

(1⊗∇) ◦ dV − dΩ1⊗V ◦ (1⊗∇). (3.3)

This difference is C#
Lie(Wn) linear and can hence be thought of as a cocycle of degree one in

C∗Lie(Wn; Ω̂1 ⊗
Ô

End
Ô
(V)). This is the representative for the Atiyah class.

We proceed to compute this difference. The differential dV splits as dWn ⊗ 1V + d′ where dWn is
the differential on the complex C∗Lie(Wn) and d′ encodes the action of Wn on V . Likewise, the
differential dΩ1⊗V splits as dWn ⊗ 1Ω1⊗V + dΩ1 ⊗ 1V + 1Ω1 ⊗ d′ where dΩ1 is the differential on
the complex C∗Lie(Wn; Ω̂1

n).

The de Rham differential clearly commutes with the action of vector fields so that (1⊗ d) ◦ (dO ⊗
1) = (dWn + dΩ1) ◦ (1⊗ d) so that the the difference in (3.3) reduces to

(1⊗∇) ◦ d′ − (1Ω1 ⊗ d′) ◦ (1⊗∇).

By definition d′ is the piece of the Chevalley-Eilenberg differential that encodes the action of Wn

on V , so if we evaluate on an element of the form 1 ∈ v ∈ C0
Lie(Wn; V) ⊂ C0

Lie(Wn;V) the only
term that survives is the GF 1-cocycle

X 7→ ∇d′(1⊗ v)(X) = ∇(ρV (X)(v)).

as desired.

Corollary 3.1.39. On the formal vector bundle T̂n encoding formal vector fields, fix the Ôn-basis by {∂j}
and the Ôn-dual basis of one-forms by {dtj}. The explicit representative for the Atiyah class is given by
the Gelfand-Fuks 1-cocycle

f i∂i 7→ −d(∂j f i)(dtj ⊗ ∂i)

taking values in Ω̂1
n ⊗Ôn

End
Ô
(T̂n).

Proof. We must compute the action of vector fields on Ôn-basis elements of T̂n. We fix formal
coordinates {tj} and let {∂j} be the associated constant formal vector fields. Then the structure
map is given by the Lie derivative ρ

T̂
( f i∂i, ∂j) = −∂j f i. The formula for the cocycle follows from

the Proposition.

In the above statement, the vector field f i∂i appeared in the Atiyah class through its Jacobian ∂j f i.
For any formal vector field X = f i∂i we will use the notation Jac(X) = (∂j f i) ∈ Matn(Ôn) for
Jacobian. This is an n× n matrix of formal power power series.

We can use this result to explicitly compute the cocycles representing the Gelfand-Kazhdan Chern
characters. For instance, we have the following formulas that will be useful in later sections.
Corollary 3.1.40. The kth component chGF

k (T̂n) of the universal Chern character of the formal tangent
bundle is the cocycle

1
(−2πi)kk!

Tr(AtGF(T̂n)
∧k) : (X1, . . . , Xk) 7→

1
(−2πi)kk!

Tr (d(Jac(X1)) ∧ · · · ∧ d(Jac(Xk)))
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in Ck
Lie(Wn, GLn; Ω̂k

n). As the de Rham differential d : Ω̂k−1
n → Ω̂k

n is Wn-equivariant, there is an
element αk−1 in Ck

Lie(Wn, GLn; Ω̂k−1
n ) such that

chGF
k (T̂n) = dαk−1 (3.4)

Explicitly:

αk : ( f i
1∂i, . . . , f i

k∂i) 7→
1

(−2πi)kk!
Tr (Jac(X1) ∧ d(Jac(X2)) ∧ · · · ∧ d(Jac(Xk))) . (3.5)

3.1.6 A family of extended pairs

We will be most interested in the cocycles chk(V) for k ≥ 2. When k = 2 we obtain a 2-cocycle
with values in Ω̂2

n,cl , ch2(V) ∈ CLie(Wn, GLn; Ω̂2
n,cl). This 2-cocycle chGF

2 (V) determines an abelian
extension Lie algebras of Wn by Ω̂2

n,cl

0→ Ω̂2
n,cl → W̃n,V →Wn → 0.

When V = T̂n, denote this extension by W̃n,V = W̃n,1. (The notation will become clearer momen-
tarily)

We have already discussed the pair (Wn, GLn). We will need that the above extension of Lie
algebras fits in to a Harish-Chandra pair as well. The action of GLn extends to an action on W̃n,1

where we declare the action of GLn on closed two-forms to be the natural one via linear formal
automorphisms.
Lemma 3.1.41. The pair (W̃n,1, GLn) form a Harish-Chandra pair and fits into an extension of pairs

0→ Ω̂2
n,cl → (W̃n,1, GLn)→ (Wn, GLn)→ 0

which is determined by the cocycle chGF
2 (T̂n).

One might be worried as to why there is only a non-trivial extension of the Lie algebra in the
pair. The choice of a coordinate determines an embedding of linear automorphisms GLn into
formal automorphisms Autn. The extension of formal automorphisms Autn defined by the group
two-cocycle chGF

2 (T̂n) is trivial when restricted to GLn so that it does not get extended.

3.1.6.1 An L∞ extension

For k > 2, it will be useful to think of chk(V) as defining a similar type of extension. For this to
make sense, we observe the following interpretation of higher cocycles. Suppose M is a module
for a Lie algebra g, and suppose c ∈ Ck

Lie(g; M) is a cocycle dCEc = 0. Then, c determines an
abelian extension of L∞-algebras

0→ M[k− 2]→ g̃→ g

As a graded vector space g̃ is g⊕M[k− 2] (so that M is placed in degree 2− k). The L∞ structure
on g̃ is defined by, for x, y, x1, . . . , xk ∈ g, m ∈ M:

`2(x, y + m) = [x, y] + x ·m

`k(x1, . . . , xk) = c(x1, . . . , xk).
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Here, x ·m ∈ M uses the module structure.

Thus, for any formal vector bundle V , chk(V) determines an abelian L∞ extension of Wn by the
abelian Lie algebra Ω̂k

n,cl . The case V = T̂n will be especially relevant for us.
Definition 3.1.42. Denote by W̃n,d the L∞ extension of Wn by the module Ω̂d+1

n,cl [d− 1]:

0→ Ω̂d+1
n,cl [d− 1]→ W̃n,d

πn,d−−→Wn → 0

determined by the (d + 1)-cocycle chd+1(T̂n) ∈ Cd+1
Lie (Wn, GLn; Ω̂d+1

n,cl ).

We would like to have an an analog of Lemma 3.1.41 for W̃n,d and the group GLn. Indeed, it turns
out that W̃n,d is also part of a Harish-Chandra pair. To make this possible, we need to slightly
enlarge our category of pairs to include the data of an L∞ algebra, instead of an ordinary Lie
algebra.
Remark 3.1.43. Note that Ω̂k

n,cl does not fit our definition of a formal vector bundle, but it does
admit a resolution by such objects. Indeed, there is a (Wn, GLn)-equivariant resolution of the
form

Ω̂k
n,cl ' Ω̂k

n
d−→ Ω̂k+1

n [−1] d−→ · · · d−→ Ω̂n
n[−n + k]

where d is the formal de Rham differential.

3.1.6.2 L∞ pairs

The concept of an ordinary Harish-Chandra pair involves a Lie group K, a Lie algebra g with an
action by K, together with an embedding of Lie algebras Lie(K) → g. There is a natural way to
relax this to include L∞ algebras.
Definition 3.1.44. An L∞ Harish-Chandra pair is a pair (g, K) where g is an L∞ algebra and K is
a Lie group together with

1. a linear action of K on g, ρK : K → GL(g);

2. a map of L∞ algebras i : Lie(K) g;

such that i is compatible with the action ρK and the adjoint action of K on Lie(K).
Remark 3.1.45. A morphism of L∞ algebras f : h  g is, by definition, a map of the underlying
Chevalley-Eilenberg complexes

CLie
∗ ( f ) : CLie(h)→ CLie(g)

as cocoummutative coalgebras. Now, CLie
∗ (g), being a free cocoummtative coalgebra, this map

is determined by a sequence of maps fn : Symn(h[1]) → g[1] satisfying certain compatibility
conditions.
Remark 3.1.46. This is certainly not the most general definition one can imagine for a homotopy
enhancement of a Harish-Chandra pair. For instance, we have required that K acts on g in a rather
strict way. It turns out that this will be enough for our purposes.
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The condition that i : Lie(K) → g be compatible with ρK can be stated as follows. The L∞ map
i : Lie(K) g is uniquely determined by a sequence of maps in : Symn(Lie(K)[1]) → g, for each
n ≥ 1. We require that for each n ≥ 1, all A ∈ K, and x1, . . . , xn ∈ Lie(K) that

ρK(A) · in(x1, . . . , xn) = in ((Ad(A) · x1) · · · (Ad(A) · xn)) .

Here Ad(A) denotes the adjoint action of A ∈ K on Lie(K).
Lemma 3.1.47. The for any d ≥ 1 the pair (W̃n,d, GLn) has the structure of an L∞ Harish-Chandra pair.

Proof. The proof is similar to the case d = 1. The linear action of GLn on W̃n,d comes from the
natural one on Wn and Ω̂d+1

n,cl . Now, note that we have an GLn-equivariant extension

W̃n,d

��

gln //

==

Wn

since the cocycle chd+1(T̂n) vanishes when one of the inputs lies in gln.

In the next section we will see how the theory of descent for (Wn, GLn) can be extended to the
pair (W̃n,d, GLn) provided a trivialization of the (d + 1)st component of the Chern character is
trivialized. This will be our main application of this extended pair.

3.2 Descent for extended pairs

3.2.1 General theory of descent for L∞ pairs

In this section we set up the general theory of descent for L∞ pairs (g, K). Recall, this means that
K is still and ordinary Lie group, but g is an L∞ algebra.

Let X be a fixed manifold, for which we are defining descent over. The starting point is the theory
of bundles over X for the pair (g, K). In the usual context of Harish-Chandra pairs (where g is
an ordinary Lie algebra), this means that we have a principal K-bundle P → X equipped with a
K-equivariant one-form valued in g, ω ∈ Ω1(P, g) satisfying the flatness condition

dω +
1
2
[ω, ω] = 0.

In other words, ω is a Maurer-Cartan element of the dg Lie algebra Ω∗(P)⊗ g that is equivariant
for the action of K on P and g.

The theory of Maurer-Cartan forms works just as well in the L∞ case. First, note that the category
of L∞ algebras is tensored over commutative dg algebras. In other words, if g is an L∞ algebra
and A a commutative dg algebra, there is the natural structure of an L∞ algebra on A⊗ g. The
n-ary brackets are of the form

`A⊗g
n (a1 ⊗ x1, . . . , an ⊗ xn) = (a1 · · · an)`

g
n(x1, . . . , xn)
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where `gn is the n-ary bracket on g, and where we have used the commutative algebra structure
on A.
Definition 3.2.1. Let (g, K) be an L∞ Harish-Chandra pair. A principal (g, K)-bundle on X is the
data:

1. a principal K-bundle P→ X;

2. a K-invariant element
ω ∈ Ω∗(P)⊗ g

of total degree +1;

such that

1. for all a1, . . . , an ∈ Lie(K) we have ω(ξa1 , · · · , ξan) = i(a1, . . . , an) where ξai is the vertical
vector field on P determined by ai, and i : Lie(K)→ g is the L∞ morphism determining the
Harish-Chandra pair;

2. ω is a Maurer-Cartan element of the L∞ algebra Ω∗(P)⊗ g. In other words,

dω + ∑
n≥1

`n(ω, . . . , ω) = 0

where {`n} are the structure maps for g.

Our main example of a L∞ Harish-Chandra pair that is not an ordinary pair will be associated
to certain natural cohomology classes of formal vector fields. To define descent, we need an
appropriate theory of modules for an L∞ pair (g, K).
Definition 3.2.2. A semi-strict Harish-Chandra module for the L∞ pair (g, K) is a dg vector space
(V, dV) equipped with

(i) a strict group action ρK
V of K, meaning a group map

ρK
Vd : K → GL(Vd)

for each degree d such that the product map ∏d ρK
Vd : K → ∏d GL(Vd) commutes with the

differential dV ;

(ii) an L∞-action of g on V, i.e., a map of L∞-algebras ρgV : g End(V), such that the composite

CLie
∗ (ρgV) ◦CLie

∗ (i) : CLie
∗ (Lie(K))→ CLie

∗ (End(V))

equals the map
CLie
∗ (DρK

V) : CLie
∗ (Lie(K))→ CLie

∗ (End(V)).

Here DρK
V : Lie(K)→ End(V) is the differential of the strict K-action and i : Lie(K) g is part of

the data of the Harish-Chandra pair (g, K).
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3.2.1.1 Basic forms

Before we give construction of semi-strict descent, we recall a basic object in equivariant differen-
tial geometry.

Let V be a finite-dimensional K-representation. Denote by V the trivial vector bundle on P with
fiber V. Sections of this bundle ΓP(V) have the structure of a K-representation by

A · ( f ⊗ v) := (A · f )⊗ (A · v) , A ∈ K, f ∈ O(P) , v ∈ V.

Every K-invariant section f : P → V induces a section s( f ) : X → VX , where the value of s( f ) at
x ∈ X is the K-equivalence class [(p, f (p)], with p ∈ π−1(x) ∼= K. That is, there is a natural map

s : ΓP(V)K → ΓX(VX)

and it is an isomorphism of O(X)-modules. A K-invariant section f of V → P also satisfies the
infinitesimal version of invariance:

(Y · f )⊗ v + f ⊗ Lie(ρ)(Y) · v = 0

for any Y ∈ Lie(K).

There is a similiar statement for differential forms with values in the bundle VX . Let Ωk(P; V) =

Ωk(P) ⊗ V denote the space of k-forms on P with values in the trivial bundle V. Given α ∈
Ω1(X; VX), its pull-back along the projection π : P→ X is annihilated by any vertical vector field
on P. In general, if α ∈ Ωk(X; VX), then iY(π∗α) = 0 for all Y ∈ Lie(K).
Definition 3.2.3. A k-form α ∈ Ωk(P; V) is called basic if

1. it is K-invariant: LYα + ρ(Y) · α = 0 for all Y ∈ Lie(K) and

2. it vanishes on vertical vector fields: iYα = 0 for all Y ∈ Lie(K).

Denote the subspace of basic k-forms by Ωk(P; V)bas. Just as with sections, there is a natural
isomorphism

s : Ωk(P; V)bas
∼=−→ Ωk(X; VX)

between basic k-forms and k-forms on X with values in the associated bundle. In fact, Ω#(P; V)bas

forms a graded subalgebra of Ω#(P; V) and the isomorphism s extends to an isomorphism of
graded algebras Ω#(P; V)bas

∼= Ω#(X; VX).

It is manifest that this construction of basic forms is natural in maps of (g, K)-bundles: basic forms
pull back to basic forms along maps of bundles.

3.2.1.2 Semi-strict descent

Starting with the data:

(a) an L∞ Harish-Chandra pair (g, K);

(b) a principal (g, K) bundle (P→ X, ω);
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(c) a semi-strict (g, K)-module V;

we are now ready to define descent along X. It is constructed in the following steps.

1. Using the linear action of K on V we define the associated vector bundle

VX = P×K V

on X. Note that the differential forms on X with values in VX , Ω∗(X; VX), is isomorphic, as
a dg Ω∗(X)-module, to the complex of basic forms

Ω∗(P; V)bas ⊂ Ω∗(P; V).

2. The Maurer-Cartan element ω ∈ Ω∗(P)⊗g allows us to deform the differential on Ω∗(P; V) =

Ω∗(P) ⊗ V by the following transfer of Maurer-Cartan elements. By the usual yoga of
Koszul duality, the Maurer-Cartan element ω ∈ Ω∗(P) ⊗ g is equivalent to the data of a
map of commutative dg algebras

ω∗ : C∗Lie(g)→ Ω∗(P).

We can then use the L∞ module structure map ρV : g End(V) to form the composition

C∗Lie(End(V))
C∗Lie(ρ

g
V)// C∗Lie(g)

ω∗ // Ω∗(P).

This, in turn, corresponds to a Maurer-Cartan element

ωV ∈ Ω∗(P)⊗ End(V).

3. We use this Maurer-Cartan element to deform the differential on Ω∗(P, V) = Ω∗(P)⊗V via

(Ω∗(P)⊗V, d + ωV) .

Here, d = ddR + dV where ddR is the de Rham differential on P and dV is the internal
differential to V. We can think of ∇V := d + ωV as a flat “super-connection” on the trivial
bundle P × V → P. This means that ωV may contain higher differential forms, not just
one-forms. Tracing through the above construction, we see that ωV actually preserves the
subspace of basic forms, so it that ∇V descends to a flat super-connection on the vector
bundle VX over X. In other words we obtain the Ω∗(X)-module

desc ((P→ X, ω), V) := (Ω∗(P, V)bas, d + ωV)

=
(

Ω∗(X, VX),∇V
)

.

Definition 3.2.4. We will denote the vector bundle VX equipped with its flat superconnection
∇V obtained in this way by desc((P → X, ω), V). Its associated de Rham complex is denoted
desc((P→ X, ω), V).
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3.2.2 The flat connection from the extended pair

In Section 3.1.6.2 we have introduced the L∞ pair (W̃n,d, GLn) extending the pair (Wn, GLn). A
Gelfand-Kazhdan structure is a natural (Wn, GLn)-bundle whose underlying principal bundle is
the frame bundle of X, and whose Wn-valued connection comes from the natural flat connection
on the coordinate bundle. In this section we define extended Gelfand-Kazhdan structures that are
bundles for the pair (W̃n,d, GLn).

If (f, f ) : (g̃, K̃)→ (g, K) is a map of pairs, and (P, ω) is a principal (g, K)-bundle, then a reduction
of (P, ω) along (f, f ) is a principal (g̃, K̃)-bundle (P̃, ω̃) together with a map of bundles φ : P̃→ P
such that φ is a reduction of the principal K-bundle along f and f(ω̃) = φ∗ω.
Definition 3.2.5. Fix a Gelfand-Kazhdan structure (X, σ). A d-extended Gelfand-Kazhdan structure
extending (X, σ) is a reduction of (FrX , ωσ) along the map (πn,d, id) : (W̃n,d, GLn)→ (Wn, GLn).

Since the map on GLn is the identity we see that the reduction of the bundle with connection
(P, ω̃σ) is necessarily of the form (FrX , ω̃σ) where ω̃σ ∈ Ω∗(FrX)⊗ W̃n,d satisfies the generalized
Maurer-Cartan equation.

We will show that extended Gelfand-Kazhdan structures are precisely associated to the data of
a trivialization of of components of the Chern character ch(T1,0

X ) ∈ H∗(X, Ω∗cl) and will be im-
portant when we discuss descent for the quantization of the holomorphic σ-model in the next
section.
Proposition 3.2.6. Fix an ordinary Gelfand-Kazhdan structure (X, σ). Then, a d-extensed Gelfand-
Kazhdan structure exists if and only if chd+1(T

1,0
X ) = 0. Moreover, if chd+1(T

1,0
X ) = 0 then the equiva-

lence classes of d-extended Gelfand-Kazhdan structures extending (X, σ) is a torsor for the abelian group
Hd(X, Ωd+1

cl ).

This proposition implies that every trivialization α of the component of the Chern character
chd+1(T

1,0
X ) determines an extension of the original Gelfand-Kazhdan structure.

Proof. Suppose that we have a d-extension of a Gelfand-Kazhdan structure (X, σ). We will omit
the formal exponential in the proof below. We can then use semi-strict descent to define a map in
cohomology

c̃harX : H∗Lie(W̃n,d, GLn; Ω̂d+1
cl )→ H∗(X, Ωd+1

cl ).

This is the characteristic map for the semi-strict descent along the principal (W̃n,d, GLn)-bundle
(FrX , ω̃). We are using the W̃n,d module structure on Ω̂k

n,cl induced from the map πn,d. Moreover
the ordinary characteristic map charX : H∗Lie(Wn, GLn; Ω̂d+1

cl ) → H∗(X, Ωd+1
cl ) factors through

this extended characteristic map:

H∗Lie(Wn, GLn; Ω̂d+1
cl )

charX

**π∗n,d
// H∗Lie(W̃n,d, GLn; Ω̂d+1

cl )
c̃harX // H∗(X, Ωd+1

cl )

Now, the image of the Gelfand-Fuks class chGF
d+1(T̂n) along charX is precisely chd+1(T

1,0
X ). Notice,

however, that the image of chGF
d+1(T̂n) in the middle cohomology is trivial. This is because it is the
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defining cocycle for the L∞ extension W̃n,d. It follows that the component of the Chern character
chd+1(T

1,0
X ) is trivial in Hd+1(X, Ωd+1

cl ).

Suppose now we fix a trivialization α of the component of the Chern character chd+1(T
1,0
X ) ∈

Hd+1(X, Ωd+1,hol
cl ). We will resolve Ωd+1

cl by holomorphic vector bundles via the complex

Ω≥d+1,hol
X = Ωd+1,hol

X
∂̂−→ Ωd+2,hol

X [−1]→ · · · .

For now, we put the ∂̂ for the formal holomorphic de Rham differential to not confuse it with
the de Rham differential on X. Suppose we have a trivialization of chd+1(T

1,0
X ). We view the

trivialization α as a degree d element in RΓ(X, Ω≥d+1,hol
X ).

If V is any formal vector bundle then Gelfand-Kazhdan descent produces a pro-vector bundle
with flat connection descX(V). Flat sections of this vector bundle form a sheaf that we call
DescX(V). Moreover, the de Rham complex is a model for the derived sections of this sheaf:

Ω∗(X, descX(V)) ' RΓ(X,DescX(V)).

We consider the complex of formal vector bundles

Ω̂≥d+1
n = Ω̂d+1

n
∂−→ Ω̂d+2

n [−1]→ · · · .

Descent yields a quasi-isomorphism

Ω∗(X, descX(Ω̂≥d+1
n )) ' RΓ(X, Ω≥d+1,hol

n ). (3.6)

By construction, the de Rham complex on the left-hand side is of the form((
Ω∗(FrX)⊗ Ω̂≥d+1

n

)
bas

, d + ωσ

)
where ωσ is the connection one-form defining Gelfand-Kazhdan descent.

Consider the defining exact sequence for the L∞ algebra W̃n,d:

0→ Ω̂d+1
n,cl [d− 1]→ W̃n,d

πn,d−−→Wn → 0.

If we resolve Ω̂d+1
n,cl [d− 1] we obtain an extension

0→ Ω̂≥d+1
n,cl [d− 1]→ W̃′n,d

π′n,d−−→Wn → 0

where W̃′n,d is quasi-isomorphic to W̃n,d. Let us tensor this exact sequence with the commutative
dg algebra Ω∗(FrX) to obtain an exact sequence of L∞ algebras

0→ Ω∗(FrX)⊗ Ω̂≥d+1
n [d− 1]→ Ω∗(FrX)⊗ W̃′n,d → Ω∗(FrX)⊗Wn → 0.

The Gelfand-Kazhdan structure defines a GLn-invariant Maurer-Cartan element ωσ ∈ Ω∗(FrX)⊗
Wn. Using the quasi-isomorphism (3.6) we see that the trivialization α determines an element of
j∞α ∈ Ω∗(FrX)⊗ Ω̂≥d+1

n [d− 1]. We claim that ω̃σ,α = ωσ + j∞α is a GLn-invariant Maurer-Cartan
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element in the L∞ algebra Ω∗(FrX)⊗ W̃′n,d. It is certainly GLn-invariant, since ωσ is and j∞α is
pulled back from X. The Maurer-Cartan equation we must check is of the form

d(ωσ + j∞α) + ∂̂(ωσ + j∞α) + ∑
k≥2

1
k!
`k(ωσ + j∞α) = 0.

Where `k is the k-ary structure map. Rearranging terms on the left-hand side we have(
dωσ +

1
2
[ωσ, ωσ]

)
+ (d + [ωσ,−]) j∞α + ∑

k≥3

1
k!
`k(ωσ, . . . , ωσ).

The first term is zero since ωσ is a flat connection one-form. The term d+ [ωσ,−] is the differential
in the complex (3.6). Thus, by assumption, the second term is equal to j∞chd+1(T

1,0
X ), the ∞-jet

expansion of the Chern character viewed as an element in Ω∗(FrX) ⊗ Ω̂≥d+1
n [d − 1]. The only

nontrivial contribution in the sum appearing in the last term is k = d + 1, and this is precisely
the defining cocycle for the extension W̃′n,d applied to ωσ. Thus `d+1(ωσ, . . . , ωσ) is equal to a
multiple of j∞chd+1(T

1,0
X ). So, up to rescaling α, we see that the MC equation is satisfied.

Gelfand-Kazhdan descent is a procedure that produces global objects on arbitrary manifolds from
the data of a module for the pair (Wn, GLn). There is a completely analogous theory of modules
for the pair (W̃n,d, GLn).

Given the data of a d-extension of a GK structure (X, σ), which is prescribed by a trivialization of
chd+1(T

1,0
X ), we denote the corresponding descent functor by

d̃escX,σ,α : Mod(W̃n,d ,GLn)
→ Pro(VB) f lat.

The d-extension gives us a (W̃n,d, GLn)-bundle (FrX , ω̃σ,α) and hence, in the notation of Definition
3.2.4, we have the descent functor

d̃escX,σ,α = desc((FrX , ω̃σ,α),−).

When the formal exponential σ is understood, we denote this by d̃escX,α. Our main example of a
module for the pair (W̃n,d, GLn) that is not a module for (Wn, GLn) will come from the quantiza-
tion of the holomorphic d-dimensional σ-model.

3.3 The classical holomorphic σ-model

We will now define the classical field theory whose quantization is the subject of this chapter.
We fix two complex manifolds Y and X where Y has complex dimension d. We will mostly be
interested in the perturbative theory, but the full theory admits the following concise description.
There are two types of fields in the theory:

1. a map γ : Y → X;
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2. an element β ∈ Ωd,d−1(Y, γ∗T1,0∗
X ), i.e. a (d, d− 1)-form on Y with values in the pull-back

of the holomorphic cotangent bundle on X along γ.

For this reason, we will sometimes refer to the theory as the higher dimensional βγ system. The
action functional is of the form

S(β, γ) =
∫

Y
〈β, ∂γ〉T1,0X

where 〈−,−〉T1,0X denotes the pairing between the holomorphic tangent bundle and its dual.
One can immediately read off the equations of motion which state ∂γ = 0 and ∂β = 0. Thus,
on-shell the solutions to the equations of motion state the γ : Y → X is a holomorphic map, and β

determines an element in the cohomology Hd−1(Y, Ωd,hol ⊗ γ∗T1,0
X ). The field β appears linearly

in the action functional, and in a way its dynamics are completely determined by γ. In physics
terminology it is the conjugate field to γ. In our language we will present the holomorphic σ-
model as a cotangent theory and β will be the “fiber” coordinate. Notice that there is a large gauge
symmetry present in the theory: for any β′ ∈ Ωd,d−2(Y, γ∗T1,0X) the transformation β 7→ β + ∂β′

leaves the action invariant. Our construction will provide a full BV-BRST formulation of the
holomorphic σ-model with all gauge symmetries accounted for.

The fundamental approach we take is to construct this theory locally on the target, and then
appeal to formal geometry to descend it over any complex manifold. For this reason, we first
consider the case of a flat target.

3.3.1 The free βγ system

In Example 2.2.2 we have already encountered the free βγ system. We formulated this theory
using the language of holomorphic field theory. It is not much different to define the βγ system
with target a complex vector space V. The fields together with their linearized BRST operator are

EV = Ω0,∗(Y, V)⊕Ωd,∗(Y, V∗)[d− 1].

We will write fields as (γ, β) to match with the notation above. As usual the notation [d − 1]
means we shift that copy of the fields down by d − 1. Note that the elements in degree zero,
where the physical fields live, are precisely maps γ : Y → V and sections β ∈ Ωd,d−1(Y; V∗), just
as in the description above. In this flat case the section β has no dependence on γ. The (−1)-
shifted symplectic pairing is given by integration along Y combined with the evaluation pairing
between V and its dual: (γ, β) 7→

∫
Y〈γ, β〉V . The action functional for this free theory is thus of

the form
SV(β, γ) =

∫
Y
〈β, ∂γ〉V .

One can immediately check that EV arises as the BV theory associated to a free holomorphic
theory in the terminology of Chapter 2 where Qhol = 0.

Note that the gauge symmetry β → β + ∂β′, where β′ ∈ Ωd,d−2(Y, V∗) has naturally been incor-
porated into our BRST complex (which only consists of a linear operator since the theory is free).
Moreover, there are ghosts for ghosts β′′ ∈ Ωd,d−3(Y, V∗), and so on. Together with all of the
antifields and antighosts, this makes up our full theory EV .
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The theory EV is the cotangent theory to the elliptic moduli problem Ω0,∗(Y, V) which describes
holomorphic maps Y → V.

3.3.1.1 The formal βγ system

In the case that V = Cn we will see how the free βγ system is an equivariant BV theory for
the Harish-Chandra pair consisting of the group of linear automorphisms and the Lie algebra of
formal vector fields on the n-disk. We will refer to this as the formal βγ system, which one should
heurstically think of as the βγ system with target the formal disk D̂n.

In the remainder of the chapter we will use the notation ECn = En and SCn = Sn. The group
GLn = GLn(C) acts on V = Cn in the natural way which extends to an action on the Dolbeualt
complex Ω0,∗(Y, Cn).
Lemma 3.3.1. The group GLn acts on the theory En. That is, GLn is a symmetry of the action functional
Sn.

Proof. The action of GLn is induced by the defining representation on V = Cn and the coadjoint
action on V∗ = (Cn)∗, so the pairing is preserved by definition.

This Lemma provides the first piece of data needed for Gelfand-Kazhdan formal geometry. The
next piece is the action by the Lie algebra of formal vector fields. Recall, from Section 2.4 that to
prescribe an action of a Lie algebra h on a BV theory E we must prescribe a Noether current, that
is, a Maurer-Cartan element

Ih ∈ C∗Lie(h)⊗Oloc(E)[−1],

which is equivalent to a map of L∞ algebras Ih : h Oloc(E)[−1].

Before considering the action of Wn on the field theory, consider first the cotangent bundle of a
vector space T∗V. We can write the algebraic functions on T∗V as O(T∗V) = O(V)⊗ Sym(V).
The derivations of O(V), or vector fields on V, have a similar decomposition Vect(V) = O(V)⊗V.
Note that there is an obvious embedding of vector fields on V inside of functions on T∗V via:

Vect(V) = O(V)⊗V → O(V)⊗ Sym(V) = O(T∗V).

This map is compatible with the Lie bracket of vector fields and the standard Poisson bracket on
T∗V. Thus, this embedding defines a Hamiltonian action of vector fields on T∗V.

Note that our theory is expressed as a shifted cotangent bundle of an elliptic moduli problem.
The construction of our Hamiltonian action is formally similar to the above general construction.
Suppose that we have a formal vector field

X =
n

∑
j=1

∑
~m=(m1,...,mn)∈Nn

aj,~mtm1
1 · · · t

mn
n ∂j ∈Wn.

Define the local functional IW
X ∈ Oloc(EV) via the formula

IW
X (γ, β) =

n

∑
j=1

∑
~m∈Nn

aj,~m

∫
S

γ∧m1
1 ∧ · · · ∧ γ∧mn

n ∧ β j. (3.7)
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Following definition Definition 2.1.5, the space of local functionals on En is defined by

Oloc(En) = DensY ⊗DY C∗Lie,red(JEn). (3.8)

Here JEn denotes the ∞-jet bundle of the graded vector bundle defining En. The Dolbeault oper-
ator ∂ defining the classical theory extends to a degree +1 operator ∂ : Oloc(En) → Oloc(En)[−1].
The following lemma describes the key properties of the functional IW.
Lemma 3.3.2. The map IW : Wn → Oloc(En)[−1] sending X 7→ IW

X is a map of dg Lie algebras. Hence,

IW ∈ C∗Lie(Wn)⊗Oloc(En)

satisfies the equivariant classical master equation

(dW + ∂)IW +
1
2
{IW, IW} = 0. (3.9)

In particular, IW endows En with the structure of a Wn-equivariant classical BV theory, see Section 2.4.
Remark 3.3.3. When restricted to linear vector fields, the action of Wn on βγ system with target D̂n

agrees with the action of GLn described in Lemma 3.3.1. In this sense, we have described an action
of the Harish-Chandra pair (Wn, GLn) on the classical βγ system. This theory can thus be treated
by Gelfand-Kazhdan formal geometry. We develop this reasoning more fully in Section 3.3.2. In
particular, in the next section we will show that this theory descends to the classical holomorphic
σ-model of maps where the target is any complex manifold X. In complex dimension one we this
is the theory studied by Costello in [Cosa].

The deformation complex of the formal βγ system is simply the space of local functionals equipped
with its linearized BRST differential:

Defn =
(
Oloc(En), ∂

)
.

Following the perspective of equivariant BV formalism, the functional IW allows us to define the
Wn-equivariant deformation complex

DefW
n =

(
C∗Lie(Wn)⊗Oloc(En), dW + ∂ + {IW,−}

)
.

This is the complex controlling Wn-equivariant deformations of the formal βγ system on Y with
target D̂n. The fact that the operator dW + ∂ + {IW,−} is square zero is equivalent to the equiv-
ariant classical master equation (3.9).

In the next section we will show how the formal βγ system, which is the theory of holomorphic
maps Y → D̂n, together with the action of (Wn, GLn) allows us to define a general σ-model of
maps Y → X where X is any complex manifold.
Proposition 3.3.4. The formal βγ system En has an action by the Harish-Chandra pair (Wn, GLn). If X
is any complex manifold, the Gelfand-Kazhdan descent descX(En) is equivalent to cotangent theory of the
formal completion of the derived space of holomorphic maps Y → X near the constant maps.
Remark 3.3.5. After setting up the appropriate terminology in the next section, we will refer to
the cotangent theory of the formal completion of the derived space of holomorphic maps from
Y → X simply as the holomorphic σ-model.
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3.3.2 A description using L∞ spaces

We now give a second description of the holomorphic σ-model. This approach is based on the
geometry of L∞ spaces developed by Costello [Cosa] and Gwilliam-Grady [GG14, GG15]. We will
relate it to our description above using formal geometry.

The language of L∞ spaces allows one to incorporate many natural geometries in the language
of Lie theory. Of course, L∞ spaces are much more flexible than ordinary manifolds, and so
also provide a nice geometric description of stacky-like objects as well. The key aspect of the
formalism we will utilize is based on a general result of Costello [Cos13, Cosa] that asserts σ-
models in the BV formalism can be represented as maps from a elliptic ringed space to an L∞

space.

An elliptic ringed space is a pair (Y,A) where Y is a smooth manifold and A is a sheaf of commuta-
tive dg algebras defined over the dg ring Ω∗Y satisfying some conditions. For a precise definition
see Definition 4.0.5 of [Cos13]. The most important condition for us is that underlying sheaf of
cochain complexes is elliptic. For us, the elliptic ringed space representing the source of the σ-
model is of the form

Y∂ = (Y, Ω0,∗
Y ).

We refer to this as the Dolbeualt space of the complex manifold Y. As complexes of sheaves Ω0,∗
Y '

Ohol
Y , but the resolution is necessary since holomorphic functions are not the smooth sections of

any vector bundle.

By definition, an L∞ space is a manifold X together with a sheaf of curved L∞ algebras g de-
fined over the de Rham complex Ω∗X . The most important L∞ space for us exists on any complex
manifold X. In [Cosa] it is shown that there exists an L∞ space (X, gX∂

) which is uniquely char-
acterized by the fact that its Chevalley-Eilenberg cochains is isomorphic to the de Rham complex
of holomorphic jets of the trivial bundle:

C∗Lie(gX∂
) ∼=σ Ω∗(X, Jhol

X ).

On the left-hand side the cochains are taken over the ring Ω∗X , and the isomorphism is as Ω∗X-
modules. The differential on the left hand side is pulled back along an isomorphism of pro-vector
bundles σ : Ŝym(T1,0∗

X )
∼=−→ Jhol

X . This isomorphism σ is constructed by fixing a connection on
the tangent bundle TX and using its associated exponential map at each point x to identify the
formal neighborhood of x in X with the formal neighborhood of the origin in TxX. In this way,
the ∞-jet of a function at x is identified with a formal power series in T∗x X, which is the desired
isomorphism σ.

But this procedure is precisely how Gelfand-Kazhdan descent works! Once we fix a formal expo-
nential on the frame bundle of X — typically via a choice of connection — we have an isomor-
phism σ. Moreover, the descent of Ôn = C∗Lie(C

n[−1]) using this data is exactly Ω∗(X, Ŝym(T1,0∗
X ))

equipped with the pullback of the Grothendieck connection along σ. In other words, Gelfand-
Kazhdan descent recovers Costello’s curved L∞ algebra, once one applies the Koszul duality. We
can summarize this in the following way.
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Lemma 3.3.6. Let gn = Cn[−1]. Then, the Gelfand-Kazhdan descent descX,σ(gn) has the structure of a
curved L∞ algebra defined over Ω∗X . Moreover, it is equivalent to Costello’s L∞ algebra gX∂

.

We’d now like to describe how formal geometry allows us to describe holomorphic σ-models.
First, we summarize Costello’s approach for characterizing mapping stacks using L∞ spaces. We
will then apply this to the case that the target is the L∞ space gX∂

to obtain a model for the
holomorphic σ-model.

By definition, a map from the locally ringed space (Y,A) to the L∞ space (X, g) is a smooth map
of underlying manifolds ϕ : Y → X together with the data of a Maurer-Cartan element in the
curved L∞ algebra

A⊗ϕ∗Ω∗X
ϕ−1g.

The way to interpret this sheaf of Lie algebras is as follows. The inverse image ϕ−1g is a sheaf of
ϕ∗Ω∗X-modules on Y. We tensor the sheaf of commutative rings A over the ring ϕ∗Ω∗X to obtain a
sheaf of curved L∞ algebras over Ω∗Y. The extra data of an elliptic ringed space is an ideal I ⊂ A,
and we require that this Maurer-Cartan element vanish modulo I ⊂ A. If one were to use a
functor of points approach to define the L∞ space (X, g), this would be the value of (X, g) on the
ringed space (Y,A).
Lemma 3.3.7 ([Cosa] Lemma 3.1.1). Suppose Y, X are complex manifolds. Then, a map

ϕ : Y∂ → (X, gX∂
)

is the same as a holomorphic map ϕ : Y → X.

Recall, Y∂ = (Y, Ω0,∗
Y ). The idea I defining this elliptic ringed space is equal to Ω0,>0

X with the
∂ differential. Thus, if ϕ : Y → X is a smooth map, we are looking at Maurer-Cartan elements
in the curved L∞ algebra Ω0,>0

X ⊗ ϕ∗T1,0
X [−1]. Note that this curved L∞ algebra is concentrated

in degrees ≥ 2 so it suffices to show that the curving vanishes. Thus, the lemma states that the
curving in gX∂

pulls back to zero along ϕ precisely when the underlying map is holomorphic.

This lemma gives a procedure for describing the formal neighborhood of a fixed holomorphic
map in the moduli space of all maps Y → X. If ϕ : Y → X is holomorphic, the lemma implies that
there is an isomorphism of Ω0,∗

Y -modules ϕ∗gX∂

∼= Ω0,∗(Y, ϕ∗T1,0X[−1]). Since C∗Lie(ϕ∗gX∂
) =

Ω0,∗(Y, ϕ∗ Jhol
X ), a Maurer-Cartan element in this L∞ algebra with values in the test Artinian dg

ring (R, m) is a map of Ω0,∗
Y -algebras

Ω0,∗(Y, ϕ∗ Jhol
X )→ Ω0,∗

Y ⊗m.

This is precisely a deformation of the holomorphic map ϕ, see our discussion in Section 2.1.1.5.

In particular, when ϕ is a constant map, we see that the curved L∞ algebra

Ω0,∗(Y)⊗ gX∂

defined over Ω∗X controls deformations of constant maps inside of all holomorphic maps Y → X.
The following formalizes this statement and is proved in detail in [Cosa].
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Proposition 3.3.8 ([Cosa] Proposition 5.0.1). Let MC(X,gX
∂
)(Y, Ω0,∗) be the derived space of maps

(Y, Ω0,∗
Y )→ (X, gX∂

). Then, there is a substack of M̂C consisting of those maps whose underlying smooth
map of manifolds Y → X is constant. Moreover, this subspace is represented by the L∞ space

(X, Ω0,∗(Y)⊗ gX∂
).

The full derived space of maps from a ringed space to an L∞ space is a huge object, and in general
will not be represented by an L∞ space. What this proposition says that there is a substack arising
as the formal completion of the constant maps that is described by the L∞ space (X, Ω0,∗(Y) ⊗
gX∂

).

We have the following interpretation of the L∞ algebra Ω0,∗(Y)⊗ gX via formal geometry. This
follows immediately from Lemma 3.3.6 above.
Lemma 3.3.9. The Gelfand-Kazhdan descent descX,σ(Ω0,∗(Y)⊗ gn) has the structure of a curved L∞

algebra over Ω∗X and is equivalent to Ω0,∗
Y ⊗ gX∂

as in Proposition 3.3.8.

As a corollary of Proposition 3.3.8 and this lemma we see that the Gelfand-Kazhdan descent along
X of Ω0,∗

Y ⊗ gn is the curved L∞ algebra controlling deformations of constant maps inside of all
holomorphic maps Y → X.

Since descent intertwines with the shifted cotangent bundle construction, we see that the descent
of the BV theory En = T∗[−1](Ω0,∗

Y ⊗ gn[1]) along X is the shifted cotangent bundle of the elliptic
moduli problem of deformations of constant maps inside of all holomorphic maps Y → X. Ex-
plicitly, the cotangent theory to the moduli problem described by Ω0,∗(Y)⊗ gX∂

has fields of the
form

EY→X = Ω0,∗(Y)⊗ gX∂
[1]⊕Ωd,∗(Y)⊗ g∨X∂

[−2]

where g∨X denotes the Ω∗X-linear dual. The theory is described by a local functional IY→X ∈
Oloc(EY→X). Local functionals Oloc(EY→X) are defined similarly to the usual way, such as Equa-
tion (3.8), except the Chevalley-Eilenberg chains C∗Lie,red(JEY→X) is understood to be taken over
the dg ring Ω∗X .
Definition 3.3.10. The holomorphic σ-model of maps Y → X is the classical BV theory, defined over
the ring Ω∗X , with space of fields EY→X and classical interaction IY→X . This is the cotangent theory
of the moduli space of holomorphic maps Y → X that are infinitesimally close to the constant
maps.
Remark 3.3.11. We remark on the abuse of terminology since we are only working around the con-
stant maps throughout this work. It would be very interesting to study the general holomorphic
σ-model where one works in perturbation theory around a generic holomorphic map.

As a result of the above discussion we see that the space of fields is exactly the Gelfand-Kazhdan
descent of the formal theory EY→X = descX(En). Moreover, under the characteristic map

charX : C∗Lie(Wn, GLn;Oloc(En))→ Oloc(EY→X)

the interaction IW 7→ IY→X . Thus, through descent of the formal theory we obtain the classical
theory defined over the dg ring Ω∗X . This proves Proposition 3.3.4.
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Remark 3.3.12. Note that using L∞ spaces one can make sense of the σ-model of maps (X, g) where
g is any curved L∞ algebra on X. We will denote this theory by EY→Bg

EY→Bg = Ω0,∗(Y)⊗ g[1]⊕Ωd,∗(Y)⊗ g∨[−2]. (3.10)

The classical interaction defining the theory is IY→Bg ∈ Oloc(EY→Bg).

3.4 Deformations of the holomorphic σ-model

We now turn to computing the deformation complex of the holomorphic σ-model. This will be
important when we quantize the σ-model, as the deformation complex controls both the obstruc-
tions and moduli space of such quantizations.

In this section we allow g to be a (possibly) curved L∞ algebra over a commutative dg ring R
and consider the holomorphic σ-model of maps Y → Bg, where Y is a complex d-fold. This was
the most general form of the holomorphic σ-model from the previous section. We will be most
interested in the following two cases:

1. the simplest case where R = C and g = Cn[−1] is the trivial L∞ algebra with `k = 0 for all
k ≥ 0;

2. when X is a smooth manifold R = Ω∗X , and g is a curved L∞ algebra over Ω∗X . Thus, g is
part of an L∞ space (X, g) over X in the terminology of [Cosa, GG15].

We have discussed how these two cases are related. Indeed, through Gelfand-Kazhdan descent
along a complex manifold we can patch together the case (1) to the situation in (2) where g = gX∂

,
the curved L∞ algebra encoding the complex structure.

The holomorphic σ-model with target Bg, see (3.10), is a cotangent theory of the form T∗[−1](Ω0,∗(Y, g[1])).
In particular, there is an action of the abelian group C×cot which assigns the base direction a weight
of zero and the fiber a weight of +1. Thus, if (γ, β) ∈ Ω0,∗(Y, g)[1]⊕Ωd,∗(Y, g∨)[d− 1], then an
element λ ∈ C×cot acts by

λ · (γ, β) = (γ, λβ).

Our first reduction is to restrict ourselves to studying deformations that are compatible with this
C×cot action.

Note that the symplectic pairing of the theory, as well as the classical action functional, is of C×cot-
weight (−1). Our convention is that the parameter h̄ has C×cot-weight (−1) as well. There are two
compelling reasons for making this definition. The first deals with studying correlation functions
for the theory. If we require the observables of the theory to be equivariant for this rescaling of
the cotangent fibers, this means that the factorization product must have C×cot weight zero. In the
case that the theory is free, we have seen that the factorization product between two operators of
the theory O,O′ is computed by a Moyal type formula

O ?O′ = e−h̄∂P
(

eh̄∂PO · eh̄∂PO′
)

. (3.11)
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Since the symplectic pairing is C×cot-weight (−1) we observe that the propagator is also C×cot-
weight (+1). 2 For the product to have weight zero we are then forced to take h̄ to have opposite
weight to P.

The other, related reason, we choose this weight for h̄ is that we would like to require our BV
complex to be equivariant for rescaling the fibers as well. The classical BRST differential is of
the form {S,−} = Q + {I,−}. We have already said that the classical action is of weight (−1).
Since the symplectic pairing is also degree (−1), this means that the P0 bracket is degree +1.
Thus, the classical BRST complex is manifestly equivariant. The quantum BV differential involves
deforming this classical differential by h̄∆. For the same reason as the Poisson bracket, the BV
Laplacian has weight (+1). Thus, we see that in order to have an equivariant differential we are
again forced to take h̄ to have weight −1.

In the case of an interacting theory, we have the following restriction on the quantum interactions
of the theory as well. We can expand an effective interaction as

I[L] = ∑
g≥0

h̄g I(g)[L].

In order for I[L] to have C×cot weight (−1) we see that I(g)[L] must have weight g− 1. We are only
studying a one-loop quantization of the holomorphic theory, so the effective action has the form
I[L] = I(0) + h̄I(1)[L] and hence I(1)[L] has weight zero.

Thus, all one-loop quantities compatible with the C×cot action also have weight zero, including the
one-loop anomaly. For this reason, we will be most concerned with the piece of the deformation
complex that is C×cot-weight zero. This amounts to looking just at local functionals of the γ-field.
Definition 3.4.1. The deformation complex for cotangent quantizations of the holomorphic σ-model
of maps Y → Bg is the cochain complex

Defcot
Y→Bg =

(
Oloc(Ω

0,∗
Y ⊗ g[1]), ∂ + {IY→Bg,−}

)
Here, IY→Bg is the restriction of the interaction defining the classical theory of maps Y∂ → Bg.

The right-hand side is simply the local cochains of the local Lie algebra Ω0,∗
Y ⊗ g on Y:(

Oloc(Ω
0,∗
Y ⊗ g[1]), ∂ + {IY→Bg,−}

)
= C∗loc(Ω

0,∗
Y ⊗ g).

We defined local cochains C∗loc(L) of a local Lie algebra in Section 2.4.

We will be most interested in seeing how both the anomaly and the resulting quantum correction
induced by the anomaly are realized inside the complex Defcot

Y→Bg. Before doing this, we’d like to
restrict ourselves to looking at quantizations preserving further symmetries.

We now specialize to the case that the source is d-dimensional affine space Y = Cd. On Cd there is
the natural action of Lie group of translations. This is a real Lie group of real dimension 2d whose
complexified Lie algebra C2d is generated by the constant vector fields ∂

∂zi
, ∂

∂zi
. This Lie algebra

2This actually requires that we also take the gauge fixing operator to be of C×cot-weight zero, which is the natural thing
to do for cotangent theories and will be the case for us.
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clearly acts on the theory of holomorphic maps Cd → Bg. In fact, this action lifts to an action of
the dg Lie algebra

C2d|d = C2d ⊕Cd[1]

where the even parts are generated by the constant vector fields and the odd piece is generated
by the symbols ∂

∂(dzi)
. The differential sends ∂

∂(dzi)
7→ ∂

∂zi
. We encountered this dg Lie algebra in

Section 2.2.2 when defining holomorphically translation invariant theories.
Lemma 3.4.2. The holomorphic σ-model of maps Cd → Bg is holomorphically translation invariant. In
particular, it has an action by the super Lie algebra C2d|d.

The deformation complex controlling cotangent quantizations that are holomorphically transla-

tion invariant is equal to the subcomplex
(

Defcot
Cd→Bg

)C2d|d

⊂ Defcot
Cd→Bg.

Finally, there is one more group of symmetries we’d like to consider. The group U(d) acts on Cd

via the defining representation. This extends to an action on any tensor bundle on Cd by bundle
automorphisms, and hence acts on sections via the pull back. In particular, it acts on the elliptic
complex Ω0,∗(Cd)⊗ g where g is any curved L∞ algebra defined over some dg ring R. As with a
group action on any elliptic moduli problem, this extends to one on the cotangent theory in a way
that preserves the (−1)-shifted symplectic pairing, hence it acts on the holomorphic σ-model of
maps Cd → Bg

In conclusion, we have the following lemma exhibiting the symmetries of the holomorphic σ-
model we will take into account.
Lemma 3.4.3. The classical theory of holomorphic maps Cd → Bg is holomorphically translation invari-
ant. Moreover, it is equivariant for the group U(d). When g = Cn[−1] the action of translations and U(d)
on the formal σ-model Cd → D̂n is compatible with the action of the Harish-Chandra pair (Wn, GLn).

The second statement of the lemma is immediate since the actions of translations and U(d) and
(Wn, GLn) clearly commute. In what follows, we will consider deformations that are also invari-
ant for this group of symmetries.

3.4.1 Forms as local functionals

Before we compute the possible deformations of the holomorphic σ-model, we describe how
certain differential forms on the formal stack Bg yield local functionals of the holomorphic σ-
model of maps Y → Bg. Indeed, we will define a map of cochain complexes

J : Ωd+1
cl (Bg)→

(
Defcot

Cd→Bg

)C2d|d

, ω 7→ Jω.

Recall, the right-hand side consists of the holomorphically translation invariant deformations.
Moreover, for each ω ∈ Ωd+1

cl the functional Jω is U(d)-invariant.

The functions on a formal moduli stack Bg are given by the Chevalley-Eilenberg complex O(Bg) =
C∗Lie(g). By definition, the k-forms on a formal moduli stack Bg are defined by

Ωk(Bg) := C∗Lie(g; Symkg∨[−k])
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where g∨ denotes the coadjoint module of g.

As a simple check, note that in the case g = Cn[−1] the above complex reduces to

Ωk(Bg) = C[t1, . . . , tn]⊗∧k(t∨1 , · · · , t∨n ),

where t∨i denotes the dual coordinate. Everything is in cohomological degree zero. If we identify
t∨i ↔ dti, this is the usual definition of the algebraic de Rham forms.

Let ∂ : Ωk(Bg) → Ωk+1(Bg) be the de Rham operator for Bg. We use ∂ to denote the de Rham
differential on Bg. This is because our two main examples of Bg will be the formal holomorphic
disk D̂n or the formal moduli space associated to any complex manifold X. In each of these cases,
the differential above is the holomorphic Dolbeualt operator ∂ : Ωk,hol → Ωk+1,hol . The space of
closed k-forms is

Ω̂k
cl(Bg) =

(
Ωk(Bg) ∂−→ Ωk+1(Bg)[−1]→ · · ·

)
.

With the requisite notation set up we are now ready to define the map J. For now, let Y be any
complex manifold. Observe that any function on Bg, a ∈ O(Bg) can be extended to a Ω0,∗(Y)-
valued functional on Ω0,∗(Y)⊗ g[1]:

aY : Sym
(

Ω0,∗(Y)⊗ g[1]
)
→ Ω0,∗(Y).

Suppose a is a homogenous polynomial of degree m. The map aY is defined by

aY : (γ1 ⊗ ξ1)⊗ · · · ⊗ (γm ⊗ ξm) 7→ (γ1 ∧ · · · ∧ γm)a(ξ1, . . . , ξm).

We will sometimes write this succinctly as aY(γ) ∈ Ω0,∗(Y). Similarly, we can extend any k-form
ω ∈ Ωk(Bg) := C∗Lie(g; Symkg∨[−k]) on Bg to a Ω0,∗(Y) ⊗ Symkg∨[−k]-valued functional form
valued functional

ωY : Sym
(

Ω0,∗(Y)⊗ g[1]
)
→ Ω0,∗(Y)⊗ Symkg∨[−k].

Definition 3.4.4. For each k define

Jk : Ωk(Bg)[k]→ Oloc(Ω
0,∗(Y)⊗ g[1]) , ω 7→ Jk

ω

by the formula

Jk
ω(γ) =

∫
〈ωY(γ), ∂γ · · · ∂γ〉g,

where 〈−,−〉 denotes the pairing between g and its dual.

Note that Jk
ω is a local functional which is induced from the holomorphic Lagrangian γ 7→ 〈γ, ∂γ · · · ∂γ〉.

Next, we introduce the truncated de Rham complex

R[1] // O(Bg) ∂ // Ω1(Bg)[−1] // · · · // Ωd−1(Bg)[−d + 1] ∂ // Ωd(Bg)[−d].
(3.12)

Here, R is the ring for which g is defined over. Now, there is an obvious quotient map Ω∗(Bg)→
(3.12), where Ω∗(Bg) is the full de Rham complex. The kernel is the complex of (shifted) closed
(d + 1)-forms Ωd+1

cl (Bg)[−d− 1]. It follows that we have an exact sequence

Ωd+1
cl (Bg)[−d− 1]→ Ω∗(Bg)→ (3.12).
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Since the middle term is acyclic, it follows that the connecting map (which is degree one) is a
quasi-isomorphism

(3.12) '−→ Ωd+1
cl (Bg)[−d]. (3.13)

Lemma 3.4.5. Let d = dimC Y. The map Jd determines a map of cochain complexes

J = Jd : Ωd+1
cl (Bg)[d]→ Defcot

Y→Bg.

Proof. We will show that Jd determines a cochain map from the truncated de Rham complex in
(3.12) to DefY→Bg. Using the quasi-isomorphism in (3.13) we obtain the desired map from closed
(d + 1)-forms.

Thus, it suffices to show that if ω = ∂α, where α ∈ Ωd−1(Bg) that Jω(γ) = 0. Notice that Jω is the
local functional obtained from integrating the Lagrangian density

Jd
ω(γ) = 〈ω(γ), ∂γ · · · ∂γ〉 ∈ Ωd,∗(Y).

We will show that as Lagrangian densities J∂α = ∂Jd−1
α where Jd−1

α is the Ωd−1,∗(Y)-valued func-
tion Jd−1

α (γ) = 〈α(γ), ∂γ · · · ∂γ〉. Then for ω = ∂α, the Lagrangian is a total derivative, hence zero
as a local functional.

We prove this by induction in d. For d = 1, we must show that J1
∂α = ∂αY. Suppose that α ∈ Ôn is

a linear function α : g[1] → R. Then, ∂α is the very simply functional R → g∨[−1] corresponding
to the dual of α. Thus, J1

∂α = ∂Jα. To see the claim in general we use the fact that ∂ is a derivation.
Indeed, if α, α′ ∈ O(Bg) then ∂((αα′)Y) = ∂(αYα′Y) = ∂(αY)α′(Y)± αY∂(α′Y).

3.4.2 Computing the deformation complex

In this section we specialize the functional J to the space Y = Cd and use it to completely charac-
terize the U(d)-invariant, holomorphically translation invariant deformation complex.
Proposition 3.4.6. The map J : Ωd+1

cl (Bg)[d]→ Defcot
Cd→Bg factors through the holomorphically transla-

tion invariant deformation complex:

J : Ωd+1
cl (Bg)[d]→

(
Defcot

Cd→Bg

)C2d|d

.

Furthermore, J defines a quasi-isomorphism into the U(d)-invariant subcomplex of the right-hand side.

Proof. To compute the translation invariant deformation complex we will invoke Corollary 2.2.15
from Section 2.2.2. Note that the deformation complex is simply the (reduced) local cochains on
the local Lie algebra Ω0,∗

Cd ⊗ g. Thus, in the notation of Section 2.2 the bundle V is simply the trivial
bundle g. Thus, we see that the translation invariant deformation complex is quasi-isomorphic to
the following cochain complex(

Defcot
Y→Bg

)C2d|d

' C · ddz⊗L

C
[

∂
∂zi

] C∗Lie,red(g[[z1, . . . , zd]])[d].
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We’d like to recast the right-hand side in a more geometric way.

Note that the the algebra C
[

∂
∂zi

]
is the enveloping algebra of the abelian Lie algebra Cd =

C
{

∂
∂zi

}
. Thus, the complex we are computing is of the form

C · ddz⊗L
U(Cd)

C∗Lie,red(g[[z1, . . . , zd]])[d].

Since C · ddz is the trivial module, this is precisely the Chevalley-Eilenberg cochain complex com-
puting Lie algebra homology of Cd with values in the module C∗Lie,red(g[[z1, . . . , zd]]):(

Defcot
Y→Bg

)Cd

' CLie
∗

(
Cd; C∗Lie,red(g[[z1, . . . , zd]])d

dz
)
[d].

We will keep ddz in the notation since below we are interested in computing the U(d)-invariants,
and it has non-trivial weight under the action of this group.

To compute the cohomology of this complex, we will first describe the differential explicitly. There
are two components to the differential. The first is the “internal” differential coming from the
Lie algebra cohomology of g[[z1, . . . , zd]], we will write this as dg. The second comes from the
Cd-module structure on C∗Lie(g[[z1, . . . , zn]]) and is the differential computing the Lie algebra ho-
mology, which we denote dCd . We will employ a spectral sequence whose first term turns on the
dg differential. The next term turns on the differential dCd .

As a graded vector space, the cochain complex we are trying to compute has the form

Sym(Cd[1])⊗C∗Lie,red (g[[z1, . . . , zd]]))ddz[d].

The spectral sequence is induced by the increasing filtration of Sym(Cd[1]) by symmetric powers

Fk = Sym≤k(Cd[1])⊗C∗Lie,red (g[[z1, . . . , zd]]))ddz[d].

Remark 3.4.7. In the examples we are most interested in (namely g = Cn[−1] and g = gX∂
) we

can understand the spectral sequence we are using as a version of the Hodge-to-de Rham spectral
sequence.

As above, we write the generators of Cd by ∂
∂zi

. Also, note that the reduced Chevalley-Eilenberg
complex has the form

C∗Lie,red(g[[z1, . . . , zn]]) =
(

Sym≥1 (g∨[z∨1 , . . . , z∨d ][−1]
)

, dg

)
,

where z∨i is the dual variable to zi.

Recall, we are only interested in the U(d)-invariant subcomplex of this deformation complex.
Sitting inside of U(d) we have S1 ⊂ U(d) as multiples of the identity. This induces an overall
weight grading to the complex. The group U(d) acts in the standard way on Cd. Thus, zi has
weight (+1) and both z∨i and ∂

∂zi
have S1-weight (−1). Moreover, the volume element ddz has

S1 weight d. It follows that in order to have total S1-weight that the total number of ∂
∂zi

and z∨i
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must add up to d. Thus, as a graded vector space the invariant subcomplex has the following
decomposition

⊕
k

Symk(Cd[1])⊗
( ⊕

i≤d−k

Symi (g∨[z∨1 , . . . , z∨d ][−1]
))

ddz[d].

It follows from Schur-Weyl that the space of U(d) invariants of the dth tensor power of the fun-
damental representation Cd is one-dimensional, spanned by the top exterior power. Thus, when
we pass to the U(d)-invariants, only the unique totally antisymmetric tensor involving ∂

∂zi
and z∨i

survives. Thus, for each k, we have(
Symk(Cd[1])⊗

( ⊕
i≤d−k

Symi (g∨[z∨1 , . . . , z∨d ][−1]
))

ddz

)
∼= ∧k

(
∂

∂zi

)
∧∧d−k (z∨i )C∗Lie

(
g, Symd−k(g∨)

)
ddz.

(3.14)
Here, ∧k

(
∂

∂zi

)
∧∧d−k (z∨i ) is just a copy of the determinant U(d)-representation, but we’d like to

keep track of the appearances of the partial derivatives and z∨i . Note that for degree reasons, we
must have k ≤ d. When k = 0 this complex is the (shifted) space of functions modulo constants
on the formal moduli space Bg, Ored(Bg)[d]. When k ≥ 1 this the (shifted) space of k-forms on the
formal moduli space Bg, which we write as Ωk(Bg)[d + k]. Thus, we see that before turning on
the differential on the next page, our complex looks like

−2d · · · −d− 1 −d

Ored(Bg) · · · Ωd−1(Bg) Ωd(Bg).

(3.15)

We’ve omitted the extra factors for simplicity.

We now turn on the differential dCd coming from the Lie algebra homology of Cd = C
{

∂
∂zi

}
with values in the above module. Since this Lie algebra is abelian the differential is completely
determined by how the operators ∂

∂zi
act. We can understand this action explicitly as follows.

Note that ∂
∂zi

zj = δij, thus we may as well think of z∨i as the element ∂
∂zi

. Consider the subspace
corresponding to k = d in Equation (3.14):

∂

∂z1
· · · ∂

∂zd
C∗Lie,red(g)d

dz.

Then, if x ∈ g∨[−1] ⊂ C∗Lie,red(g) we observe that

dCd

(
∂

∂z1
· · · ∂

∂zd
⊗ f ⊗ ddz

)
= det(∂i, z∨j )⊗ 1⊗ x⊗ ddz ∈ ∧d−1

(
∂

∂zi

)
∧C{z∨i }C∗Lie

(
g, g∨

)
ddz.

This follows from the fact that the action of ∂
∂zi

on x = x⊗ 1 ∈ g∨ ⊗C[z∨i ] is given by

∂

∂zi
· (x⊗ 1) = 1⊗ x⊗ z∨i ∈ C∗Lie(g, g∨)z∨i .

By the Leibniz rule we can extend this to get the formula for general elements f ∈ C∗Lie,red(g). We
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find that getting rid of all the factors of zi we recover precisely the de Rham differential

C∗Lie,red(g)[2d]
d

Cd
// C∗Lie(g, g∨)[2d− 1]

Ored(Bg) ∂ // Ω1(Bg).

A similar argument shows that dCd agrees with the de Rham differential on each Ωk(Bg).

We conclude that the E2 page of this spectral sequence is quasi-isomorphic to the following trun-
cated de Rham complex.

−2d −2d + 1 · · · −d− 1 −d

Ored(Bg) ∂ // Ω1(Bg) // · · · // Ωd−1(Bg) ∂ // Ωd(Bg).

(3.16)

This is precisely a shifted version of the complex we had in (3.12). We saw that it was quasi-
isomorphic, through the de Rham differential, to Ωd+1

cl [d]. This completes the proof.

We can apply this general result to the case g = Cn[−1]. Doing this we have the following
corollary.
Corollary 3.4.8. Let Defn be the deformation complex of the formal βγ system with target D̂n. There is a
(Wn, GLn)-equivariant quasi-isomorphism

J : Ω̂d+1
n,cl [d]

'−→
((

Defcot
n
)C2d|d

)U(d)
⊂ Defn.

This induces a quasi-isomorphism into the (Wn, GLn)-equivariant deformation complex

JW : C∗Lie(Wn, GLn; Ω̂d+1
n,cl )

'−→
((

DefW,cot
n

)C2d|d
)U(d)

⊂ DefW
n . (3.17)

Moreover, upon performing Gelfand-Kazhdan descent, it implies that on any complex manifold
X we can use J to identify the deformation complex for the holomorphic σ-model of maps Cd →
X:

JX : Ωd+1
X,cl [d]

'−→
((

Defcot
Cd→X

)C2d|d
)U(d)

.

3.5 BV quantization of the holomorphic σ-model

As we have already discussed, the formalism of BV quantization of any theory consists of two
steps: a) renormalization, and b) solving the quantum master equation. For holomorphic theo-
ries, as the one we are studying in this section, we have proved a general result about the one-loop
renormalization theory on flat space Cd. We will leverage this result to turn the problem of quan-
tization to studying solutions of the quantum master equation.
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The formal βγ system En is a free BV theory and hence admits a natural quantization. (See Chap-
ter 6 of [Gwi12] for an extensive development.) To study the general holomorphic σ-model we
want to quantize equivariantly with respect to the action of Wn. We will find that there is an ob-
struction to quantizing equivariantly, given by the Gelfand-Fuks-Chern class chGF

d+1(T̂n) defined
in Section 3.1.5.3. This obstruction is a very local avatar of the anomaly described by Witten and
Nekrasov [Wit07, Nek] in the complex one-dimensional holomorphic σ-model. We will refer to
Chapter 2 for notations and terminology of equivariant BV quantization.

The section splits up into two main parts, first we study the Wn-equivariant quantization of the
formal βγ system. Then we show how Gelfand-Kazhdan formal geometry intertwines with BV
quantization to define the quantization general target complex manifold.

3.5.1 The Wn-equivariant quantization

In this section we construct the prequantization of the holomorphic σ-model. The technique is
based on our general regularization technique for regularization of holomorphic theories spelled
out in Section 2.3. We will recall the key points.

3.5.1.1 A reminder of the propagator

We wrote down the general propagator for translation invariant holomorphic theories on Cd in
Section 2.3. In this section we recall the construction of the propagator for the theory we consider
of holomorphic maps Cd → Bg.

The propagator is of the form Pε<L = Pan
ε<LCasg where Casg ∈ g⊗ g∗ ⊕ g∗ ⊗ g is the quadratic

Casimir of the L∞ algebra g. The analytic piece of the propagator is the one associated to the
theory whose target is one-dimensional C that we denote by

E = Ω0,∗(Cd)⊕Ωd,∗(Cd)[d− 1].

Choosing the standard flat metric on Cd, we obtain a natural gauge fixing operator

QGF = ∂
∗

: Ω0,∗(Cd)→ Ω0,∗−1(Cd)

which acts on (d, ∗) forms in a similar way. The corresponding operator [Q, QGF] = ∂∂
∗
+ ∂
∗
∂ is

simply the Hodge Laplacian ∆∂.

For t > 0, the heat kernel Kan
t ∈ E(Cd)⊗̂E(Cd) is characterized by the equation

∆∂Kan
t +

∂

∂t
Kan

t = 0

and normalized so that
〈ϕ(x), Kt(x, y)〉x = (e−t∆∂ ϕ)(y)
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where ϕ ∈ E and 〈−,−〉 is the (−1)-symplectic pairing. Using the standard formula for the
heat kernel for the flat Laplacian on Cd we have the expression for our heat kernel, including the
correct differential form factors

Kt(z, w) =
1

(4πit)d e−|z−w|2/4t

(
(ddz− ddw) ∧

d

∏
i=1

(dzi − dwi)

)

The effective propagator is defined for 0 < ε, L and given by

Pε<L(z, w) =
∫ L

t=ε
dt(∂

∗ ⊗ 1)Kt(z, w).

We can compute this propagator directly

Pε(z, w) =
∫ L

t=ε
dte−|z−w|2/4t 1

(4πit)d

d

∑
j=1

(−1)j−1 zj − wj

4t
(ddz− ddw)∏

i 6=j
(dzi − ddwi)

=
1

(4π)d
1

|z− w|2d ∑
j
(−1)j−1(zj − wj)(ddz− ddw)∏

i 6=j
(dzi − dwi)

∫ |z−w|2/ε

u=|z−w|2/L
duud−1e−u.

In the second line we have made the substitution u = |z − w|2/4t. We see that the differential
form part above is proportional to the Bochner-Martinelli kernel ωBM ∈ Ω∗(Cd ×Cd \ ∆)

ωBM(z, w) = Cd
1

|z− w|2d ∑
j
(−1)j−1(zj − wj)(ddz− ddw)∏

i 6=j
(dzi − dwi).

where Cd = (d− 1)!/(2πi)d is a constant depending only on the dimension d. A simple corollary
of the above calculation is the following fact that we will use later on in Section 3.6.
Lemma 3.5.1. Suppose z 6= w. The ε→ 0, L→ ∞ limit of the propagator Pε<L(z, w) exists and

lim
ε→0

lim
L→∞

Pε<L(z, w) = ωBM(z, w).

3.5.1.2 The prequantization

Our first step is to construct an equivariant effective prequantization. (i.e., effective actions sat-
isfying the locality and RG flow conditions but not necessarily the QME condition) for the Wn-
equivariant formal βγ system. We have already reviewed what a prequantization is in Section
2.1.2.2, but we briefly recall the main elements here. Essentially, we try to run the RG flow from
the classical theory by naively guessing

IW[L] = lim
ε→0

W(Pε<L, IW) (3.18)

and then adding counterterms to deal with singularities that prevent this limit from existing.
(One of the main theorems of [Cos11] guarantees that we can construct such a prequantization.)

In general, the limit Equation (3.18) may be ill-defined and counterterms would be necessary. The
key in our situation is that the equivariant βγ system is a holomorphic theory on Cd so that we
can apply Lemma 2.0.1. The existence of the holomorphic gauge fixing operator ∂

∗
was the crucial

tool in proving this well-behaved analyticity.

As an immediate corollary of Lemma 2.0.1, the following definition is well-defined.
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Definition 3.5.2. For L > 0, let

IW[L] := lim
ε→0

W(Pε<L, IW) = lim
ε→0

∑
Γ

h̄g(Γ)

|Aut(Γ)|WΓ(Pε<L, IW).

Here the sum is over all isomorphism classes of stabled connected graphs, but only graphs of
genus ≤ 1 contribute nontrivially. By construction, the collection satisfies the RG flow equation
and its tree-level L → 0 limit is manifestly IW. Hence {IW[L]}L∈(0,∞) is a Wn-equivariant prequan-
tization of the Wn-equivariant classical formal βγ system.

Organizing the sums by genus of the graphs, we write the interaction as a sum IW[L] = IW,0[L] +
h̄IW,1[L] where

IW,0[L] = ∑
Γ∈ Trees

1
|Aut(Γ)|WΓ(Pε<L, IW),

IW,1[L] = ∑
Γ∈ 1−loop

1
|Aut(Γ)|WΓ(Pε<L, IW).

With these technicalities out of the way, we can now turn to studying the obstruction to satisfying
the equivariant quantum master equation.

3.5.1.3 The one-loop anomaly

We now move on to calculating the one-loop anomaly of the equivariant theory.
Proposition 3.5.3. There is an obstruction to a Wn-equivariant quantization of the formal βγ system on
Cd that preserves the symmetry by the group U(d)nCd. It is represented by a non-trivial cocycle of degree
one

Θd,n ∈ DefW
n

such that
Θd,n = aJW(chGF

d+1(T̂n))

for some non-zero constant a, where JW is the quasi-isomorphism of Equation (3.17) and chGF
d+1(T̂n) is the

component of the Gelfand-Fuks-Chern character living in Cd+1
Lie (Wn, GLn; Ω̂d+1

n,cl ).

By definition, the scale L obstruction cocycle Θd,n[L] is the failure for the interaction IW[L] to satisfy
the scale L equivariant quantum master equation. Explicitly, one has

h̄Θd,n[L] = (dWn + Q)IW[L] + h̄∆L IW[L] + {IW[L], IW[L]}L,

where the right hand side is divisible by h̄ since IW,0 satisfies the classical master equation so that
the h̄0 component vanishes. Moreover, the right hand side has no components weighted by h̄2 or
higher powers, because the BV Laplacian ∆L vanishes on IW,1[L] as it is only a function of γ and
a vector field X. Thus, we have

h̄Θd,n[L] = (dWn + Q)IW,1[L] + h̄∆L IW,0[L] + 2{IW,0[L], IW,1[L]}L,

and so Θd,n[L] only depends on γ and hence is a degree one element of C∗Lie(Wn;O(En)).
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The first lemma we state is a consequence of the general characterization of anomalies for holo-
morphic theories on flat space Cd proved in Lemma 2.3.6. It reduces the calculation of the
anomaly to a Feynman diagrams that are wheels with certain edges that are marked.
Lemma 3.5.4. The limit Θd,n := limL→0 Θd,n[L] exists and is an element of degree one in DefW

n . More-
over, it is given by

lim
ε→0

∑
Γ∈(d+1)-vertex wheels

e∈Edge(Γ)

WΓ,e(Pε<1, Kε, IW[ε]),

where the sum is over wheels Γ with (d + 1) vertices and a distinguished inner edge e.
Remark 3.5.5. In the lemma above, the notation WΓ,e(Pε<1, Kε, IW[ε]) denotes a variation on the
usual weight associated to a graph. As usual, we attach the interaction term IW[ε] to each vertex.
To the distinguished internal edge labeled e, we attach the heat kernel Kε, but we attach the
propagator Pε<1 to every other internal edge.

Proof. This is an immediate corollary of the general result we proved about one-loop anomalies
of holomorphic theories in Lemma 2.3.6.

We now turn to the proof of Proposition 3.5.3. We must construct the obstruction cocycle Θd,n

by the techniques of perturbative field theory. In the end, we want to recognize it as the local
functional JW(chGF

d+1(T̂n)).

In the below calculation we write Θ = Θd,n as the dimensions d, n will be fixed. The limit in
Lemma 3.5.4 can be moved inside the summation, i.e., the weight for each (d + 1)-vertex wheel Γ
with edge e has an ε→ 0 limit. We denote this summand by

ΘΓ,e = lim
ε→0

WΓ,e(P1
ε , Kε, IW[ε]).

By the nature of the graph, this functional is of the form

ΘΓ,e : W⊗(d+1)
n ⊗ Sym(Ω0,∗

c ⊗ gn[1])→ C.

Given formal vector fields X1, . . . , Xd, let ΘΓ,e(X0, . . . , Xd) = limε→0 ΘΓ,e[L](X0, . . . , Xd) denote
the associated local functional in Oloc(En). In fact, it is a functional only of the γ variable. We
view ΘΓ,e[L](X0, . . . , Xd) itself as being the ε→ 0 limit of the weight of a graph where the vertices
are labeled by the Noether currents IW

X0
, . . . , IW

Xd
associated to the formal vector fields X0, . . . Xd.

The weight is evaluated by inserting the propagator on all internal edges besides the edge labeled
e, where Kε is inserted. See Figure 3.1.

Due to linear dependence on the vector fields, it suffices to assume that Xα are of the form Xα =

ai
α∂i, for α = 1, . . . , d+ 1, where the coefficient ai

α ∈ Ôn is homogeneous of degrees kα. In this case,
up to permutations of vertices there is only one graph Γ whose functional ΘΓ,e(X1, . . . , Xd+1) is
nonzero. Choose an ordering of the vertices v1, . . . , vd+1. The vertex vα has valency kα + 1 and so
each vertex has kα − 1 incoming edges, see Figure 3.1.
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v0

γ · · ·

vd

γ

e

vα

γ

vβ

γ

...

· · ·

Figure 3.1: The (d + 1)-vertex wheel contributing to the anomaly. The vertices are given by
v0, . . . , vd which are labeled by a formal vector field Xα. On the black internal edges are we place
the propagator Pε<L. On the red edge labeled by e we place the heat kernel Kε.

For this graph, the functional ΘΓ,e(X1, . . . , Xd+1) is homogeneous of degree (∑α kα)− d− 1:

ΘΓ,e(X1, . . . , Xd+1) : Sym(∑α kα)−d−1(Ω0,∗
c (C)⊗Cn)→ C.

By describing this functional explicitly, we will complete the proof of Proposition 3.5.3, as it will
agree on the nose with JW(chGF

d+1(T̂n)).
Lemma 3.5.6. For α = 0, . . . , d, let Xα = ai

α∂i ∈ Wn be homogeneous of degree kα. Let Γ be the
(d + 1)-vertex wheel with ordered vertices of valencies k0 + 1, . . . , kd + 1, and mark one internal edge as
distinguished. Then, we have an identification ΘΓ,e(X0, . . . , Xd) = aJW

chGF
d+1(T̂n)

(X1, . . . , Xd+1) for some

nonzero number a.

Proof. Let us introduce the following notation. Recall, if X = ai∂i is a formal vector field, we have
defined its Jacobian matrx Jac(X) = (∂jai) ∈ Matn(Ôn). Also, given any formal power series
a ∈ Ôn we have seen how to extend to to a functional

a : Sym(Ω0,∗(Cd)⊗Cn)→ Ω0,∗(Cd) , γ 7→ a(γ).

Given a formal vector field X, we will use Jac(X)(γ) to denote the matrix of Dolbeualt forms by
applying this to each entry in the Jacobian.

Ignoring the analytic factors momentarily, we observe that in computing the weight of the graph
Γ, see Figure 3.1, we contract β legs with γ legs. In our case, the Xα-vertex contributes a single β

leg, which then contracts with the kα different γ legs from the Y-vertex. This contributes a factor
of the Jacobian Jac(Xα)(γ) at each vertex. Since we are computing a wheel, the total contribution
is the trace of the product of the Jacobians. Putting in the analytic factors in we see that the weight
of the weight of the diagram is of the form

ΘΓ,e(Xα)(γ) = lim
ε→0

∫
(z1,...,zd+1)∈(Cd)d+1

(
d

∏
α=0

ddzα

)
Tr (Jac(X0)(γ)(z0) · · · Jac(Xd+1)(γ)(zd+1))×

Kan
ε (z0, zd)

d

∏
α=1

Pan
ε<L(z

α−1, zα)
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We now turn to actually computing this weight. The method is very similar to our estimate of the
weight of a diagram in a general holomorphically translation invariant theory on Cd in Section
2.3. First, we simplify the expression above with some notation. Write

Φ(z1, . . . , zd) = Tr (Jac(X1)(γ)(z1) · · · Jac(Xd+1)(γ)(zd+1)) ∈ Ω0,∗(Cd × · · · ×Cd).

We perform the usual change of coordinates

wα = zα − zα−1 , α = 1, . . . , d

w0 = z0.

Notice that the product of the heat kernel and the propagator is of the form

Kan
ε<L

(
d

∑
α=1

wα

)
d

∏
α=1

Pan
ε<L(w

α) = ± 1
(4πε)d

∫
(t1,...,tk)∈[ε,L]d

d

∏
α=1

dtα

(4πtα)d×

∑
i1,...,id

εi1,...,id

(
d

∏
α=1

wα
iα

4tα

)
exp

− d

∑
α=1

|wα|2
4tα

− 1
4ε

∣∣∣∣∣ d

∑
α=1

wα

∣∣∣∣∣
2
 d

∏
α,i=1

dwα
i .

Here εi1,...,id is totally antisymmetric tensor and the above expression is proportional to the top
anti-holomorphic form in the variables wα. It follows that in the product ΦKan

ε Pan
ε<L the only term

in the expansion of Φ that contributes is

∑
I

Φ(w0, . . . , wd)Idw0
I

where the sum is over the multi-index I = (i1, . . . , id) and Φ(w0, . . . , wd)I ∈ C∞(Cd × · · · ×Cd).

Thus, it suffices to compute, for a fixed compactly supported function Ψ ∈ C∞(Cd× · · · ×Cd) the
weight

Θ(ε) :=
∫
(w0,...,wd)∈(Cd)d+1

(
d

∏
α=0

d2dwα

)
Ψ(w0, . . . , wd)

1
(4πε)d

∫
(t1,...,tk)∈[ε,L]d

d

∏
α=1

dtα

(4πtα)d

× ∑
i1,...,id

εi1,...,id

(
d

∏
α=1

wα
iα

4tα

)
exp

− d

∑
α=1

|wα|2
4tα

− 1
4ε

∣∣∣∣∣ d

∑
α=1

wα

∣∣∣∣∣
2
 .

We will plug in the expressions Φ(w0, . . . , wd)I at the end. We proceed in a similar way as in the
calculation of weights for general holomorphic theories: first we will perform an integration by
parts to put the integral in a Gaussian form, then we will compute this Gaussian integral over
the variables w1, . . . wd. We will then be left with, in the ε → 0 limit, an expression for the local
functional that we claimed is given by J(chGF

d+1(T̂n))(Xα).

Let

E(w, t) := exp

− d

∑
α=1

|wα|2
4tα

− 1
4ε

∣∣∣∣∣ d

∑
α=1

wα

∣∣∣∣∣
2
 ,

which we can write as exp
(
− 1

4 Mαβ(wα, wβ)
)

where (Mαβ) is the symmetric d × d matrix with

Mαα = t−1
α + ε−1 and Mαβ = ε−1 for α 6= β. Here, (wα, wβ) is the Hermitian inner product.
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Introduce the holomorphic t-dependent differential operators

Dα,iα(t) =
1
tα

d

∑
β=1

M−1
αβ

∂

∂wβ
iα

=
∂

∂wα
iα
−

d

∑
β=1

tβ

ε + t1 + · · ·+ td

∂

∂wβ
iα

Analogously to Lemma 2.3.3 one has

Dα,iα(t)E(w, t) =
wα

iα
tα

E(w, t).

Since each of the Dα,iα(t) commute we can iteratively perform an integration by parts to write the
weight as

Θ(ε) :=
∫
(w0,...,wd)∈(Cd)d+1

(
d

∏
α=0

d2dwα

)
1

(4πε)d

∫
(t1,...,tk)∈[ε,L]d

d

∏
α=1

dtα

(4πtα)d

× ∑
i1,...,id

εi1,...,id

(
d

∏
α=1

Dα,iα(t)Ψ(w0, . . . , wd)

)
E(w, t).

We now perform the Wick integration over the variables w1, . . . , wd. The leading term is of the
form∫

w0∈Cd
d2dw0 1

(4πε)d

∫
(t1,...,tk)∈[ε,L]d

d

∏
α=1

dtα

td
α

∑
i1,...,id

εi1,...,id

(
d

∏
α=1

∂

∂wα
iα

Ψ

)∣∣∣∣∣
w1=···=wd=0

1
t1 · · · td

det(M)−1 det(M)−d

(3.19)
We have used the expression for the determinant as a sum over indices i1, . . . , id: det(A) =

∑i1,...,id εi1,...,id A1i1 · · · Adid hence:

∑
i1,...,id

εi1,...,id

 d

∏
α=1

1
tα

d

∑
β=1

M−1
αβ

∂

∂wβ
iα

Ψ

∣∣∣∣∣∣
w1=···=wd=0

= ∑
i1,...,id

εi1,...,id

(
d

∏
α=1

∂

∂wα
iα

Ψ

)∣∣∣∣∣
w1=···=wd=0

1
t1 · · · td

det(M)−1

The term det(M)−d comes from performing the d-dimensional Gaussian integral. A calculation
we performed in Section 2.3 shows that

det(Mαβ) =
ε + t1 + · · ·+ td

εt1 · · · td

Hence, we can write the first term in the Wick expansion (3.19) as

∫
w0∈Cd

d2dw0 ∑
i1,...,id

εi1,...,id

(
d

∏
α=1

∂

∂wα
iα

Ψ

)∣∣∣∣∣
w1=···=wd=0

1
(4π)d

∫
(t1,...,tk)∈[ε,L]d

ε

(ε + t1 + · · ·+ td)d+1 dt1 · · ·dtd.

The t-integral is easily seen to be convergent as ε → 0. Finally, plugging back in Ψ = ∑I ΦI we
see that the obstruction can be written as

ΘΓ,e(Xα) = lim
ε→0

Θ(ε) = C
∫

Cd
Tr(Jac(X0)(γ)∂Jac(X1)(γ) · · · ∂Jac(Xd)(γ)). (3.20)

where C is some nonzero constant.
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We have expressed the components chGF
d+1(T̂n) ∈ C∗Lie(Wn; Ω̂d+1

n,cl ) of the Gelfand-Fuks-Chern char-
acter in Section 3.1.5.3. Since these classes are valued in closed (d+ 1)-forms, we can express them
as images under the de Rham operator of Ω̂d

n valued classes. Indeed, we did this in Equation (3.4)
where we found the class

αd : (X0, . . . , Xd) 7→
1

(−2πi)d+1(d + 1)!
Tr (Jac(X0) ∧ ∂(Jac(X1)) ∧ · · · ∧ ∂(Jac(Xd))) ∈ Ω̂d

n

satisfies ∂αd = chGF
d+1(T̂n). Finally we note that (3.20) is a nonzero multiple of the local functional

JW
αd
(X0, . . . , Xd) ∈ Oloc(En), so we are done.

Remark 3.5.7. Note that when restricted to linear vector fields gln ↪→Wn, the entire obstruction Θ
vanishes. This vanishing means that there is no obstruction to quantizing equivariantly for the
Lie algebra gln. This result is just the Lie algebra-level version of an earlier observation: the action
of the group GLn lifts h̄-linearly to an action on the quantization.

3.5.1.4 The extended theory

We have just seen that there is a one-loop anomaly to quantizing the formal βγ system in a way
that is Wn-equivariant. This says that Gelfand-Kazhdan formal geometry does not allow us to
descend the theory to an arbitrary complex manifold. In this section we use the calculation of the
anomaly cocycle in the last section to build a theory that is equivariant for a bigger Lie algebra,
which will allow us to do an extended version of descent as we discussed in Section 3.2.1.2.

The Gelfand-Fuks-Chern character determines an extension of L∞ algebras

0→ Ω̂d+1
n,cl [d− 1]→ W̃n,d

πn,d−−→Wn → 0.

We have already seen that there is a map of cochain complexes

J : Ω̂d+1
n,cl [d]→ Defn.

This map J determines an element in the vector space J̃ ∈
(

Ω̂d+1
n,cl [d]

)∨
⊗Defn ⊂ C∗Lie(W̃n,d; Defn).

Further, using homotopy RG flow we will see below how J̃ determines a family of functionals
{ J̃[L]} for L > 0.

Our main result of this section is the following.
Theorem 3.5.8. The effective family {IW[L] + h̄ J̃[L]}L>0 defines a W̃n,d-equivariant quantization of the
n-dimensional formal βγ system on Cd such that:

1. in addition, it is equivariant for the group GLn in a way that is compatible with the Lie algebra map
Lie(GLn) = gln ↪→ W̃n,d;

2. this quantization is both holomorphically translation invariant and invariant for the group U(d).
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Item (1) implies that the quantization of the formal βγ system on Cd with target D̂n is equivariant
for the pair (W̃n,d, GLn). We will use this, combined with the construction of extended descent,
to produce the global holomorphic σ-model. Item (2) implies that the only moduli of the theory
on a general target manifold is in the choice of an extended Gelfand-Kazhdan structure. We’ll
expound upon this in more detail in the next section.

First, we see that IW defines a classical W̃n,d-equivariant theory. The extended deformation com-
plex is defined by

D̃ef
W

= C∗Lie(W̃n,d)⊗Defn.

The map πn,d : W̃n,d →Wn defines a map of dg Lie algebras

π∗n,d : DefW
n [−1]→ D̃ef

W
n [−1].

Hence the Maurer-Cartan element IW ∈ DefW
n [−1] defining the Wn-theory defines a W̃n,d-theory

via π∗n,d IW.

We can run homotopy RG flow to π∗n,d IW to obtain a prequantization just as in the non-extended
case. Since everything is natural under maps of the dg Lie algebra defining the classical theory,
we obtain the following relationship between the anomaly for the extended theory and the non-
extended theory.
Lemma 3.5.9. The effective family {π∗n,d IW[L] mod h̄2} determines a one-loop prequantization of the
W̃n,d-equivariant classical theory. The obstruction to satisfying the scale L W̃n,d-equivariant classical
master equation is

Θ̃n,d[L] = π∗n,dΘn,d[L].

In particular limL→0 Θ̃n,d[L] = Θ̃ ∈ D̃ef
W
n exists and is equal to π∗n,dΘn,d.

The key difference in the extended case is that this anomaly is cohomologically trivial. The idea is
based on the following elementary fact about Lie algebras. Let h be a Lie algebra and V a module
for h. Moreover, suppose α ∈ C2+k

Lie (h; V) is a cocycle. Then, we can form the L∞ extension

0→ V[k]→ h̃
π−→ h→ 0.

The brackets between in h̃ are defined by `2(x, y) := [x, y]h and `2−k(x, . . .) = α(x, . . .) where
[−,−]h is the bracket in the original Lie algebra. The bracket between x ∈ h and v ∈ V is
[x, v]h̃ = x · v. We can pull back the cocycle π∗α ∈ C∗Lie(h̃; V). In this situation, this pullback
cocycle is automatically trivial. An explicit trivializing element is idV : V → V viewed as an
element of the Chevalley-Eilenberg complex C∗Lie(h̃; V).

We have already mentioned that J : Ω̂d+1
n,cl [d]→ Defn can be viewed as an element J̃ in D̃ef

W
n . The

following lemma follows the same logic as the above paragraph.

Lemma 3.5.10. The local functional J̃ ∈ D̃ef
W
n trivializes π∗n,dΘn,d in the extended deformation complex:(

∂ + dW̃n,d

)
J̃ + {π∗n,d IW, J̃} = π∗n,dΘn,d.

Proof. The functional J is the image of idΩd+1 under the map

C∗Lie(W̃n,1; Ω̂d+1
n,cl [d]) = C∗Lie(W̃n,1)⊗C∗Lie(Wn) C∗Lie(Wn; Ω̂d+1

n,cl )
id⊗J−−→ C∗Lie(W̃n,1)⊗C∗Lie(Wn) DefW

n = D̃ef
W
n .
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Denote this composition by JW̃ , so that J̃ = JW̃(idΩd+1). The composition above is a map of
cochains, so for any ϕ ∈ C∗Lie(W̃n,1; Ω̂d+1

n,cl [d]) we have

JW̃(dW̃n,d
ϕ) = ∂JW̃(ϕ) + {π∗n,d IW, JW̃(ϕ)}

In particular, for ϕ = idΩ2 we have

JW̃(π∗n,dchGF
d+1(T̂n)) = ∂ J̃ + { ĨW, J̃}.

We have already seen that the image of π∗chGF
d+1(T̂n) under JW̃ is the obstruction cocycle π∗n,dΘ,

and this is what we wanted to show.

The fact that this trivialization at the level of the local deformation complex allows us to define a
one-loop quantization follows from the following general result. To state it, suppose that E is a
general theory with classical interaction I ∈ Oloc(E).
Lemma 3.5.11 (Lemma 3.33 of [LL16]). Suppose Iqc and O1 ∈ Oloc(E) satisfy

QIqc + {I, Iqc} = O1.

Then, for each L, the functional

Iqc[L] = lim
ε→0

∑
Γ∈Trees
v∈V(Γ)

WΓ,v(Pε<L, I, Iqc)

satisfies
QIqc[L] + {I(0)[L], Iqc[L]}L = O1[L]. (3.21)

Proof. For the non-equivariant case, see the referenced Lemma in [LL16]. The equivariant case is
an immediate consequence.

In the lemma Iqc stands for “quantum correction”, since deforming the action functional by it
allows us to produce a solution to the QME. We can now finish the proof of Theorem 3.5.8. For
simplicity, we will drop π∗n,d from the notation and just view π∗n,d IW = IW as a W̃n,1-equivariant
functional. We consider the effective family

{IW[L] + h̄ J̃[L]}.

As a consequence of the Lemmas 3.5.10 and 3.5.11 the scale L, W̃n,d-equivariant quantum master
equation for the functional I[L] + h̄ J̃[L] is satisfied:

(dW̃ + ∂)(IW[L] + h̄ J̃[L]) +
1
2
{IW[L] + h̄ J̃[L], IW[L] + h̄ J̃[L]}L + h̄∆L(IW[L] + h̄ J̃[L]) = 0.

The functional J is GLn-invariant. Moreover, the original non-extended prequantization IW[L] is
GLn-equivariant, this quantization is as well. Now, the map J : Ω̂d+1

n,cl [d] → Defn is U(d)n Cd-
invariant. Thus, the effective family above is as well. The moduli of cotangent quantizations that
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are holomorphically translation invariant, and invariant for the group U(d), is controlled by the
extended deformation complex ((

D̃ef
W,cot
n

)C2d|d
)U(d)

(3.22)

We have already seen that the non-extended version of this complex is quasi-isomorphic to Ω̂d+1
n,cl [d]

in Corollary 3.4.8. Since this quasi-isomorphism is W̃n,d-equivariant we see that (3.22) is quasi-
isomorphic to

C∗Lie(W̃n,d, GLn; Ω̂d+1
n,cl [d]).

In cohomology, deformations live in H0 of this complex which is Hd(W̃n,d, GLn; Ω̂d+1
n,cl ).

Lemma 3.5.12. The cohomology Hd(W̃n,d, GLn; Ω̂d+1
n,cl ) is trivial.

Proof. We use a spectral sequence computing the cohomology H∗(W̃n,d, GLn; Ω̂d+1
n,cl ). Consider the

following natural filtration on the L∞ algebra W̃n,d:

F1 = W̃n,d ⊃ F0 = Ω̂d+1
n,cl [d− 1].

The associated graded L∞ algebra is a direct sum Gr W̃n,d = Wn ⊕ Ω̂d+1
n,cl [d− 1]. There is an in-

duced filtration on the Chevalley-Eilenberg cochain complex with values in any module C∗Lie(W̃n,d; M)

and hence a spectral sequence converging to H∗(W̃n,d; M). For us, the module M is restricted
from a Wn-module. The E1-page of the spectral sequence is

H∗(Wn ⊕ Ω̂d+1
n,cl [d− 1]; M) = H∗(Wn; M)⊗ Sym

(
Ω̂d+1

n,cl

)∨
[−d].

We now plug in the module M = Ω̂d+1
n,cl . According to the description of the E1-page, to com-

pute the degree d cohomology we need only consider the component Hd(Wn; Ω̂d+1
n,cl ). There is

a similar spectral sequence where we work relative to GLn, where this cohomology becomes
Hd(Wn, GLn; Ω̂d+1

n,cl ). The cohomology of Wn-module Ω̂k
n relative to GLn has been recounted

in Section 4.5.2. For an original reference see [Fuk86]. In particular, Hd(Wn, GLn; Ω̂k
n) = 0 for

k ≥ d + 1. If we take the standard (Wn, GLn)-equivariant resolution

Ω̂d+1
n,cl ' Ω̂d+1

n
∂−→ Ω̂d+2

n [−1] ∂−→ · · · ,

we see that Hd(Wn, GLn; Ω̂d+1
n,cl ) = 0 as well.

This completes the proof of Theorem 3.5.8.

3.5.2 Quantization on general manifolds via formal geometry

We now show how our results in the last section allow us to construct the quantization of the
holomorphic σ-model on general target complex manifolds satisfying the condition chd+1(T

1,0
X ) =

0.
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We have already seen how formal geometry allows us to descend the classical (Wn, GLn)-equivariant
formal βγ system En to the holomorphic σ-model with arbitrary complex target X. The global
holomorphic σ-model of maps Cd → X infinitesimally close to the constant maps is described by
the (curved) elliptic L∞ algebra ECd→X [−1], which is defined over the de Rham complex Ω∗X . In
terms of the formal βγ system we saw that

ECd→X [−1] = descX(En[−1]) (3.23)

as elliptic L∞ algebras defined over Ω∗X . Likewise, there is a relationship between the deformation
complexes DefCd→X = descX(Defn). The characteristic map is of the form

charX : C∗Lie(Wn, GLn; Defn)→ DefCd→X

Note that C∗Lie(Wn, GLn; Defn) ⊂ DefW
n and IW lies in this subcomplex. Under the characteristic

map, we obtain the functional IX = charX(IW) ∈ DefCd→X that solves the Ω∗X-linear classical
master equation. This is equivalent to the data involved in the identification (3.23).

When we quantize, we found that there is an obstruction to having a (Wn, GLn)-equivariance,
but we have an action by the bigger L∞ pair (W̃n,d, GLn). Equivalently, the naive RG flow of IW

does not satisfy the quantum master equation, but we can found a modification of it that does.

Every complex manifold X admits a bundle of coordinates, a Gelfand-Kazhdan structure, which
allows us to construct global objects using the data of a (Wn, GLn)-module. We saw in Section
3.2.2 that not every complex manifold admits bundle of coordinates with a (W̃n,d, GLn)-action.
However, for every trivialization of the characteristic class chd+1(T

1,0
X ) we found that there did

exist an extended Gelfand-Kazhdan structure, which one can think of as a reduction of the origi-
nal bundle of coordinates to the pair (W̃n,d, GLn).

Let us fix an extended Gelfand-Kazhdan structure as in Section 3.2.2. This was given by an ordi-
nary GK structure, so a manifold X and a formal exponential σ, together with a trivialization α of
chd+1(T

1,0
X ). As usual, we will omit the data of a formal exponential in the below. We denote the

de Rham complex of the corresponding descent functor by

d̃escX,α : Mod(W̃n,d ,GLn)
→ ModΩ∗X

.

Just as in ordinary descent, there is a characteristic map of the form

c̃harX,α : C∗Lie(W̃n,d, GLn;O(En)[[h̄]])→ O(ECd→X)[[h̄]].

The extended family {IW[L] + h̄ J̃[L]} determines a family {IX,α[L]} where, for each L,

IX,α[L] = c̃harX,α

(
IW[L] + h̄ J̃[L]

)
.

An immediate corollary of our main result in the previous section, Theorem 3.5.8, is that this
family solves the Ω∗X-linear quantum master equation. Hence, it determines a quantization of the
holomorphic σ-model of maps Cd → X.
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Theorem 3.5.13. Let α be a trivialization of chd+1(T
1,0
X ). Then, the family {IX,α[L]}L>0 where

IX,α[L] = c̃harX,α

(
IW[L] + h̄ J̃[L]

)
∈ O(ECd→X)[[h̄]]

defines a holomorphically translation invariant, U(d)-invariant, cotangent quantization of the holomorphic
σ-model of maps Cd → X.

Since Gelfand-Kazhdan descent is completely dependent on the target, it is compatible with all
of the source symmetries we mentioned in the statement of the formal quantization in Theorem
3.5.8. Thus, the family {IX,α} defines a U(d)n Cd equivariant cotangent quantization of ICd→X .
The final part of the main theorem, Theorem 3.0.2, concerns identifying the moduli of quantiza-
tions respecting holomorphic translation invariance and the action of U(d). We have shown that
formally, the extended quantization is unique up to homotopy. Thus, the only moduli for the
theory comes from the choice of an extended Gelfand-Kazhdan structure. We showed in Proposi-
tion 3.2.6 that the space of extended structures, when they exist, is a torsor for Hd(X, Ωd+1

cl ). This
completes the proof of the main theorem.

It is the main result of [CG] that the observables of a quantum field theory have the structure
of a factorization algebra. An immediate corollary of our theorem is the existence of a sheaf of
factorization algebras on X. The construction of this factorization algebra is through formal ge-
ometry, just as above. Indeed, the holomorphic σ-model of maps Cd → D̂n defines a factorization
algebra Obsq

n,d on Cd. Theorem 3.5.8, implies that this factorization algebra is equivariant for the
pair (W̃n,d, GLn). Precisely, it is a factorization algebra on Cd taking values in Harish-Chandra
modules for (W̃n,d, GLn). For every trivialization α of chd+1(TX) the extended descent functor
D̃escX,α is symmetric monoidal. Thus, for every pair (X, α) we obtain a sheaf on X of factorization
algebras on Cd:

Obsq
X,α := DescX,α(Obsq

n,d).

By the second part of Theorem 3.5.8 this is a holomorphically translation invariant U(d)-equivariant
factorization algebra.

When d = 1, it is the main result of [GGW] that this sheaf is isomorphic to the sheaf of chiral
differential operators.
Theorem 3.5.14 ([GGW]). Let α be a trivialization of ch2(TX). The cohomology of the sheaf of factoriza-
tion algebras Obsq

X,α determines a sheaf of vertex algebras Vert(Obsq
X,α). This is isomorphic to the sheaf

of chiral differential operators on X associated to the trivialization α.

For general d > 1 we will not explore the full structure of this sheaf of factorization algebras, but
we will focus on its local properties in the next section.

3.6 The local operators

In this section we analyze the local operators of the holomorphic σ-model. Our partial goal is ex-
hibit the similarities present in the local operators of this higher dimensional holomorphic theory
with the local operators of two-dimensional chiral conformal field theory.
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By definition, the observables supported on an open set U are equal to the completed symmetric
algebra of functions on the fields supported on U. The main result of [CG] is that this defines
a factorization algebra on spacetime. Throughout this section we will focus on the holomorphic
σ-model of maps Cd → V where V is a vector space. This theory is free, and its quantum ob-
servables admit a minimal description in terms of compactly supported functions (and Dolbeault
forms) on Cd, which we will recall momentarily.

In ordinary chiral conformal field theory, there is a collection of operators that, in some sense,
generate all other operators. These are called “primary operators” (or primary fields). They are
defined by those operators that are killed by the positive part of the Virasoro algebra. To obtain
all of the operators one considers the descendants of the primary operators which are obtained
by applying the negative part of the Virasoro algebra, or the “raising operators”, to the primaries.
For example, in the d = 1 βγ system, there are two primary operators:

Oγ,0(w) : γ 7→ γ(w) =
∫

z∈Cw

γ(z)
z− w

dz

Oβ,−1(w) : βdz 7→ β(w) =
∫

z∈Cw

β(z)
z− w

dz,

where Cw is any closed contour surrounding w. (The indices 0,−1 are to indicate the conformal
weight.) Consider the operators placed at w = 0. We notice that each of these operators are
annihilated by the positive half of the Virasoro generated by Ln = zn+1∂z, n ≥ 0. The descendants
are obtained by iteratively applying the raising operator L−1 = ∂z, which in this case is just the
infinitesimal translations. Indeed, for each n ≥ 0 we obtain

Oγ,−n(w) =
1
n!

∂nOγ,0(w) : γ 7→ ∂n
z γ(z = w)

Oβ,−n−1(w) =
1
n!

∂nOβ,1(w) : βdz 7→ ∂n
z β(z = w).

There is an S1 action on C given by rotations, and this extends to an S1 action on the βγ sys-
tem. In terms of the Virasoro algebra, the infinitesimal action of S1 is given by the Euler vector
field L0 = z∂z. There is an induced grading on the factorization algebra of the one-dimensional
free βγ system by the eigenvalues of this S1 action. Applied to the disk, or local, observables
this is precisely the Z≥0 conformal weight grading of the chiral CFT. For instance, the operators
Oγ,−n(w),Oβ,−n lie in the weight n subspace of the factorization algebra applied to D(w, r) (for
any r > 0). We will see a similar grading in the higher dimensional holomorphic case.

3.6.1 The factorization algebra of observables

We work the the holomorphic σ-model of maps Cd → V where V is a vector space. This is simply
the βγ system with values in V and the fields have the form

EV = Ω0,∗(Cd, V)⊕Ωd,∗(Cd, V∗)[d− 1].

We begin by defining the factorization algebra of classical observables.
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3.6.1.1 The classical observables

Definition 3.6.1. The classical observables supported on U ⊂ Cd, Obs
cl
V(U), is the algebra of func-

tions on the space of fields EV(U) equipped with the differential given by extending ∂ as a deriva-
tion.
Remark 3.6.2. We reserve the unbarred notation for the smeared classical observables to be intro-
duced below.

Explicitly, the underlying graded algebra is

Sym(Ωd,∗
c (U, V∗)[d]⊕Ω0,∗

c (U, V)[1]).

The differential can be understood explicitly as follows. For some n-fold tensor product of linear
functionals on the fields

a = α1 ⊗ · · · ⊗ αn,

we have

∂(a) = (∂α1)⊗ · · · ⊗ αn ± α1 ⊗ (∂α1)⊗ · · · ⊗ αn + · · · ± α1 ⊗ · · · ⊗ (∂αn).

This differential is equivariant with respect to the permutation action of the symmetric group Sn

and hence induces a differential on the nth symmetric power.

It is manifest that these observables are natural with respect to holomorphic embeddings. That
is, given a holomorphic embedding i : U ↪→ V, there is a natural extension map

i∗ : Obscl
n (U)→ Obscl

n (V)

that is naturally induced by the restriction map of fields

i∗ : EV(U′)→ EV(U).

Indeed, we have a factorization algebra on Cd by Theorem 5.2.1 of [CG17].
Definition 3.6.3. Let Obscl

V denote the factorization algebra on Cd of classical observables for the
holomorphic σ-model of maps Cd → V.

We remark that as GL(V) acts naturally on the factorization algebra of classical observables, ex-
tending the action of GL(V) on the fields. This action manifestly respects the differential ∂, which
only depends on the source Cd and not on the target V.

3.6.1.2 The quantum observables

The BV formalism suggests that the quantum observables on S should arise by

(a) tensoring the underlying graded vector space of Obscl
n with C[[h̄]] and

(b) modifying the differential to ∂ + h̄∆, where ∆ is the BV Laplacian.
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This suggestion does not work because ∆ is not defined on all of the observables; the naive for-
mula involves an ill-defined pairing of distributions. There are two ways to circumvent this diffi-
culty. First, one can work with a smaller class of observables — such as those arising from smooth
functionals, not distributional ones — and this approach is developed in detail for the free βγ

system in Chapter 5, Section 3 of [CG17]. Second, one can mollify ∆ instead. This approach is
developed in a very broad context of [CG], and we have encountered it already in the scale L
BV Laplacians ∆L. These two approaches provide quasi-isomorphic factorization algebras, as we
show in Proposition 11.24 of [GGW]. For analyzing the free theory of holomorphic maps Cd → V
it is most convenient to use the first approach, which we do here.

A classical result of Atiyah-Bott, Proposition 6.1 in [AB67], implies that for any complex manifold
U the subcomplex

Ωp,∗
c (U) ⊂ Ωp,∗

(U)

is quasi-isomorphic to the full complex of distributional forms. This follows from ellipticity of the
Dolbeault complex. Consequently we can introduce the qausi-isomorphic subcomplex

Obscl
V(U) :=

(
Sym(Ωd,∗

c (U, V∗)[d]⊕Ω0,∗
c (U, V)[1]), ∂

) (
Sym(Ωd,∗

c (U, V∗)[d]⊕Ω0,∗
c (U, V)[1]), ∂

)
= Obs

cl
V(U)'

Just as in the case above, it is easy to see that the assignment U 7→ Obscl
V(U) defines a factorization

algebra on Cd.
Definition 3.6.4. The quantum observables supported on U ⊂ Cd is the cochain complex

Obsq
V(U) =

(
Sym(Ωd,∗

c (U, V∗)[d]⊕Ω0,∗
c (U, V)[1]), ∂ + h̄∆

)
.

By Theorem 5.3.10 of [Gwi12] the assignment U 7→ Obsq
V(U) defines a factorization algebra on

Cd. This will be our main object of study for the remainder of this section.

3.6.2 The observables on the d-disk

In this section we give a description of the observables of the holomorphic σ-model supported on
a d-disk inside Cd.

3.6.2.1 The cohomology of the observables

In this section we compute the cohomology of the factorization algebra supported on a disk
D(w, r) ⊂ Cd centered at w ∈ Cd of radius r > 0.
Lemma 3.6.5. For any d-dimensional disk in Cd there is an isomorphism

H∗
(

Obsq
V(D(w, r))

)
∼= Sym

((
Ohol(D(w, r)

)∨
⊗V∗ ⊕

(
Ωd,hol(D(w, r))

)∨
⊗V[−d + 1]

)
[h̄]

where the (−)∨ is the topological dual.
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Proof. A result of Serre [Ser53] states that if U is a Stein manifold and 1 ≤ p ≤ d = dimC(U) that
the compactly supported Dolbeualt cohomology Hp,q

∂,c
(U) is only nonzero when q = d. In this

case, there is a canonical isomorphism Hp,d
∂,c

(U) ∼=
(

Ωd−p,hol(U)
)∨

.

To apply this fact, we consider the following spectral sequence. We define a filtration on Obsq(D(w, r))
by

Fk =
⊕
j≥k

h̄j · Sym(Ωd,∗
c (U, V∗)[d]⊕Ω0,∗

c (U, V)[1]).

The E1-page of the corresponding spectral sequence is simply given by the ∂ cohomology. The
∂ differential preserves the symmetric degree, so it suffices to compute the cohomology at each
layer of the symmetric grading. Since the disk U = D(w, r) is Stein, we obtain

H∗
(

Sym(Ωd,∗
c (U, V∗)[d]⊕Ω0,∗

c (U, V)[1]), ∂
)
=
⊕
n≥0

H∗
((

Ωd,∗
c (U, V∗)[d]⊕Ω0,∗

c (U, V)[1]
)⊗n

Sn
, ∂

)
∼= H∗

((
Ωd,∗

c (Un, (V∗)×n)[d]⊕Ω0,∗
c (Un, V×n)[1]

)⊗n

Sn
, ∂

)
∼= Sym

((
Ohol(U)

)∨
⊗V∗ ⊕

(
Ωd,hol(U)

)∨
⊗V[−d + 1]

)
.

In the second line we have used the fundamental property of the completed tensor product re-
counted in Equation (2.4). In the last line, we have applied Serre’s result.

Note that the BV Laplacian is identically zero on the E1-page of the h̄-spectral sequence, thus it
collapses and the lemma follows.

3.6.2.2 An explicit characterization

We have studied, at length, the symmetries of the holomorphic σ-model induced by group and
Lie algebra actions on the target of the mapping space. To characterize the local operators, we
now consider symmetries coming from the source of the mapping space. The βγ system on Cd

has a symmetry by the unitary group U(d), which we have already encountered when studying
the quantization of the general holomorphic σ-model of maps Cd → Bg. Indeed, the fields of the
βγ system are built from sections of certain natural holomorphic vector bundles on Cd. The group
U(d) acts by automorphisms on every holomorphic vector bundle, hence it acts on sections via
the pull-back.

There is another symmetry that will be relevant later on when we exhibit a calculation of the
character for the local operators. Introduce an action of U(1) on the fields of the theory such that
V has weight q f ∈ Z and V∗ has weight −q f . The value of the fields γ lie in the vector space V,
so these fields are of weight q f . Conversely, the fields β lie in V∗, so have weight −q f . Since the
pairing defining the free theory is only non-zero between a single γ and single β field, the theory
is invariant under this symmetry. In the physics literature, this is a so-called “flavor symmetry” of
the theory, and so to distinguish it from the other symmetry we will denote this group by U(1) f .
This symmetry will be especially relevant when we compute the character of the βγ system.
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Remark 3.6.6. The symmetry by U(1) f is an artifact of a symmetry present at the level of the
supersymmetric σ-model. Indeed, in the cases d = 1, 2 this is induced from a flavor symmetry of
the matter supermultiplet. We will discuss this more below.
Lemma 3.6.7. The symmetry by U(d) ×U(1) f on the classical βγ system with values in the complex
vector space V extends to a symmetry of the factorization algebra of smoothed quantum observables Obsq

V .

Proof. The differential on the factorization algebra is of the form ∂ + h̄∆. The operator ∂ is mani-
festly equivariant for the action of U(d). Since U(1) f does not act on spacetime, ∂ trivially com-
mutes with its action. Further, the action of U(d) is through linear automorphisms, and since the
BV Laplacian ∆ is a second order differential operator, it certainly commutes with the action of
U(d). Likewise, since U(1) f is compatible with the (−1)-symplectic pairing, it automatically is
compatible with ∆.

We will use the action of U(d) to organize the class of operators we are interested in. The eigen-
vectors of U(d) are labeled by the eigenvectors of a maximal torus, which we will take to be given
by the subgroup

Td = {diag(q1, . . . , qd) | |qi| = 1} ⊂ U(d).

Here, qi ∈ S1 ⊂ C× are complex numbers of unit modulus. We say that an element v of the
factorization algebra has weight (n1, . . . , nk) if (q1, . . . , qd) · v = qn1

1 · · · q
nd
d v. We will use the

shorthand~n = (n1, . . . , nd).
Definition 3.6.8. 1. Let w ∈ Cd and r > 0. For any vector of non-negative integers ~n =

(n1, . . . , nd) denote by
Obsq

V(r)
(~n) ⊂ Obsq

V(D(w, r))

the subcomplex of weight~n elements.

2. Let
Obsq

V(r) :=
⊕
~n

Obsq
V(r)

(~n)

where the direct sum is over all vectors of non-negative integers.

By setting h̄ = 0 this also induces weight spaces for the classical observables.
Remark 3.6.9. Note that we have excluded the center of the disk w ∈ Cd from the notation above.
This is because the βγ system, as we have already pointed out, is a translation invariant factoriza-
tion algebra (in fact, it’s holomorphically translation invariant). In particular if z, w are any points
then translation by z induces an isomorphism

τz : Obsq
V(D(w, r)) ∼= Obsq

V(D(w− z, r)).

Translation clearly preserves the action by U(d), so this isomorphism restricts to the weight spaces
defined above.

We now introduce the following operators that will be of most relevance for our study of the
operator product expansion.
Definition 3.6.10. Let w ∈ Cd and r > 0. Define the following linear observables supported on
D(w, r).
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1. For ni ∈ Z≥0, i = 1, . . . d, and v∗ ∈ V∗ define

Oγ,−~n(w; v∗) : γ ∈ Ω0,∗(D(w, r)) 7→
〈

v∗,

(
∂n1

∂zn1
1
· · · ∂nd

∂znd
d

γ(z, z)

∣∣∣∣∣
z=w

)〉
V

.

Here, the brackets denote the evaluation pairing between V∗ and V.

2. For mi ∈ Z≥1, i = 1, . . . d, and v ∈ V define

Oβ,−~m(w; v) : βddz ∈ Ωd,∗(D(w, r)) 7→
〈

v,

(
∂m1−1

∂zm1−1
1

· · · ∂md−1

∂zmd−1
d

β(z, z)

∣∣∣∣∣
z=w

)〉
V

.

The braces 〈−,−〉V denotes the evaluation pairing for the vector space V and its dual.

Our convention is that the evaluation of a Dolbeualt form is zero dzi|z=w = 0. Thus, the above
observables are only nonzero when γ ∈ Ω0,0(D(w, r)) and βddz ∈ Ωd,0(D(w, r)). In particular,
this implies that these operators are of the following homogenous cohomological degree:

deg(Oγ,−~n(w; v∗)) = 0

deg(Oβ,−~m(w; v)) = d− 1.

Remark 3.6.11. The minus sign in Oγ,−~n(w; v∗) is purely conventional, and meant to match up
with the physics and vertex algebra literature see Chapter 2 of [FBZ04], for instance. One rea-
son for using this convention is motivated by the state-operator correspondence by realizing the
above operators as coming from residues over higher dimensional spheres. Note that for any
d-disk D(0, r) there is an embedding of topological vector spaces

z−1
1 · · · z

−1
d C[z−1

1 , · · · , z−1
d ]→

(
Ω0,∗(D(w, r))

)∨
that sends a Laurent polynomial f (z) functional

γ ∈ Ω0,∗(D(w, r)) 7→
∮

z∈S2d−1
f (z− w)γ(z, z) ∧

(
ddz ∧ωBM(z− w, z− w)

)
,

where ωBM is the Bochner-Martinelli form of type (0, d− 1), and S2d−1 is the sphere of radius r
around w. The operatorOγ,−~n(w; v∗) corresponds to the Laurent polynomial f (z) = z−n1 · · · z−nd .
We will elaborate more on these types of sphere operators in the next section.
Lemma 3.6.12. Let r < s. Then, the factorization structure map for including disks D(0, r) ⊂ D(0, s)
induces a diagram

Obsq
V(D(0, r)) // Obsq

V(D(0, s))

Obsq
V(r)

OO

' // Obsq
V(s)

OO

Further, the bottom horizontal map is a quasi-isomorphism.

Proof. The two vertical maps are the inclusions of the U(d)-eigenspaces of the observables sup-
ported on disks of radius r and s respectively. It follows from Lemma 3.6.7 that the factorization
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algebra is U(d)-equivariant, so in particular the factorization algebra structure map for the inclu-
sion of disks D(0, r) ↪→ D(0, s) is a map of U(d)-representations. Hence, the map restricts to each
of the eigenspaces, yielding the diagram.

In [CG17] it is shown in Corollary 5.3.6.4 that for the one-dimensional βγ system, the lower map
above is a quasi-isomorphism. A completely similar argument applies to the βγ system on Cd.
Indeed, consider the collection

{Oγ,−~n1
(0; v∗1) · Oγ,−~nk

(0; v∗k ) · Oβ,−~m1
(0; v1) · · · Oβ,−~ml

(0; vl)}.

The collection runs over non-negative integers k, l and sequences~ni = (ni,1, . . . , ni,d), ni,j ≥ 0 and
~mi = (mi,1, . . . , mi,d), mi,1 ≥ 1. It also runs over vectors vi, v∗j in V and V∗, respectively. Now, it
follows from Lemma 5.3.6.2 of [CG17] that the above collection form a basis for the cohomology

H∗Obscl
V(r)

(~N) ⊂ H∗Obscl(D(0, r))

for any r, where ~N = (N1, . . . , Nd)

Nj =
(

n1,j + · · ·+ nk,j

)
+
(

m1,j + · · ·+ ml,j

)
.

The result for the quantum observables follows from the spectral sequence induced by the h̄-
filtration.

We will denote VV = Obsq
V(r), which is well-defined up to quasi-isomorphism by the preceding

proposition. This is the “state space” of the higher dimensional holomorphic theory. We will
elaborate more on its structure later on in this section.

3.6.3 The sphere observables

We turn to providing a description of the value of the factorization algebra of observables of the
βγ system applied to another important class of open sets in Cd: neighborhoods of the (2d− 1)-
sphere S2d−1 ⊂ Cd. We then study the algebraic structure that the factorization product endows
the collection of sphere operators with.

Heuristically speaking, the operators we will consider are supported on (2d− 1) sphere. Since the
factorization algebra only takes values on open sets, we need to fix small neighborhoods of the
spheres in order to define the observables precisely. Let us explain the exact open neighborhoods
of the (2d− 1)-sphere that we will consider. Denote the closed d-disk centered at w of radius r by

D(w, r) =
{
(z1, . . . , zd) ∈ Cd | |z− w| ≤ r

}
.

As above, the open disk is denoted D(w, r). Let ε, r > 0 be such that 0 < ε < r, and consider the
open submanifold

Nr,ε(w) := D(w, r + ε) \ D(w, r− ε) ⊂ Cd \ {w}.

For any ε > 0, the open set Nr,ε is a neighborhood of the closed submanifold given by the sphere
of radius r centered at w, S2d−1

r (w) ⊂ Cd \ {w}. Note that when d = 1, Nr,ε is simply an annulus
centered at w.
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Like in the case of a disk, it is convenient to get our hands on a class of simple observables
supported on Nr,ε(w). To describe these particular observables we introduce the dg algebra Ad

discussed in Appendix 5. This algebra is a dg model for the derived space of sections of algebraic
functions on the punctured affine space Ad×:

Ad ' RΓ(Ad×,Oalg).

We refer the reader to the appendix for a more detailed discussion. What we will use at the
moment is the existence of a linear embedding of cochain complexes Ad ↪→ Ω0,∗(Cd \ {0}), which
is dense at the level of cohomology. In particular, Ad embedds inside the Dolbeault complex of
any of the spherical shells Nε,r we have just introduced.
Remark 3.6.13. When d = 1 the punctured line C× is actually affine and A1 = C[z, z−1] the
polynomial Laurent series concentrated in degree zero. For d > 1 the punctured plane is no long
affine and the sheaf cohomology of Cd× is concentrated in degrees zero and d− 1. The complex
Ad is a concentrated in degrees 0, . . . , d− 1 and there is a Čech description of the cohomology as

H∗(Ad×,Oalg) =


0, ∗ 6= 0, d− 1

C[z1, . . . , zd], ∗ = 0

C[z−1
1 , . . . , z−1

d ] 1
z1···zd

, ∗ = d− 1

.

We will also use a Dolbeualt description of Hd−1(Ad) which is best exhibited using the alge-
braic Bochner-Martinelli kernel ω

alg
BM ∈ Ad,d−1 that we define in the appendix. There is a U(d)-

equivariant isomorphism

C[z−1
1 , . . . , z−1

d ]
1

z1 · · · zd
∼= C

[
∂

∂z1
, . . . ,

∂

∂zd

]
ω

alg
BM,

each of which are isomorphic to Hd−1(Ad). The isomorphism sends z−1
1 · · · z

−1
1 ↔ ω

alg
BM.

We have the following general fact about linear functionals on the Dolbeualt complex of Nr,ε(w).
This lemma will allow us to describe linear observables supported on these neighborhoods.
Lemma 3.6.14. For any neighborhood Nr,ε(w) as above, the residue along the (2d− 1)-sphere centered at
w of radius r, S2d−1

r (w), determines an embedding of topological dg vector spaces

iS2d−1 : Ad[d− 1]→
(

Ω0,∗(Nr,ε(w)
)∨

sending α ∈ Ad to the functional

iS2d−1(α) : ω ∈ Ω0,∗(Nr,ε(w)) 7→
∮

S2d−1
r (w)

α ∧ ddz ∧ω.

Proof. This is a consequence of Stokes’ theorem. Suppose α = ∂α′. Then, for any ω ∈ Ω0,∗(Nr,ε(w))

we have ∮
S2d−1

(∂α′) ∧ ddz ∧ω =
∮

S2d−1
α′ ∧ ddz ∧ ∂ω.

The right-hand side is simply (∂iN)(ω) = iN(∂ω).
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Similarly, there is an embedding Ad[d − 1] →
(

Ωd,∗(Nr,ε(w)
)∨

sending α ∈ Ad[d − 1] to the
functional

η ∈ Ωd,∗(Nr,ε(w)) 7→
∫

S2d−1
r (w)

α ∧ η.

These two embeddings allow us to provide a succinct description of the class of linear operators
on Nr,ε(w) we are interested in. Indeed they determine a cochain map (that we proceed to denote
by the same symbol):

iS2d−1 : Ad⊗ (V∗[d− 1]⊕V)→
(

Ω0,∗(Nr,ε(w))⊗V ⊕Ωd,∗(Nr,ε(w))⊗V∗[d− 1]
)∨
⊂ Obscl

V (Nr,ε(w)) .

Definition 3.6.15. Let α ∈ Ad and v∗ ∈ V∗. Define the linear observable

Oγ,α(w; v∗) := iS2d−1(α⊗ v∗) ∈ Obscl(Nr,ε(w)).

Likewise, for v ∈ V, define
O

β,z−1
1 ···z

−1
d α

(w; v) := iS2d−1(α⊗ v)

Definition 3.6.16. Define the classical sphere observables to be the commutative dg algebra

Acl
V := Sym (Ad ⊗ (V∗[d− 1]⊕V))

equipped with the differential coming from Ad.

Note that Ad has the structure of a commutative dg algebra, but we are not using the multiplica-
tion here. The same construction above, applied now to symmetric products of linear operators,
determines a cochain map iS2d−1 : Acl

V → Obscl(Nr,ε(w)).

Let AV = Acl
V [h̄]. Then, since ∆|AV = 0, we see that iS2d−1 extends to a cochain map

iS2d−1 : AV → Obsq
V(Nr,ε(w)).

We will refer to AV as the quantum sphere observables, or when there is no confusion, the sphere
observables.

3.6.3.1 Nesting spherical shells

We now discuss what happens when we study the factorization product between the observables
supported on spheres. This will endow the cochain complex AV with the structure of an associa-
tive (really A∞) algebra. To recover this structure, we will only be concerned with open sets that
are neighborhoods of spheres, as in the previous section. The factorization product is defined for
any disjoint configurations of open sets. The configurations of open sets we consider are given by
nesting the neighborhoods of the form Nr,ε(w), where w is a fixed center.

For simplicity, we assume that our spheres and neighborhoods are all centered at w = 0. For
xε < r we have defined the open neighborhood Nr,ε = Nr,ε(0) of the sphere S2d−1

r centered at
zero. Pick positive numbers 0 < εi < ri such that r1 < r < r2, ε1 < r− r1, and ε2 < r2− r. Finally,
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suppose r > ε > max{r − r1 + ε1, r2 − r + ε2}. We consider the factorization product structure
map for Obsq

V corresponding to the following embedding of open sets

Nr1,ε1 t Nr2,ε2 ↪→ Nr,ε, (3.24)

shown schematically in Figure 3.2.

 

Figure 3.2: Nesting spherical shells. The blue and green shaded regions represent the spherical
shells Nr1,ε1 and Nr2,ε2 , respectively. The black spheres denote the inner and outer boundaries of
the closure of the neighborhood Nr,ε.

The factorization structure map for this embedding of disjoint open sets is of the form

Obsq
V(Nr1,ε1)⊗Obsq

V(Nr2,ε2)→ Obsq
V(Nr,ε). (3.25)

Lemma 3.6.17. The factorization structure map in (3.25) restricts to the subspace of sphere observables.
That is, there is a commutative diagram

Obsq
V(Nr1,ε1)⊗Obsq

V(Nr2,ε2)
// Obsq

V

AV ⊗AV

OO

µ2
// AV

OO

where the top line is the map in (3.25). The same holds for an arbitrary number of nested neighborhoods of
the form Nr,ε. That is, for any k ≥ 0 the factorization product restricts to a linear map

µk : A⊗k
V → AV .

Each of the neighborhoods Nr,ε are contained in the open submanifold Cd \ {0}. Note that there
is a homeomorphism Cd \ {0} ∼= S2d−1 ×R>0. Further, we have the radial projection map

π : Cd \ {0} = S2d−1 ×R>0 → R>0

that sends z = (z1, . . . , zd) 7→ |z| =
√
|z1|2 + · · ·+ |zd|2.
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A fundamental feature of factorization algebras is that they push forward along smooth maps. We
can thus push forward the factorization algebra Obsq

V on Cd \ {0} along π to obtain a factorization
algebra on R>0. To an open interval of the form (r − ε, r + ε) ⊂ R>0 the factorization algebra
assigns precisely the observables supported on Nr,ε.

Lemma 3.6.17 implies that there is a factorization algebra FAV associated to AV and that the
inclusion AV ↪→ Obsq(Nr,ε) induces a map of factorization algebras on R>0:

FAV → π∗(Obsq
V)

The factorization algebra FAV assigns to every interval the dg vector space AV . In particular FAV

is locally constant, and hence determines the structure of an A∞ algebra on AV . We would now
like to identify this algebra structure.

We will proceed in two ways. First, we will use the Moyal formula together with the explicit
form of the propagator from Section 3.5.1.1 to deduce the operator product expansion between
cohomology classes of operators corresponding to AV . This will tell us what the algebra structure
is on the cohomology H∗(AV). Second, we will use the smoothed description of the observables
as a factorization enveloping algebra to nail down the precise algebra structure at the cochain
level.

Note that we can view AV as the symmetric algebra on the following cochain complex

Ad ⊗ (V∗[d− 1]⊗V)⊕C · h̄.

This complex has the structure of a dg Lie algebra, with bracket given by

[α⊗ v∗, α⊗ v] = h̄〈v∗, v〉
∮

S2d−1
α ∧ α′ddz. (3.26)

All other brackets are determined by graded anti-symmetry and declaring the parameter h̄ is
central. Denote this dg Lie algebra by HV .

Our main result is that the dg algebra structure on AV endowed by the factorization product is
equivalent to the universal enveloping algebra U(HV) of the dg Lie algebra HV .
Remark 3.6.18. If (g, d, [−,−]) is a dg Lie algebra its universal enveloping algebra is defined ex-
plicitly by

U(g) = Tens(g)/(x⊗ y− (−1)|x||y|y⊗ x− [x, y]).

It is immediate to check that the differential d descends to one on U(g), giving U(g) the structure
of an associative dg algebra.

3.6.3.2 Using the Moyal formula

As eluded to before, we now identify the algebra structure on the cohomology of AV induced by
the map of factorization algebras FAV → π∗(Obsq

V), where FAV is the locally constant factoriza-
tion algebra that assigns the cochain complex AV to every interval.
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Let U(HV) be the locally constant factorization algebra on R>0 based on the associative algebra
U(HV). We will write down an explicit isomorphism of locally constant factorization algebras

Φ : U(H∗HV)→ H∗FAV ,

implying the result.

By Poincaré-Birkoff-Witt, the dg vector spaces U(HV) and AV are isomorphic. Therefore, if
I ⊂ R>0 is an interval, we define Φ(I) to be the identity map. Thus, it suffices to show that
the associative algebra structure on the spherical observables agrees with that of U(HV) in coho-
mology.

We turn to an explicit calculation of factorization product for observables in π∗(Obsq
V). If O,O′ ∈

U(HV) then we can compute the commutator [O,O′] in the factorization algebra as follows. For
i = 1, 2, 3 let εi, ri > 0 be such that

ε ≤ ε1 < r1 ≤ ε2 < r2 ≤ ε3 < r3 ≤ r

and consider the configurations

i12 : Nr1,ε1 t Nr2,ε2 ↪→ Nr,ε

and
i23 : Nr2,ε2 t Nr3,ε3 ↪→ Nr,ε

in Cd \ {0}. If Ii = (ri − εi, ri + ε and I = (r − ε, r + ε), these correspond to the configurations
i12 : I1 t I2 ↪→ I and i23 : I2 t I3 ↪→ I in R>0, respectively. The induced factorization structure
maps are

?12 : Obsq
V(Nr1,ε1)⊗Obsq

V(Nr2,ε2)→ Obsq
V(Nr,ε)

?23 : Obsq
V(Nr2,ε2)⊗Obsq

V(Nr3,ε3)→ Obsq
V(Nr,ε).

(3.27)

The commutator [O,O′] is computed via the formula

O ?12 O
′ −O′ ?23 O. (3.28)

In the notation O ?12 O
′ we view O as having support in Nr1,ε1 and O′ as having support in Nr2,ε2 .

We compute this commutator at the level of cohomology. The cohomology of Ad is concentrated
in degrees 0 and d− 1. Explicitly, one can represent the zeroeth cohomology as

H0(Ad) = C[z1, . . . , zd].

Now, let ωBM(z, z) be the Bochner-Martinelli kernel of type (0, d− 1) from above. We can express
the (d− 1)st cohomology of Ad as

Hd−1(Ad) = C[∂z1 , · · · , ∂zd ] ·ωBM

That is, every element of Hd−1(Ad) can be written as a holomorphic polynomial differential op-
erator acting on ωBM. Further, it is convenient to make the U(d)-equivariant identification

C[∂z1 , · · · , ∂zd ]ωBM ∼= z−1
1 · · · z

−1
d C[z−1

1 , . . . , z−1
d ], (3.29)
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which makes sense since ωBM has Td ⊂ U(d)-weight (−1, . . . ,−1).

Recall that HV = Ad ⊗ (V∗[d − 1] ⊕ V). It follows from above that the cohomology of HV is
concentrated in degrees −(d − 1), 0, d − 1. The non-trivial Lie algebra structure on HV comes
from the ordinary symplectic pairing on this space, as we’ve already discussed.

Suppose v, v∗ are in V, V∗, respectively and α, α′ ∈ Ad. The corresponding classical observables
Oγ,α(0; v∗) and O

β,z−1
1 ···z

−1
d α′(0; v) have cohomological degrees

deg (Oγ,α(0; v∗)) = |α| − d + 1

deg
(
O

β,z−1
1 ···z

−1
d α′(0; v)

)
= |α′|,

where |α| denotes the differential form degree. In cohomology the only nontrivial form degrees
of α, α′ that survive are 0, d − 1. Suppose that |α| = 0. Then, the only way we could obtain a
nontrivial commutator between the operators above is if |α′| = d− 1.

We will compute the factorization product in (3.28) using our explicit formula for the propagator
of the βγ system computed in Lemma 3.5.1. We diverge a moment to recall how this construction
works. The main idea is that the propagator allows us to promote a classical observable to a
quantum observable. Recall, the full propagator is an element

P(z, w) = lim
L→∞

lim
ε→0

Pε<L(z, w) ∈ EV(C
d)⊗̂EV(C

d)

where the EV(C
d) denotes the space of distributional sections on Cd. Explicitly, we showed that

P(z, w) = Cd ωBM(z, w)

where ωBM(z, w) is the Bochner-Martinelli kernel.

Contraction with P determines a degree zero, order two differential operator

∂P : Obscl
V(U)→ Obscl

V(U)

for any open set U ⊂ Cd. Recall that the classical observables on U are simply given by a sym-
metric algebra on the continuous dual of EV(U). Since E

∨
= E!

c, we can view the propagator as
an symmetric smooth linear map

P∨ : E!
V,c(C

d)⊗̂E!
V,c(C

d)→ C.

The contraction operator ∂P is determined by declaring it vanishes on Sym≤1, and on Sym2 is
given by the linear map P∨.

To compute the factorization product we use the isomorphism

W∞
0 : Obscl

V(U)[h̄] → Obsq
V(U)

O 7→ eh̄∂PO

that makes sense for any open set U. This is an isomorphism of cochain complexes, with inverse
given by (W∞

0 )−1 = e−h̄∂P . It determines the following formula for the factorization product. If
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O,O′ are observables supported on disjoint opens U, U′, and that W is and open set containing
U, U′, then the factorization structure map is given by

O ?O′ = e−h̄∂P
((

eh̄∂PO
)
·
(

eh̄∂PO′
))
∈ Obsq

V(W).

Here, the · refers to the symmetric product on classical observables. For a more in depth discus-
sion of this Moyal type formula for factorization algebras see Section 4.3.2 of [CG]. For another
account, which makes a connection to the usual Moyal formula from deformation quantization
see Section 3.5 of [GLL17]. The calculation of the factorization product relies on the higher dimen-
sional residue formula involving the Bochner-Martinelli form. If f is any any function in C∞(U),
where U is a domain in Cd, then the residue formula states that for any z ∈ D

f (z, z) =
∫

w∈∂U
ddw f (w) ωBM(z, w)−

∫
w∈D

ddw (∂ f )(w) ∧ωBM(z, w).

In particular, if f (z, z) is holomorphic the second term drops out and we get the familiar expres-
sion for the higher dimensional residue.

We can now perform the main calculation. Recall, we have fixed observables Oγ,α(0; v∗) and
O

β,z−1
1 ···z

−1
d α′(0; v). In the notation of Equation (3.27), we have

Oγ,α(0; v∗) ?12 Oβ,z−1
1 ···z

−1
d α′(0; v) = Oγ,α(0; v∗) · O

β,z−1
1 ···z

−1
d α′(0; v)

+h̄〈v, v∗〉
∮
|z1|=r1

∮
|z2|=r2

α(z1)ddz1α′(z2)P(z1, z2)

= Oγ,α(0; v∗) · O
β,z−1

1 ···z
−1
d α′(0; v)

+h̄〈v, v∗〉
∮
|z1|=r1

∮
|z2|=r2

α(z1)α′(z2)ddz1ωBM(z1, z2)

= Oγ,α(0; v∗) · O
β,z−1

1 ···z
−1
d α′(0; v) + h̄〈v, v∗〉

∮
|z|=r1

α(z)α′(z)ddz

+h̄〈v, v∗〉
∮
|z1|=r1

∫
z2∈D(0,r2)

α(z1)(∂α′)(z2)ωBM(z1, z2).

In the first line we have used the Moyal formula. In the second line we have used the explicit form
of the propagator. In the third line we have used the higher residue formula. Finally, since we are
only interested in the cohomology class of the product, we can assume that α, α′ are both holo-
morphic. In particular, the third term in the last line vanishes. The calculation for the ?23 product
is similar. We conclude that in cohomology the commutator between the quantum observables
Oγ,α(0; v∗) and O

β,z−1
1 ···z

−1
d α′(0; v) is precisely

h̄〈v, v∗〉
∮
|z|=r1

α(z)α′(z)ddz.

This agrees with the commutator (3.26) in HV . The extension to commutators between non-linear
observables is completely analogous. Thus, we conclude that as associative graded algebras one
as

U(H∗HV) ∼= H∗AV .
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3.6.3.3 Using smoothed observables

We now provide a refined description of the algebra of sphere operators, yet this approach may
seem more indirect. It relies on interpreting the observables of the βγ system as the factorization
envelope of a certain sheaf of Lie algebras.

The linear smoothed observables, equipped with the linearized BRST differential, on any U ⊂ Cd

form the subcomplex

Ωd,∗
c (U)⊗V∗[d]⊕Ω0,∗

c (U)⊗V[1] ⊂ Obscl
V(U).

Using the P0 bracket restricted to the linear observables, we can form the central extension of dg
Lie algebras

0→ C[−1] · h̄→ H′V(U)→ Ωd,∗
c (U)⊗V∗[d]⊕Ω0,∗(U)→ 0.

This is similar to the construction of the ordinary Heisenberg algebra (such as HV above). For
classical linear observables the Lie bracket is defined by [O,O′] = h̄{O,O′}, where {−,−} is the
P0 bracket. Since the P0 bracket is degree +1 to make this a dg Lie algebra we must put h̄ in degree
+1 as well. Note that this construction works well as we vary the open set U. Namely, U 7→
H′V(U) is a cosheaf of Lie algebras on Cd. An elementary observation identifies the smoothed
quantum observables with the factorization enveloping algebra of H̃V :

Obsq
V
∼= U(H′V).

Indeed, the right hand side assigns to each open U the cochain complex CLie
∗ (H̃V(U)) =

(
Sym(H′V(U)), ∂ + dCE

)
.

One checks directly that dCE is precisely the BV Laplacian h̄∆.
Proposition 3.6.19. There is a locally constant factorization algebra FV on R>0 with the following prop-
erties:

1. FV admits a map of factorization algebras

FV → ρ∗(Obsq
V)

that is dense at the level of cohomology.

2. As a locally constant one-dimensional factorization algebra FV is equivalent to the dg algebra U(HV).

Proof. We will write down the factorization algebra FV and then prove the above two properties
we claim it satisfies. Consider the local Lie algebra on R>0 whose compactly supported sections
are Ω∗R>0,c ⊗HV . The Lie bracket is encoded by the Lie bracket on HV combined with the wedge
product of forms on R>0. Now, we define FV as the factorization envelope of this local Lie algebra

FV = U
(

Ω∗R>0,c ⊗HV

)
.

By construction, FV is locally constant and equivalent, as an associative dg algebra, to U(HV).
Thus, we must only show part (1).
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We have just expressed Obsq
V as a factorization enveloping algebra as well. Since the pushforward

commutes with the functor U(−), to construct the map in (1) it suffices to provide a map of
factorization Lie algebras

Φ : Ω∗R>0,c ⊗HV → ρ∗H
′
V .

Recall that as a vector space H̃V = Ad ⊗ (V∗[d− 1]⊕V). Let I ⊂ R>0 be an open subset, we will
describe the map Φ(I). There is the natural map ρ∗ : Ω∗c (I)→ Ω∗c (ρ−1(I)) given by the pull back
of differential forms. We can post compose this with the natural projection prΩ0,∗ : Ω∗c → Ω0,∗

c

to obtain a map of commutative algebras prΩ0,∗ ◦ ρ∗ : Ω∗c (I) → Ω0,∗
c (ρ−1(I)). The map j from

Proposition 5.1.2 determines a map of dg commutative algebras j : Ad → Ω0,∗(ρ−1(I)). Thus, we
obtain a map

Φ(I) = (prΩ0,∗ ◦ ρ∗)⊗ j⊗ idV : Ω∗c (I)⊗ Ad ⊗V → Ω0,∗
c
(
(ρ−1(I)

)
⊗V

ϕ⊗ a⊗ v 7→ (((prΩ0,∗ ◦ ρ∗)ϕ) ∧ j(a))⊗ v

Note that since the map j is a dense map in cohomology so is Φ(I) for each I ⊂ R>0. The map
on the Ad ⊗ V∗[d − 1] component of HV is defined similarly. Moreover, on the central factor
h̄Ω∗c (I) ⊂ Ω∗R>0,c ⊗HV we define

Φ(I)(h̄ϕ) = h̄
∫

I
ϕ.

To show that this is a map of cosheaves of dg Lie algebras we must show that the differentials
and brackets are compatible. The differential on HV is ddR,R + ∂ where ∂ is the differential on Ad.
Let ϕ⊗ a⊗ v∗ be an element in Ω∗(I)⊗ Ad ⊗ V∗[d− 1]. The differential applied to this element
is

∂ϕ

∂r
dr⊗ a⊗ v∗ + ϕ⊗ ∂a⊗ v∗.

Under Φ(I) this element gets mapped to

∑
i

∂ϕ

∂r
zi
2r

dzi ∧ a(z, z)⊗ v∗ + ϕ(r) ∧ ∂a(z, z)⊗ v∗.

To see that the differentials are compatible, we note that when acting on functions ϕ(r) that only
depend on the radius, one has ∂ϕ

∂zi
= zi

2r
∂ϕ
∂r . The fact that the differentials are compatible follows

immediately.

Now, suppose ϕ⊗ a⊗ v∗ ∈ Ω∗c (I)⊗ Ad ⊗ V∗[d− 1] and ψ⊗ b⊗ v ∈ Ω∗c (I)⊗ Ad ⊗ V. The Lie
bracket in HV of these elements is

[ϕ⊗ a⊗ v∗, ψ⊗ b⊗ v]HV = h̄〈v, v∗〉
∫

I
ϕψ

∮
abddz. (3.30)

Now, using the definition of the (−1)-shifted symplectic structure defining the free βγ system,
we have

[Φ(I)(ϕ⊗ a⊗ v∗), Φ(I)(ψ⊗ b⊗ v)]H′V = h̄〈v, v∗〉
∫

ρ−1(I)
φ(r)a(z, z)ψ(r)b(z, z)ddz

= h̄〈v, v∗〉
∫

r∈I
φ(r)ψ(r)

∮
S2d−1

r

a(z, z)b(z, z)ddz.
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This is precisely the image of the right hand side of (3.30) under Φ(I). Thus, Φ determines a map
of cosheaves of Lie algebras. By functoriality of the enveloping factorization algebra together with
compatibility under pushforward U(ρ∗F) ∼= ρ∗U(F), we obtain a map of factorization algebras

Φ : FV = U
(

Ω∗R>0,c ⊗HV

)
→ ρ∗U(H′V) = ρ∗Obsq

V .

That this map is dense in cohomology follows from Proposition 5.1.2 in the Appendix 5.

3.6.4 The disk as a module

In the beginning of this section we extracted a subspace of the cohomology of the observables on
the d-dimensional disk

VV ⊂ Obsq
V(D(0, r))

by looking at the U(d) weight spaces. We have also seen how the factorization product endows a
subspace of the observables supported on neighborhoods of spheres S2d−1 ⊂ Nε,r

AV ⊂ Obsq
V(Nε,r)

with the structure of a associative dg algebra. In this section we study a different part of the
factorization algebra structure that equips VV with the structure of a module over AV . Moreover,
we will identify this module structure in a way that is reminiscent of the state space of a vertex
algebra in the world of CFT.

First, we describe the factorization structure map for a very simple configuration of open sets.
Suppose R > r + ε and consider the inclusion

Nr,ε ↪→ D(0, R). (3.31)

This configuration induces the following diagram

AV VV H∗(VV)

Obsq
V(Nr,ε) Obsq

V(D(0, R)) H∗
(

Obsq
V(D(0, R))

)
.

H∗(−)

µ H∗(−)

(3.32)

The bottom arrow is the factorization structure map from (3.31) followed by the projection H∗(−)
onto cohomology. Note that projection is well-defined since the cohomology is concentrated in
the top degree. The vertical arrows are all the inclusions of the U(d)-eigenspaces where we recall
that the state space VV embeds inside the cohomology of the observables on a disk. We will see in
the next lemma that the map µ factors through VV , hence producing the dashed arrow AV → VV .

To state the lemma, recall the presentation for the cohomology of the commutative dg algebra Ad

in terms of the Bochner-Martinelli kernel. Following Remark 3.6.13, we use the U(d)-equivariant
presentation

Hd−1(Ad) = C

[
∂

∂z1
, . . . ,

∂

∂zd

]
ω

alg
BM,
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where, on the right hand side we take the cohomology class. This says that every cohomology
class may be represented by some constant coefficient holomorphic differential operator applied
to ωBM.
Lemma 3.6.20. There exists a lift of µ making the diagram (3.32) commutative. In particular there exists
a map π− : AV → H∗VV compatible with the factorization structure maps. This is a map of symmetric
algebras, further on linear elements a⊗ v∗, b⊗ v ∈ Ad ⊗ (V∗[d− 1]⊕V) ⊂ AV the map is

π−(a⊗ v∗) =

Oγ,−~n(0; v∗), if |a| = d− 1

0, otherwise.

and

π−(b⊗ v) =

Oβ,−~m(0; v), if |b| = d− 1

0, otherwise.

Where, a = ( ∂
∂z )

~nωBM ∈ Ad−1
d and b = ( ∂

∂z )
~mωBM ∈ Ad−1

d .

The notation π− will become apparent momentarily.

Proof. For degree reasons it is automatic that in the composition in (3.32) is only nonzero on
a⊗ v∗, b⊗ v ∈ Ad ⊗ (V∗[d− 1]⊕ V) if |a| = |b| = d− 1. Since ωBM is U(d) invariant, it is clear
that the element a = ∂~nωBM it lives in the weight −~n subspace and defines the observable

γ⊗ v 7→ 〈v, v∗〉
∮

S2d−1
γ(z, z)(

∂

∂z
)~nωBMddz.

Since we are only interested in the cohomology class, we can assume that γ is holomorphic. In this
case, the residue formula implies that this is precisely the observable Oγ;−~n(0; v∗). The argument
for b⊗ v is similar.

We consider the configuration of open sets of a small d-disk enclosed by a neighborhood Nε,r.
Concretely, suppose r1 < r2 − ε < r2 + ε < R and consider the inclusion of opens

D(0, r1) t Nε,r2 ↪→ D(0, R). (3.33)

Consider the following diagram

Obsq
V(D(0, r1))⊗Obsq

V(Nε,r2)
µ
// Obsq

V(D(0, R))

Obsq
V(D)⊗AV

OO

VV ⊗AV

OO

// VV

OO

The top horizontal line µ is the factorization structure map coming from the configuration in
(3.33).
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All of the upward pointing vertical arrows are the inclusions of AV ,VV into the sphere and disk
observables, respectively. We claim that the bottom horizontal arrow exists; that is, the restricted
factorization product factors through V. This follows from the fact that the factorization structure
map preserves the U(d)-eigenspaces.

We have seen that the commutative dg algebra Ad has cohomology concentrated in degrees 0
and d− 1. Since the complex is concentrated in degrees 0, . . . , d− 1 there exists a quotient map
q : Ad → Hd−1(Ad). In the remainder of the section we use the notation Ad,− := Hd−1(Ad). In
addition, let Ad,+ denote the kernel of this map Ad,+ = ker(q) ⊂ Ad.

Correspondingly, there is an abelian dg Lie subalgebra

HV,+ = Ad,+ ⊗ (V∗[d− 1]⊕V) ⊂ AV

and a commutative subalgebra AV,+ = U(HV,+) ⊂ AV . In fact, this is a maximal commutative
subalgebra of AV . Using Ad,− we can similarly define the cochain complex HV,− = Ad,− ⊗
(V∗[d − 1] ⊕ V). As cochain complexes there is a splitting HV = HV,+ ⊕HV,−. Hence, by the
PBW theorem there is a splitting AV = AV,+ ⊗AV,− as cochain complexes. The induction of the
trivial AV,+-module C to a AV-module is given by AV ⊗AV,+ C. We will refer to this as the vacuum
AV-module. There is a canonical element |0〉 = 1⊗ 1 ∈ AV ⊗AV,+ C.
Proposition 3.6.21. The factorization product corresponding disks enclosed by the neighborhoods Nr,ε

endows the state space VV the the structure of a module over the dg algebra AV . Moreover, as AV-modules
there is a quasi-isomorphism

VV ' AV ⊗AV,+ C

which sends the unit observable 1 ∈ VV to the vacuum element |0〉.

Proof. First, note that there is a map of cochain complexes AV → VV sending an element of the
algebra a to its action on the unit observable a · 1 ∈ VV . By the unit axiom for factorization
algebras, this maps fits into a commutative diagram

AV Obsq
V(Nε,r)

VV Obsq
V(D(0, R)).

µ

By Lemma 3.6.20 we know that if a ∈ AV,+ then a · 1 is homotopically trivial in VV . Thus, AV →
VV descends to a map of AV-modules AV ⊗AV,+ C→ VV .

It remains to see that this is a quasi-isomorphism. It suffices to show that H∗(AV,−) ∼= H∗(VV).
The map AV → VV preserves the filtration by symmetric degree, so it defines a map GrH∗(AV)→
GrH∗(VV). The cohomology of the state space VV sits inside the cohomology of the disk observ-
ables as the U(d)-invariants. At the level of the associated graded this embedding is

GrH∗(VV) ⊂ Sym
((

Ohol(D(w, r)
)∨
⊗V∗ ⊕

(
Ωd,hol(D(w, r))

)∨
⊗V[−d + 1]

)
[h̄].
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The right-hand side is the associated graded of the cohomology of the disk observables which we
computed in Lemma 3.6.5. Consider the topological vector space Ohol(D(w, r))∨. Using the holo-
morphic volume form ddz the higher residue pairing defines a map Hd−1(Ad) → Ohol(D(w, r))∨

which is an isomorphism after taking U(d)-eigenspaces Similarly, residue pairing defines a map
Hd−1(Ad)→ (Ωd,hol(D(w, r)))∨ which is an isomorphism at the level of U(d)-eigenspaces. Thus,
we can identify the map GrH∗(AV)→ GrH∗(VV) with the map

Sym(ddzH∗(Ad)⊗V∗[d− 1]⊕H∗(Ad)⊗V)[h̄]→ Sym(ddzHd−1(Ad)⊗V∗⊕H∗(Ad)⊗V[−d+ 1])[h̄]

induced by the projection H∗(Ad)→ Hd−1(Ad)[−d + 1] = Ad,− as desired.

Remark 3.6.22. The subalgebra of sphere operators AV,+ is the higher dimensional generalization
of “annihilation operators” in the context of CFT. Repeated application of these operators kills any
vector in VV . Similarly, the quotient AV,− is the collection of ”creation operators”. One obtains
the entire AV-module by applying elements of AV,− to the vacuum element |0〉.

3.6.5 A formula for the character

In this section we compute the character of the action of U(d)×U(1) f on the local observables of
the free βγ system with values in V. We have already seen that the quantum theory is equivariant
for this group, so it makes sense to compute such a character. By definition, the character is
conjugation invariant, so it is completely determined by its value on the subgroup Td ×U(1) f ⊂
U(d)×U(1) f . Choose the following basis for the maximal torus of U(d):

Td = {diag(q1, . . . , qd) | |qi| = 1} ⊂ U(d).

We label the generator of U(1) f by u. We view the character as an element in the power series
ring C[[q±i , u±q f ]].

We will perform the detailed calculation in the case that the complex dimension d = 2, with an
aim to compare to the formula for the character of the N = 1 supersymmetric chiral multiplet
on R4. The higher dimensional calculation is similar, and the result is given following the two
dimensional calculation.

The local operators of the theory we are those supported on the disk D2 ⊂ C2. Since the theory is
translation invariant it suffices to consider a disk centered at the origin 0 ∈ C2. When d = 2 we
use Lemma 3.6.5 to read off the cohomology of the disk observables H∗Obsq

V(D2):

Sym
(
(Ohol(D2)⊗V)∨

)
⊗ Sym

(
(Ω2,hol(D2)⊗V∗)∨[−1]

)
.

Proposition 3.6.23. The U(2)×U(1) f character of the local operators of the βγ system on C2 is equal
to the elliptic Γ-function

Γell(u; q1, q2) = ∏
n1,n2≥0

1− uq f qn1−1
1 qn2−1

2

1− u−q f qn1
1 qn2

2
∈ C[[q±1 , q±2 , u±q f ]].
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For an introduction to the elliptic Γ-function and other related hypergeometric series we refer to
the textbook reference [GR04].

Proof. We recall the basis for a U(2)-eigenspaces of the observables on a 2-disk that we described
in Section 3.6.2. Fix non-negative integers n1, n2 ≥ 0 and elements v ∈ V, v∗ ∈ V∗ consider the
following linear observables on the 2-disk:

Oγ(n1, n2; v∗) : γ⊗ w ∈ Ohol(D2)⊗V 7→ ev(v∗, w) ∂n1

∂z
n1
1

∂n2

∂zn2
2

γ(0)

Oβ(n1 + 1, n2 + 1; v) : βdz1dz2 ⊗ w∗ ∈ Ω2,hol(D2)⊗V∗ 7→ ev(w∗, v) ∂n1

∂z
n1
1

∂n2

∂zn2
2

β(0).

For fixed n1, n2 ≥ 0, let V∗n1,n2
denote the linear span of operators Oγ(n1, n2; v∗). As a vector space

V∗n1,n2
∼= V∗, but we want to remember the weights under U(2). Likewise, for n1, n2 > 0, let

Vn1,n2
∼= V be the linear span of the operators Oβ(n1, n2; v).

There is an injective map of graded vector spaces

Sym

 ⊕
n1,n2≥0

V∗n1,n2

⊕
 ⊕

n1,n2>0
Vn1,n2 [−1]

→ Sym
((

Ohol(D2)⊗V
)∨
⊕
(

Ω2,hol(D2)⊗V∗
)∨

[−1]
)

,

where the right-hand side is the cohomology of the observables on D2 and the left-hand side is
the cohomology of the state space that we denoted H∗VV in Section 3.6.2.

Thus, to compute the character of the local operators it suffices to compute it on the vector space

Sym

 ⊕
n1,n2≥0

V∗n1,n2

⊕
 ⊕

n1,n2>0
⊕Vn1,n2 [−1]

 ∼= Sym

 ⊕
n1,n2≥0

V∗n1,n2

⊗∧
 ⊕

n1,n2>0
Vn1,n2

 .

We have used the convention that as (ungraded) vector spaces the symmetric algebra of a vector
space in odd degree is the exterior algebra. For instance, Sym(W[−1]) =

∧
(W) as ungraded

vector spaces. We can further simplify the right-hand side as⊗
n1,n2≥0

(
Sym(V∗n1,n2

)
)⊗ ⊗

n1,n2>0

(∧
(Vn1,n2)

)
.

The character of the symmetric algebra Sym(V∗n1,n2
) is equal to (1− u−q f qn1

1 qn2
2 )−1 and the char-

acter of
∧
(Vn1,n2) is equal to (1− uq f qn1

1 qn2
2 ). The formula for character in the statement of the

proposition follows from the fact that the character of a tensor product is the product of the char-
acters.

Our expression for the character of the local operators of the βγ system on C2 agrees with the
partition function of the N = 1 supersymmetric chiral multiplet on the manifold S3 × S1, com-
puted in [CS]. There is the following mathematical explanation for this. The free βγ system on
C2 is equivalent to the holomorphic twist of the free N = 1 chiral multiplet in four dimensions.
Recall that the data of a twist of a supersymmetric theory, as explained in [Cos13] is that of a
supercharge Q that satisfies Q2 = 0.
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Proposition 3.6.24. Consider the N = 1 chiral multiplet on R4. There is a unique (up to rotation)
nontrivial SU(2)-invariant supercharge Q satisfying Q2 = 0. The twist of the N = 1 chiral multiplet
with respect to Q is equivalent to the free βγ system on C2. If one turns on a C×-invariant superpotential
V, the twist is equivalent to the holomorphic σ-model with target the critical locus of V.

We will prove this proposition in a subsequent publication.
Remark 3.6.25. One should compare this to the standard situation for two-dimensional supersym-
metric σ-models. The two-dimensional N = (2, 0) theory admits a unique nontrivial holomor-
phic twist which is equivalent to the curved βγ system on Riemann surfaces. There are many
verifications of this in the physics literature, see [Wit07] for the original discussion. For a mathe-
matical proof, see the forthcoming paper with Gwilliam and Szczesny [GSW].3 It is theN = (2, 2)
σ-model that admits two further topological twists, these are the A and B-models.

The supersymmetric partition function of the N = 1 is closed for the supercharge Q, thus one
expects it to survive under the holomorphic twist. This is, indeed, exactly what we find. In [CS]
Equation 5.58 the partition function for the N = 1 chiral multiplet on S3 × S1 is computed, and
our answer of the local character of the holomorphic twist is easily seen to agree with theirs.
We conclude that in this instance that under the holomorphic twist the supersymmetric partition
function on S3 × S1 was sent to the character of the local observables of the holomorphic theory.
In future work our goal is to show that this is a general phenomena of superconformal indices.

Without much more difficulty, one can obtain the formula for the character of the holomorphic
σ-model of maps Cd → V for any d.
Proposition 3.6.26. The U(d) × U(1) f character of the local operators of the holomorphic σ-model of
maps C2 → V is equal to the formal series

∏
n1,...,nd≥0

1− uq f qn1−1
1 · · · qnd−1

d

1− u−q f qn1
1 · · · q

nd
d
∈ C[[q±1 , . . . , q±d , u±q f ]].

Remark 3.6.27. The holomorphic twist of the N = (1, 0) hypermultiplet in real six dimensions
is equivalent to the βγ system on C3. It would be interesting to compare the calculation of the
partition function on S5 × S1 to our formula for the local character above.

3In fact, Proposition 3.6.24 implies this.
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Chapter 4

Local symmetries of holomorphic
theories

In this chapter we investigate the symmetries that generic holomorphic quantum field theories
possess. Our overarching goal is to develop tools for understanding such symmetries that pro-
vide a systematic generalization of methods used in chiral conformal field theory on Riemann
surfaces, especially for the Kac-Moody and Virasoro vertex algebras [Fre85, Kac98, Bor86]. We
will utilize the tools of BV quantization and factorization algebras that have already heavily per-
colated this thesis. The primordial example of a holomorphic theory we consider is the holomor-
phic σ-model studied in the previous chapter.

We will focus on two main types of symmetries: holomorphic gauge symmetries and symmetries
by holomorphic diffeomorphisms (or holomorphic reparametrizations). An ordinary gauge sym-
metry is characterized as being local on the spacetime manifold. Each of the types of symmetries
we consider share this characteristic, but they also enjoy an additional structure: they are holo-
morphic (up to homotopy) on the spacetime manifold. This means that they are specific to the
type of theories we consider. Moreover, they store more information about the geometry of the
underlying manifold as compared to the smooth version of such symmetries.

Infinitesimally speaking, a symmetry is encoded by the action of a Lie algebra. For the holo-
morphic gauge symmetry this will become a sort of current algebra which is equivalent to holo-
morphic functions on the complex manifold with values in a Lie algebra. For the holomorphic
diffeomorphisms this Lie algebra is that of holomorphic vector fields. Locality implies that this
actually extends to a symmetry by a sheafy version of a Lie algebra. The precise sheafy version we
mean is called a local Lie algebra, which we will recall in the main body of the text. To every local
Lie algebra we can assign a factorization algebra through the so-called factorization enveloping
algebra:

U : LieX → FactX .

Here, LieX is the category of local Lie algebras. By this construction, we see that the Lie algebra
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of symmetries of a theory define a factorization algebra on the manifold where the theory lives.

One compelling reason for constructing a factorization algebra model for Lie algebras encoding
the symmetries of a theory is that it allows one to consider universal versions of such objects.
There is a variation of the definition of a factorization algebra that lives, in some sense, on the
entire category of manifolds (or complex manifolds). Such a perspective has been developed in
great generality by Ayala-Francis in [AF15]. In the case of the symmetry by a current algebra on
Riemann surfaces a universal version of the Kac-Moody has been studied in [CG17]. For the case
of conformal symmetry our work in [Wil17] provides a factorization algebra lift of the ordinary
Virasoro vertex algebra that exists uniformly on the site of Riemann surfaces. In this chapter, we
extend each of these objects to arbitrary complex dimensions. Our formulation lends itself to an
explicit computation of the factorization homology along certain complex manifolds, for which
we will focus on a class of examples called Hopf manifolds.

Studying such local symmetries involves rich geometric input even at the classical level, but the
skeptical mathematician may view this as a repackaging of already familiar objects in complex
geometry. The main advantage of working with factorization algebra analogs of such symmetries
is in their relationship to studying quantizations of field theories. A similar obstruction defor-
mation theory for studying quantizations of classical field theories also allows us to study the
problem of quantizing the action of a (local) Lie algebra on a theory. Moreover, we already know
that factorization algebras describe the operator product expansion of the observables of a QFT.
A formulation of Noether’s theorem in Chapter 12 of [CG] makes the relationship between the
associated factorization algebra corresponding to a symmetry and the factorization algebra of
observables of the theory.

Of course, quantizing a symmetry of a field theory may not always exist. In fact, this failure sheds
light into subtle field theoretic phenomena of the underlying system. For example, in the case of
conformal symmetries of a conformal field theory, the failure is exactly measured by the central
charge of the theory. It is well established that the central charge is a very important invariant
associated to a conformal field theory. At the Lie theoretic level, this failure is measured by a
cocycle which in turn defines a central extension of the Lie algebra. It is this central extension that
acts on the theory.

For this reason, an essential aspect of studying the local symmetries of holomorphic field theories
we mentioned above is to characterize the possible cocycles that give rise to central extensions. As
we have already mentioned, for vector fields in complex dimension one this is related to the cen-
tral charge and the central extension of the Witt algebra (vector fields on the circle) known as the
Virasoro Lie algebra. In the case of a current algebra associated to a Lie algebra, central extensions
are related to the level and the corresponding central extensions are called affine algebras.
Theorem 4.0.1. The following is true about the local Lie algebras associated to holomorphic diffeomor-
phisms and holomorphic gauge symmetries.

1. Let g be a Lie algebra and gX is associated current algebra defined on any complex manifold X. There
is an embedding of the cohomology H∗Lie(g, Symd+1g∨[−d − 1]) inside of the local cohomology of
gX .
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2. There is an isomorphism between the local cohomology of holomorphic vector fields on any complex
manifold X of dimension d and H∗dR(X) ⊗ H∗GF(Wd)[2d], where H∗GF(Wd) is the Gelfand-Fuks
cohomology of vector fields on the formal disk.

The central extensions we are interested in come from classes of degree +1 of the above local Lie
algebras. In the case of holomorphic vector fields the result above implies that all such extensions
are parametrized by H2d+1(Wd). It is a classical result of Fuks [Fuk86] that this cohomology is
isomorphic to H2d+2(BU(d)). In complex dimension one this cohomology is one dimensional
corresponding to the class c2

1. In general, we obtain new classes, which are shown to agree with
calculations in the physics literature in dimensions four and six.

In general, any of these cohomology classes define factorization algebras by twisting the factor-
ization enveloping algebra. We especially focus on this construction in the case that the complex
d-fold is equal to affine space Cd, or some natural open submanifolds thereof. In the case of the
current algebra, our result is compatible with recent work of Kapranov et. al. in [FHK] where
they study higher dimensional versions of affine algebras, and their relationship to the (derived)
moduli space of G-bundles in an analogous way that affine algebras are related to the moduli of
bundles on curves via Kac-Moody uniformization. Our second main result shows how to recover
these higher affine algebras from our factorization algebra on punctured affine space Cd \ {0},
see Theorem 4.2.2.2.

The extensions of part (1) of Theorem 4.0.1 are related to cohomology classes in the moduli of
G-bundles on complex d-folds. We will show how techniques in equivariant BV quantization
lead to natural families of QFTs defined over formal neighborhoods in the moduli space of G-
bundles. Our techniques allow us to study quantizations of such families, in particular there
are anomalies to quantization. An explicit analysis of Feynman diagrams leads to a computa-
tion of certain classes in the local cohomology which we relate to Chern classes of natural line
bundles on BunG(X). This leads us to our next main result which is to prove a version of the
Grothendieck-Riemann-Roch (GRR) theorem using the aforementioned methods of BV quantiza-
tion, see Theorem 4.4.1.

4.1 The current algebra on complex manifolds

4.1.1 Definitions

We recall some definitions that we will use throughout the paper. The first concept we introduce
is that of a local Lie algebra. This is the central object needed to discuss symmetries of field theories
that are local on the spacetime manifold.

Throughout this paper we will use L∞ algebras. This is a modest generalization of a dg Lie algebra
where the Jacobi identity is only required to hold up to homotopy. The data of an L∞ algebra is a
graded vector space V with, for each k ≥ 1, a k-ary bracket

`k : V⊗k → V[2− k]
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of cohomological degree 2− k. These maps are required to satisfy a series of conditions, the first
of which says `2

1 = 0. The next says that `2 is a bracket satisfying the Jacobi identity up to a
homotopy given by `3. For a detailed definition see we refer the reader to [Sta92, Get09].

We now give the definition of a local L∞ algebra on a manifold X. This has appeared in Chapter
4 of [CG].
Definition 4.1.1. A local L∞ algebra on X is the following data:

(i) a Z-graded vector bundle L on X, whose sheaf of smooth sections we denote Lsh, and

(ii) for each positive integer n, a polydifferential operator in n inputs

`n : Lsh × · · · ×Lsh︸ ︷︷ ︸
n times

→ L[2− n]

such that the collection {`n}n∈N satisfy the conditions of an L∞ algebra. Thus, Lsh is a sheaf of
L∞ algebras.

In practice, we prefer to work with the compactly supported sections of L, for which we reserve
the more succinct notation L.
Definition 4.1.2. Given a local L∞ algebra (L, {`n}) on X, let L denote the precosheaf of L∞

algebras that assigns compactly supported sections of L to each open of X.

We typically refer to the local L∞ algebra (L, {`n}) by L. We will often use local Lie algebra,
especially if L is a precosheaf of dg Lie algebras and hence has trivial `n≥3.
Example 4.1.3. Let π : P→ X be a holomorphic principal G-bundle. This means:

(a) P, X, G are complex manifolds;

(b) π : X → G is a smooth principal G-bundle;

such that the action of G on X is by holomorphic diffeomorphisms and π is a holomorphic map.

The adjoint bundle is a holomorphic bundle of Lie algebras that we denote ad(P) → X. This can
be defined as via the Borel construction P×G g where the left G-action on g is the adjoint one. It
is equipped with a (0, 1)-connection that we denote ∂P : Ω0,q(X; ad(P))→ Ω0,q+1(X; ad(P)).

We will hereafter use Ad(P) to denote the cosheaf of compactly supported sections of Dolbeault
complex of ad(P)

Ad(P)(U) = Ω0,∗
c (U; ad(P)),

equipped with the differential ∂P. In keeping with our conventions, Ad(P)sh will denote the
corresponding sheaf of sections of the Dolbeault complex

Ad(P)sh(U) = Ω0,∗(U; ad(P)).

The Dolbeualt differential ∂ and the fiberwise Lie bracket on ad(P) endow Ad(P)sh with the
structure of a sheaf of dg Lie algebras on X.

The following lemma follows from tracing through definitions.
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Lemma 4.1.4. For any holomorphic principal bundle P→ X, the Dolbeualt complex of forms with values
in ad(P) is a local Lie algebra.
Example 4.1.5. Another key local Lie algebra makes sense on an arbitrary complex d-fold. Let g
be an ordinary Lie algebra, such as sln. There is a natural assignment

Gsh : X 7→ Ω0,∗(X)⊗ g,

where X is a complex d-fold. In fact, this assignment defines a sheaf of dg Lie algebras on the cat-
egory of complex d-folds and local biholomorphisms,1 and G to denote the cosheaf of compactly
supported sections Ω0,∗

c ⊗ g. For any g, G defines a local Lie algebra on the category of d-folds,
though we don’t elaborate on the requisite categorical machinery to make this precise. We use
GX to denote the restriction of G to a fixed complex d-fold X. This defines a local Lie algebra
whose associated cosheaf of sections is U ⊂ X 7→ Ω0,∗

c (U)⊗ g. Note that in the case of the trivial
holomorphic principal G-bundle on X one as GX = Ad(triv).

4.1.1.1 Deformations of holomorphic principal bundles

The dg Lie algebra Ad(P)sh(X) = Ω0,∗(X, ad(P)) appears naturally in the deformation theory of
holomorphic G-bundles. By definition, a holomorphic principal bundle P → X comes equipped
with a G-equivariant (0, 1)-connection ∂P : C∞

P → Ω0,1
P . Consider two complex structures ∂P and

∂
′
P. By the fundamental property of connections we see that ∂P − ∂

′
P defines a (0, 1) form with

values in g:
α = ∂P − ∂

′
P ∈ Ω0,1(P)⊗ g.

This element is G-equivariant, so that it actually descends to an element α ∈ Ω0,1(X, ad(P)).
Furthermore, since ∂

2
P = ∂

′2
P = 0, we see that α satisfies the following holomorphic version of the

Maurer-Cartan equation

∂α +
1
2
[α, α] = 0.

Such an α determines a deformation of the holomorphic G-bundle P. Of course, two deformations
α, α′ are equivalent if there exists a holomorphic gauge transformation f ∈ Γhol(X, ad(P)) such
that α′ = [ f , α′]. Moreover, there may be obstructions to having such a deformation. This situation
is exactly what a formal moduli problem, see Section 2.1.1.5, is designed to describe.

We define the formal moduli problem DefP→X associated to the holomorphic principal G-bundle
P → X. As above, denote the fixed (0, 1)-connection by ∂P defining the complex structure of the
holomorphic principal bundle. Define

DefP→X : dgArtC → sSets

which sends a dg Artinian ring (A,m) (again, see Section 2.1.1.5) to the simplicial set DefP→X(A)

whose n-simplices are

DefP→X(A)[n] =
{

α ∈
(

Ω0,∗(X, ad(P))⊗m⊗Ω∗(∆n)
)1
| ∂Pα + dAα + d∆n α +

1
2
[α, α] = 0

}
.

1A biholomorphism is a map φ : X → Y that is biijective and both φ and φ−1 are holomorphic. A local biholomorphism
means a map φ : X → Y such that for every point x ∈ X has a neighborhood on which φ is a biholomorphism.
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Here, dA is the internal differential of A and d∆n is the de Rham operator for differential forms on
the n-simplex ∆n.
Lemma 4.1.6. The functor DefP→X : A 7→ DefP→X(A) defines a formal moduli problem.

We unpack the definition of this formal moduli problem. Suppose first that (A,m) is an ordinary
Artinian algebra (not dg) concentrated in degree zero. Then, the set of zero simplices above is
equal to

{α ∈ Ω0,1(X, ad(P))⊗m | ∂Pα +
1
2
[α, α] = 0}. (4.1)

A 1-simplex is an element α(t) + β(t)dt ∈ Ω0,∗(X, ad(P)) ⊗ m ⊗ Ω∗([0, 1]) where, for each t,
α(t) ∈ Ω0,1(X, ad(P)) and β(t) ∈ Ω0,0(X, ad(P)). The Maurer-Cartan equation for the 1-simplices
is equivalent to the pair of equations

∂Pα(t) +
1
2
[α(t), α(t)] = 0,

∂Pβ(t) +
∂

∂t
α(t) + [β(t), α(t)] = 0.

The first equation says that α(t) determines a family of complex structures on the G-bundle
P → X and. The second equation says that holomorphically gauge equivalent deformations
of complex structure are cochain homotopy equivalent. It follows from a result of Getzler [Get09]
that the space DefP→X(A) is homotopy equivalent to the homotopy quotient of (4.1) by the group
associated to the nilpotent Lie algebra of gauge transformations Γhol(X, ad(P))⊗m.

By construction, the formal moduli problem DefX→P is represented by the dg Lie algebra Ad(P)sh(X)

which is the sheaf of sections of the local Lie algebra Ad(P) we consider in this paper. Naturally,
we expect the formal neighborhood of the derived moduli space of G-bundles defined in [FHK]
near P to be equivalent to this formal moduli problem.

Note that in the case of a Riemann surface H2(X; ad(P)) = 0 and deformations of holomorphic
G-bundles always exist. In higher dimensions, however, there may be obstructions which is one
reason why working with the full dg model for holomorphic gauge symmetries is essential.

4.1.2 Factorization Lie algebras

There is a rich theory of factorization algebras and factorization homology for which we only use
a part of in this thesis. In addition to the foundational work of Beilinson-Drinfeld [BD04], the
modern theory has been developed extensively in the work of Ayala-Francis [AF15] and Lurie
[Lur]. Ordinarily, when we discuss factorization algebras in this work we mean a symmetric
monoidal functor from the category of opens on a fixed manifold, with monoidal product given
by disjoint union, to the category of chain complexes, with monoidal product given by tensor
product. The general theory allows a factorization algebra to take values in an arbitrary sym-
metric monoidal ∞-category. A factorization Lie algebra is a useful concept that we will utilize
to make the connection between local Lie algebras on factorization algebras. The definitions we
recall in this section can be found in [CG17].
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Definition 4.1.7. Let C⊗ be a symmetric monoidal category and X a space. A prefactorization
algebra on X with values in C is a functor of symmetric monoidal categories

F : DisjtX → C⊗.

A strict factorization algebra with values in C is a prefactorization algebra F such that:

1. F is a cosheaf with respect to the Weiss topology;

2. for any disjoint open sets U, V ⊂ X the structure map F(U) ⊗ F(V) → F(U t V) is an
isomorphism.

There are two important symmetric monoidal categories we will be most interested in as the
target of a factorization algebra. The first is the category of chain complexes Ch⊗ (over C, R)
with symmetric monoidal product given by the tensor product. The next is the category of dg Lie
algebras dgLie⊕ with symmetric monoidal structure given by the direct sum.

In both of these categories there is the notion of a quasi-isomorphism, which allows us to weaken
the above definition slightly.
Definition 4.1.8. Let F be a prefactorization algebra on X with values in C = Ch⊗ or dgLie⊕.
Then, F is a homotopy factorization algebra if

1. F is a homotopy cosheaf with respect to the Weiss topology;

2. for any disjoint open sets U, V ⊂ X the structure map F(U)⊗ F(V)→ F(U tV) is a quasi-
isomorphism.

For the remainder of this paper we will only discuss factorization algebras valued in these cate-
gories Ch⊗, dgLie⊕. When we do not say otherwise, a factorization algebra will mean a homotopy
factorization algebra with values in Ch. Likewise, a factorization Lie algebra will mean a homotopy
factorization algebra with values in dgLie. Note that the direct sum is not the coproduct for Lie
algebras, so a prefactorization Lie algebra is different than just a precosheaf of Lie algebras.

We have already encountered a modest extension of the category of dg Lie algebras to the cat-
egory of L∞ algebras L∞Alg which will come up in our discussion below. This category is also
symmetric monoidal using the direct sum, and we will also refer to homotopy factorization alge-
bras with values in L∞Alg as factorization Lie algebras.

The primary appearance of factorization Lie algebras, for us, comes from local Lie algebras.
Lemma 4.1.9. Suppose (L, {`n}) is a local Lie algebra on X. Then, the compactly supported sections L
has the structure of a factorization Lie algebra.

Proof. By the cosheaf property, we know that L(U tV) ∼= L(U)⊕L(V). This is an isomorphism
of L∞ algebras since any element of L(U) commutes with L(V) inside of L(U t V). Similarly, if
{Ui} is a disjoint collection of opens in X and tiUi ⊂W, then we define the factorization structure
map by

⊕iL(Ui) ∼= L(tiUi)→ L(W)
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where the second map is the structure map for the cosheaf. These structure maps exhibit L as a
prefactorization Lie algebra (i.e. a prefactorization algebra valued in the category of L∞ algebras).

There is a functor from dg Lie algebras to cochain complexes

CLie
∗ : dgLie→ Ch

sending (g, d, [−,−]) to the complex

CLie
∗ (g) = (Sym(g[1]), d + dCE) .

Here, d denotes the extension of the differential on g to the symmetric algebra by the Leibniz rule,
and dCE encodes the Lie bracket. There is a completely similar functor from L∞ algebras to chain
complexes that we denote by the same name.

The functor CLie
∗ is symmetric monoidal with respect to the direct sum of Lie algebras and the

tensor product of cochain complexes CLie
∗ (g⊕ h) = CLie

∗ (g) ⊗ CLie
∗ (h). Since a factorization Lie

algebra uses the direct sum monoidal structure, the following definition makes sense.
Definition/Lemma 2. Suppose G is a factorization Lie algebra on a manifold X then, CLie

∗ (G) has
the structure of a factorization algebra (valued in cochain complexes with tensor product).

We have already seen that every local Lie algebra gives rise to a factorization Lie algebra. By the
construction above, we obtain the following composition of functors.

LieX → FactLie
X → FactX

Here LieX is the category of local Lie algebras on X. If L is a local Lie algebra we let U(L) be the
image under this composition, and call it the factorization enveloping algebra of L.

4.1.3 Local cohomology

In this section we describe the cohomology of the local Lie algebra Ad(P). As we have already
encountered many times in this thesis, the cohomology we are interested in consists of those
functionals on the local Lie algebra that are local. From the perspective of local Lie algebras, one
appealing aspect of this class of functionals is that they give rise to local Lie algebra extensions
of the current algebra. These extensions will be appear when we quantize holomorphic gauge
symmetries.

In Section 2.1.1 we have introduced the local cohomology of a local Lie algebra, but we briefly
recall it here. The basic idea is that a local cochain is a functional on the local Lie algebra obtained
by integrating a polydifferential operator applied to an element in the local Lie algebra. If L is
a graded vector bundle, let JL denote the corresponding ∞-jet bundle. If L is the underlying
vector bundle of a local Lie algebra then JL has the structure of a bundle of Lie algebras. Thus,
we may consider its reduced Chevalley-Eilenberg cochain complex C∗Lie,red(JL)2. For any vector

2A local functional will always be defined modulo constants, hence we look at reduced cochains.
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bundle JL has the structure of a DX-module. In the case of a local Lie algebra, JL is a Lie algebra
object in DX-modules. Thus, C∗Lie(JL) is a commutative dg algebra in DX-modules. The local
cochain complex is obtained by tensoring the right DX-modules of densities on X over DX with
this DX-module.
Definition 4.1.10. Let L be a local Lie algebra on X. The local cohomology of L is defined as

C∗loc(L) = Ωd,d
X ⊗DX C∗Lie,red(JL).

This is a sheaf of cochain complexes on X whose global sections we will denote by C∗loc(L(X)).

We note that the cochain complex of local functionals is a subcomplex of C∗Lie,red(L(X)), the re-
duced Lie algebra cochains of the global sections L(X). The differential on local functionals is,
in essence, just precomposition with the polydifferentials defining the brackets of L. Altogether
C∗loc(L) is just a version of diagonal Gelfand-Fuks cohomology [Fuk86, Los98] for this kind of
Lie algebra. We will discuss this further when we approach the local Lie algebra of holomorphic
vector fields.

In ordinary Lie theory, central extensions are parametrized by cocycles on the Lie algebra valued
in the trivial module. Similarly, local cocycles define central extensions of local Lie algebras.
Definition 4.1.11. A cocycle Θ of degree 2 + k in C∗loc(L) determines a k-shifted central extension

0→ C[k]→ L̂θ → L→ 0 (4.2)

of precosheaves of L∞ algebras, where the L∞ structure maps are defined by

̂̀n(x1, . . . , xn) = (`n(x1, . . . , xn), Θ(x1, . . . , xn)).

Cohomologous cocycles determine quasi-isomorphic extensions of precosheaves of Lie algebras.
Much of the rest of the section is devoted to constructing and analyzing various cocycles and the
resulting extensions.

Local cocycles give a direct way of deforming the factorization enveloping algebra of a local Lie
algebra. Suppose that we have a local cocycle Θ ∈ C∗loc(L) is of cohomological degree +1. We
define the twisted factorization enveloping algebra to be the factorization algebra sending the open
set U ⊂ X to the cochain complex

UΘ(L)(U) = (Sym(L(U)[1]⊕C · K), dL + K ·Θ)

= (Sym(L(U)[1])[K], dL + K ·Θ) ,

where dL denotes the differential on the untwisted factorization enveloping algebra applied to U
and Θ is the operator on the symmetric algebra extending the cocycle Θ : Sym(L(U)[1])→ C · K
by demanding that it is a graded derivation. Here, K is a formal algebraic parameter. We denote
this twisted factorization enveloping algebra by UΘ(L). We will consider this as a factorization
algebra valued in the symmetric monoidal category of chain complexes that are linear over the
commutative ring C[K]. Specialization at certain values of K yields an ordinary factorization
algebra.
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4.1.3.1 The J functional

There is a particular family of local cocycles that has special importance in studying symmetries
of higher dimensional holomorphic gauge theories.

Let us recall the familiar complex one-dimensional case that we wish to extend. Let Σ be a Rie-
mann surface, and let g be a simple Lie algebra with Killing form κ. Consider the local Lie algebra
GΣ = Ω0,∗

c (Σ)⊗ g on Σ. There is a natural cocycle depending precisely on two inputs:

θ(α⊗M, β⊗ N) = κ(M, N)
∫

Σ
α ∧ ∂β,

where α, β ∈ Ω0,∗
c (Σ) and M, N ∈ g. In Chapter 5 of [CG17] it is shown how the twisted factoriza-

tion envelope of GX via this cocycle recovers the Kac-Moody vertex algebra and the affine algebra
extending Lg = g[z, z−1].

We are interested in a generalization of this construction that makes sense in arbitrary dimensions.
Let θ be an invariant polynomial on g of homogenous degree d + 1. That is, θ is an element of
Symd+1(g∗)g. For any complex d-fold X we can extend θ to a functional JX(θ) on the compactly
supported Dolbeault complex Ω0,∗

c (X)⊗ g by the formula

JX(θ)(ω0 ⊗Y0, . . . , ωd ⊗Yd) = θ(Y0, . . . , Yd)
∫

X
ω0 ∧ ∂ω1 · · · ∧ ∂ωd. (4.3)

Note that we use d copies of the holomorphic derivative ∂ : Ω0,∗ → Ω1,∗ to obtain an element of
Ωd,∗

c in the integrand (and hence something that can be integrated). If we extend θ to a functional
on the Dolbeault complex in the natural way

θ : Ω∗,∗(X)⊗d+1 → Ω∗,∗(X)

then we can write the cocycle more succinctly as JX(θ)(α0, . . . , αd) =
∫

X θ(α0, ∂α1, . . . , ∂αd).

This formula clearly makes sense for any complex d-fold X, and since integration is local on X, it
intertwines nicely with the structure maps of GX .
Proposition 4.1.12. For any complex d-fold X and invariant polynomial θ ∈ Symd+1(g∗)g, the func-
tional JX(θ) is a local functional in C∗loc(GX). In fact, the assignment

JX : Symd+1(g∗)g[−1]→ C∗loc(GX) , θ 7→ JX(θ)

is an cochain map.

Proof. The functional JX(θ) is local as it is expressed as the integral of a multilinear map composed
with a product of differential operators. We need to show that JX(θ) is closed for the differential
on C∗loc(GX). The total differential splits as a sum ∂+dg where ∂ denotes the induced ∂ differential
on functionals and dCE is constructed from the Lie bracket on g. We observe that

∂JX(θ) = 0

dCE JX(θ) = 0.
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The first line follows from the fact that ∂ and ∂ are graded commutative. The differential dCE

is obtained from the differential in the Chevalley-Eilenberg complex of g in a natural way. The
second line follows from the fact that the homogenous polynomial θ : g× · · · × g → C is closed
in the Chevalley-Eilenberg complex for g.

Having the fundamental construction of the cocycle down, we discuss two modest extensions
of the construction. First is to consider an arbitrary G-bundle P on X. Suppose ad(P) is trivi-
alized over an open set U ⊂ X. On this open set, we can write an element α ∈ Ad(P)(U) =

Ω0,∗
c (U, ad(P)) as α = ω ⊗ X where ω ∈ Ω0,∗(X) and X ∈ g. Thus, the formula above for JX(θ)

still makes sense on Ad(P)(U). Since the expression for the cocycle is clearly independent of the
choice of a coordinate it glues to define a global section. Thus, for any principal bundle we have
a cochain map

JP
X : Symd+1(g∗)g[−1]→ C∗loc(Ad(P)(X))

given by the same formula as in (4.3).

4.1.3.2 Relation to Chern-Weil theory

If g is the Lie algebra of a group G, there is an interpretation of the space of extensions Symd+1(g∗)g

in terms of G. Let Ωj
G denote the sheaf of j-forms on G.

Theorem 4.1.13. [Bot73] Let G be a Lie group (such as GLn(C) or U(n)). Then, there is an isomorphism

Hi(G, Ωj
G)
∼= Hi−j

c (G, Symj(g∗)).

Where the right-hand site denotes the continuous group cohomology.
Remark 4.1.14. The theorem above also holds integrally, as shown in [Tot].

The continuous group cohomology satisfies Hk
c (G, Symj(g∗)) = 0 for k > 0 and H0

c (G, Symj(g∗)) =

Symj(g∗)G. Thus, the cohomology is supported along the diagonal and one has Hk(G, Ωk
G) =

Symk(g∗)G.

This relationship is compatible with the classical construction of characteristic classes from invari-
ant polynomials using Chern-Weil theory. The Hodge-to-de Rham spectral sequence for the Lie
group G has E1 page of the form Hi(G, Ωj) and converges to the de Rham cohomology H∗(BG).
Since the cohomology is supported along the diagonal on the E1 page there is a resulting map

Symj(g∗)G → H∗(BG).

This is the usual Chern-Weil map defining the universal characteristic classes for G-bundles. It is
an isomorphism when G is compact.
Remark 4.1.15. When g is a an arbitrary dg Lie algebra, or more generally an L∞ algebra, we have
encountered a version of JX(θ) in Section 3.4.1. We showed that for any L∞ algebra there is a map
of cochain complexes J : Ωd+1

cl (Bg)[d] → C∗loc(GX). The expression for JX in (4.3) is an explicit
formula for this construction in the case that g is an ordinary Lie algebra. Indeed, when g is an
ordinary Lie algebra we have Hd+1(Ωd+1

cl (Bg)) = Symd+1(g∗)g, so the construction in Section
3.4.1 is a special case.
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4.1.3.3 Holomorphic translation invariance

On the complex d-fold X = Cd the local Lie algebra GCd is holomorphically translation invariant,
see Section 2.2.2. Thus, it makes sense to consider cocycles on this local Lie algebra that are also
holomorphically translation invariant.

In fact, on X = Cd the functional JCd gives us the following complete description of a natural
subcomplex of local cochains. On Cd exists a natural action by the group U(d), where U(d) acts
in the defining way on Cd. Moreover, there since GCd is built from the Dolbeault complex on
Cd there is an action of the dg Lie algebra C2d|d controling holomorphic translations, see Section
2.2.2. For each θ ∈ Symd+1(g∗)g the functional JCd(θ) is invariant for U(d) and C2d|d. In fact, this
describes up to quasi-isomorphism all such functionals.
Proposition 4.1.16. The map JCd : Symd+1(g∗)g[−1] → C∗loc(GCd) factors through the subcomplex of
local cochains that are holomorphically translation invariant and invariant for the group U(d) to define a
quasi-isomorphism

JCd : Symd+1(g∗)g[−1] '−→
(

C∗loc(G(C
d))C2d|d)U(d)

This is a special case of Proposition 3.4.6 in the case that g is an ordinary Lie algebra. We refer the
reader to that section for details.

4.1.4 The Kac-Moody factorization algebra

Finally, we can define the central object of this paper.
Definition 4.1.17. Let X be any complex manifold of dimension d equipped with a principal G-
bundle P. Moreover, suppose Θ ∈ C∗loc(Ad(P)) is a local cocycle of degree +1. The Kac-Moody
factorization algebra on X of type Θ is the twisted factorization envelope

UΘ(Ad(P)) : U ⊂ X 7→
(

Sym
(

Ω0,∗
c (U, ad(P))[1]

)
[K], ∂ + dCE + Θ

)
.

When Θ = JP
X(θ) for θ ∈ Symd+1(g∗)g we denote this by Uθ(Ad(P)) = UJP

X(θ)
(Ad(P)).

Remark 4.1.18. As in the definition of twisted factorization enveloping algebras above, the fac-
torization algebras UΘ(Ad(P)) take values in dg modules for the ring C[K]. In keeping with
conventions above, when P is the trivial bundle on X we will denote the Kac-Moody factoriza-
tion algebra by UΘ(GX).
Remark 4.1.19. For fixed θ the cocycle JX(θ) is more-or-less independent of the complex manifold
X. In this way, the factorization algebra Uθ(G) actually defines a factorization algebra on the en-
tire category of complex manifolds of a fixed dimension. We will not explore this type of universal
factorization algebra here, but leave it to future work.

In the case d = 1 the definition above agrees with the Kac-Moody factorization algebra on Rie-
mann surfaces given in [CG17]. There, they show that the factorization algebra specialized to
the complex manifold C defines a vertex algebra isomorphic to that of the ordinary Kac-Moody
vertex algebra. Thus, we think of the object UΘ(Ad(P)) as a higher dimensional version of the
Kac-Moody vertex algebra.
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4.2 Local structures of the Kac-Moody factorization algebra

The theory of factorization algebras we study here, and whose foundations have been layed out in
[CG17], is largely motivated by the study of chiral algebras due to Beilinson and Drinfeld [BD04].
Part of their original goal was to develop a geometric counterpart to the algebraic theory of vertex
algebras. In [CG17] the relationship between factorization algebras on vertex algebras has been
made completely explicit.

Every holomorphically translation invariant factorization algebra on the complex manifold X =

C determines the structure of a vertex algebra. The underlying vector space, or state space, of
the vertex algebra is given by the value of the factorization algebra assigns to a disk D ⊂ C. The
operator product expansion is encoded by the factorization product of configurations of disjoint
disks inside of larger disks. It is shown that the Kac-Moody factorization algebra Uκ(GC) on C,
where κ is a symmetric invariant bilinear form, recovers the Kac-Moody vertex algebra in this
way. The factorization algebras we consider are often much larger than the more algebraic objects
that we wish to compare to. In order to extract the structure of a vertex algebra, one must also
assume that the factorization algebra is equivariant for the circle S1 generating rotations in C. To
go from a factorization algebra to the underlying state space V of the vertex algebra one takes the
direct sum of all S1-eigenspaces under this action. See Theorem 5.2.3.1 of [CG17] for more details.

The fundamental structure we want contemplate in higher dimensions comes from considering
the factorization product for different flavors of configurations of open sets. We recall the one-
dimensional story now. Suppose that F is a holomorphically translation invariant factorization
algebra on C, and that F is equivariant for rotations S1.

1. The first configuration is that of two (or possibly greater than two) disjoint annuli Anni,
i = 1, 2 of the same center that include inside of a larger annulus Annbig of the same center.
The factorization structure map is of the form

F(Ann1)⊗ F(Ann2)→ F(Annbig). (4.4)

Let A denote the subspace equal to the direct sum of all S1-eigenspaces of F(Ann) where
Ann is any annulus. One can show that A is independent, up to quasi-isomorphism, of
the annulus chosen and that the structure map (4.4) endows A with the structure of an
associative algebra. Thus, part of the factorization algebra structure defines an associative
algebra.

2. Consider a disk D that is completely encircled by an annulus Ann. Further, these disjoint
open sets embed inside of a bigger disk Dbig of the same center. The structure map is of the
form

F(Ann)⊗ F(D)→ F(Dbig). (4.5)

We already mentioned that the state space V is obtained by taking the direct sum of all
S1-eigenspaces of F(D). Just as in the case of an annulus, V is independent (up to quasi-
isomorphism) of the radius and position of the disk. The structure map (4.5) endows V with
the structure of a module over the algebra A. Thus, the other piece of structure we extract
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from a holomorphically translation invariant factorization aglebra is that of a module V over
A.

Often times, as is the case for enveloping vertex algebras, the data of (1), (2) is enough to nail
down the vertex algebra structure uniquely. In this section, we will first focus on generalizing
the structure in (1) to the holomorphically translation invariant factorization algebra GCd . We will
find the structure of an associative (really E1 or A∞) algebra. Next, we will identify the module
structure as in (2) of the higher dimensional ”state” space of the Kac-Moody factorization algebra.
We will find many analogies with the ordinary vertex algebra case, and it is our hope that we will
be able to extract from our work a concise algebraic formulation of ”higher dimensional vertex
algebras” in future work.

The annular algebra A that we just discussed in the complex one-dimensional case has a general-
ization to arbitrary dimensions.The higher dimensional versions of annuli we consider are given
by open sets equal to neighborhoods of (2d− 1)-spheres. In this section we describe the higher di-
mensional version of this annular algebra for the Kac-Moody factorization algebra. This amounts
to specializing the factorization algebra to the complex manifold X = Cd \ {0} and extracting the
data of an A∞-algebra from the factorization product in the radial direction. The reduction of the
factorization algebra along S2d−1 ⊂ Cd \ {0} produces a one-dimensional factorization algebra
via pushing forward along the radial projection map Cd \ {0} → R>0. Embedded inside of this
factorization algebra is a locally constant factorization algebra, which will define for us our A∞-
algebra. Furthermore, we show how the factorization product of disks with higher dimensional
annuli provide the structure a (A∞-)module on the value of the factorization algebra on the disk.

We will recognize this A∞-algebra as the universal enveloping algebra of an L∞ algebra which is
obtained as a central extension of an algebraic version of the sphere algebra

Map(S2d−1, g). (4.6)

When d = 1 there is an embedding g[z, z−1] ↪→ C∞(S1)⊗ g = Map(S1, g), induced by the embed-
ding of algebraic functions on punctured affine line inside of smooth functions on S1. The affine
algebras are given by extensions of algebraic loop algebra Oalg(A1×) = g[z, z−1] prescribed by a
2-cocycle involving the algebraic residue pairing. Note that this cocycle is not pulled back from
any cocycle on Oalg(A1)⊗ g = g[z].

When d > 1 Hartog’s theorem implies that the space of holomorphic functions on punctured
affine space is the same as the space of holomorphic functions on affine space. The same holds
for algebraic functions, so that Oalg(Ad×)⊗ g = Oalg(Ad)⊗ g. In particular, the naive algebraic
replacement Oalg(Ad×)⊗ g of (4.6) has no interesting central extensions. However, as opposed to
the punctured line, the punctured affine space Ad× has interesting higher cohomology.

The key idea is that we replace the commutative algebra Oalg(Ad×) by the derived space of sec-
tions RΓ(Ad×,O). This complex has interesting cohomology and leads to nontrivial extensions
of the dg Lie algebra RΓ(Ad×,O)⊗ g. Concretely, we will use a dg model Ad for RΓ(Ad×,O) due
to [FHK] that is an algebraic analog of the tangential Dolbeault complex of the (2d − 1)-sphere
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inside of the Dolbeault complex of Cd \ {0}:

Ω0,∗
b (S2d−1) ⊂ Ω0,∗(Cd \ {0}).

See [DT06] for details on the definition of Ω0,∗
b (S2d−1). The degree zero part of Ω0,∗

b (S2d−1) is
C∞(S2d−1), so we can view Ad ⊗ g as a derived enhancement of the mapping space in (4.6).

The model Ad, by definition, has cohomology equal to the cohomology of RΓ(Ad×,O). In [FHK]
they have studied a class of cocycles associated to elements θ ∈ Symd+1(g∗)g that are algebraic
analogs of the local cocycles we introduced in the previous section. The cocycle is of total coho-
mological degree +2 and so determines a central extension of Ad ⊗ g that we denote ĝd,θ . Our
first main result is that our “higher annular algebra” of the Kac-Moody factorization algebra from
the discussion above recovers this Lie algebra extension.
Theorem 4.2.1. Let F1d be the one-dimensional factorization algebra obtained by the reduction of the
Kac-Moody factorization algebra Uα

(
GCd\{0}

)
along the sphere S2d−1 ⊂ Cd \ {0}. There is a dense

subfactorization algebra Flc
1d ⊂ F1d that is locally constant. As a one-dimensional locally constant factor-

ization algebra, Flc
1d is equivalent to the higher affine algebra U(ĝd,θ).

In the final part of this section we specialize to the manifold X = (C \ {0})d. Note that when
d = 1 this is the same as the algebra above, but for d > 1 this factorization algebra has a different
flavor. We will show how to extract the data of an Ed-algebra from this configuration, and discuss
its role in the theory of higher dimensional vertex algebras.

4.2.1 The higher sphere algebras

The affine algebra associated to a Lie algebra g together with an invariant pairing κ is defined as
a central extension of the loop algebra of g

C→ ĝκ → Lg

where we use the algebraic loop algebra Lg = g[z, z−1]. The central extension is determined by
the cocycle

( f ⊗ X, g⊗Y) 7→
∮

f dgκ(X, Y).

A natural generalization of the loop algebra is to generalize the circle S1, which is equal to the
units in C, by the sphere S2d−1, which is equal to the units in Cd. That is, we take the “sphere
algebra” of maps from S2d−1 into g. For topologists, this direction might seem natural, but it
may not seem too natural from the perspective of algebraic geometry. In particular, an algebro-
geometric sphere is given by a punctured affine d-space Ad× = Ad \ {0} or a punctured formal
d-disk, but every map from these spaces to g extends to a map from Ad or the formal d-disk into
g (essentially, by Hartog’s lemma). Thus, this direction seems fruitless, since naively there would
be no interesting central extensions. The key to evading this issue is to work with the derived
space of maps. Indeed, the sheaf cohomology of O on the punctured affine d-space is interesting.

This fact ought not to be too surprising: as a smooth manifold, punctured affine d-space is equiv-
alent to R>0 × S2d−1, and this equivalence manifests itself in the cohomology of the structure
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sheaf. Explicitly,

H∗(Ad×,Oalg) =


0, ∗ 6= 0, d− 1

C[z1, . . . , zd], ∗ = 0

C[z−1
1 , . . . , z−1

d ] 1
z1···zd

, ∗ = d− 1

as one can show by direct computation (e.g., use the cover by the affine opens of the form Ad \
{zi = 0}). When d = 1, this recovers the usual Laurent series; and it is natural to view the above
as the higher-dimensional analogue of the Laurent series, with the polar part now in degree d− 1.

Hence, the derived global sections RΓ(Ad×,O) of O provide a homotopy-commutative algebra,
and thus one obtains a homotopy-Lie algebra by tensoring with g, which we will call the sphere
Lie algebra by analogy with the loop Lie algebra. One can then study central extensions of this
homotopy-Lie algebra, which are analogous to the affine Kac-Moody Lie algebras. For explicit
constructions, it is convenient to have a commutative dg algebra that models the derived global
sections. It should be no surprise that we like to work with the Dolbeault complex. We will use
this approach to relate the sphere Lie algebra and its extensions to the current algebras that we’ve
already introduced.

An explicit dg model Ad for the derived global sections has been written down in [FHK] based
on the Jouanolou method for resolving singularities. We have recalled its definition in Appendix
5.

We are interested in the dg Lie algebra Ad⊗g. For any d and symmetric function θ ∈ Symd+1(g∗)g,
in [FHK] they define the cocycle

θFHK : (Ad ⊗ g)⊗(d+1) → C , a0 · · · ad 7→ Resz=0θ(a0, da1, . . . , dad), (4.7)

where d is the algebraic de Rham differential. It is immediate that this cocycle has cohomological
degree +2 and so determines a(n) (unshifted) dg Lie algebra central extension of Ad ⊗ g:

C · K → ĝd,θ → Ad ⊗ g. (4.8)

Our aim is to show how the Kac-Moody factorization algebra is related to this dg Lie algebra.

4.2.2 The strategy

We consider the restriction of the factorization algebra Uθ(G) on Cd \ {0} to the collection of open
sets diffeomorphic to spherical shells. This restriction has the structure of a one-dimensional
factorization algebra corresponding to the iterated nesting of spherical shells. We show that there
is a dense subfactorization algebra that is locally constant, hence corresponds to an E1 algebra.
We conclude by identifying an A∞ model for this algebra as the universal enveloping algebra of
a certain L∞ algebra, that agree with the higher dimensional affine algebras.

Introduce the radial projection map

ρ : Cd \ 0→ R>0
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sending z = (z1, . . . , zd) to |z| =
√
|z1|2 + · · ·+ |zd|2. We will restrict our factorization alge-

bra to spherical shells by pushing forward the factorization algebra along this map. Indeed, the
preimage of an open interval is such a spherical shell, and the factorization product on the line is
equivalent to the nesting of shells.

4.2.2.1 The case of zero level

First we will consider the higher Kac-Moody factorization algebra on Cd \ {0} “at level zero”.
That is, the factorization algebra U(GCd\{0}). In this section we will omit Cd \ {0} from the nota-
tion, and simply refer to the factorization algebra by U(G).

Let ρ∗ (UG) be the factorization algebra on R>0 obtained by pushing forward along the radial
projection map. Explicitly, to an open set I ⊂ R>0 this factorization algebra assigns the dg vector
space

CLie
∗

(
Ω0,∗

c (ρ−1(I))⊗ g)
)

.

Let I ⊂ R>0 be an open subset. There is the natural map ρ∗ : Ω∗c (I) → Ω∗c (ρ−1(I)) given by
the pull back of differential forms. We can post compose this with the natural projection prΩ0,∗ :
Ω∗c → Ω0,∗

c to obtain a map of commutative algebras prΩ0,∗ ◦ ρ∗ : Ω∗c (I)→ Ω0,∗
c (ρ−1(I)). The map

j from Proposition 5.1.2 determines a map of dg commutative algebras j : Ad → Ω0,∗(ρ−1(I)).
Thus, we obtain a map

Φ(I) = (prΩ0,∗ ◦ ρ∗)⊗ j : Ω∗c (I)⊗ Ad → Ω0,∗
c
(
(ρ−1(I)

)
ϕ⊗ a 7→ ((prΩ0,∗ ◦ ρ∗)ϕ) ∧ j(a)

(4.9)

Since this is a map of commutative dg algebras it defines a map of dg Lie algebras

Φ(I)⊗ idg : (Ω∗c (I)⊗ Ad)⊗ g = Ω∗c (I)⊗ (Ad ⊗ g)→ Ω0,∗(ρ−1(I))⊗ g

which maps (ϕ⊗ a)⊗X 7→ Φ(ϕ⊗ a)⊗X. We will drop the idg from the notation and will denote
this map simply by Φ(I). Note that Φ(I) is compatible with inclusions of open sets, hence extends
to a map of cosheaves of dg Lie algebras that we will call Φ.

We can summarize the results as follows.
Proposition 4.2.2. The map Φ extends to a map of factorization Lie algebras

Φ : Ω∗R>0,c ⊗ (Ad ⊗ g)→ ρ∗G.

Hence, it defines a map of factorization algebras

C∗(Φ) : U f act
(

Ω∗R>0
⊗ (Ad ⊗ g)

)
→ ρ∗ (UG) .

The fact that we obtain a map of factorization algebras follows from applying the functor CLie
∗ (−)

to Φ. It is immediate to see that this functor commutes with push-forward.
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4.2.2.2 The case of non-zero level

We now proceed to the proof of Theorem . The dg Lie algebra gd,θ determines a dg associative
algebra via its universal enveloping algebra U(gd,θ). This dg algebra determines a factorization
algebra on the one-manifold R>0 that assigns to every open interval I ⊂ R>0 the dg vector
space U(Ad ⊗ g). The factorization product is uniquely determined by the algebra structure.
Henceforth, we denote this factorization algebra by U(gd,θ)

f act.

To prove the theorem we will construct a sequence of maps of factorization Lie algebras on R>0:

G1
Φ1

��

G2

G0

'
Φ0

??

G′1

Φ2

??

.

The factorization envelope of G0 is equivalent to the factorization algebra U(ĝd,θ)
f act. Moreover,

the factorization envelope of G2 is the push-forward of of the higher Kac-Moody factorization
algebra ρ∗UG. Hence, the desired map of factorization algebras is produced by applying the
factorization envelope functor to the above composition of factorization Lie algebras.

First, we introduce the factorization Lie algebra G0. To an open set I ⊂ R, it assigns the dg
Lie algebra G0(I) = Ω∗c (I) ⊗ ĝd,θ , where ĝd,θ is the central extension from Equation (4.8). The
differential and Lie bracket are determined by the fact that we are tensoring a commutative dg
algebra with a dg Lie algebra. A slight variant of Proposition 3.4.0.1 in [CG17], which shows
that the one-dimensional factorization envelope of an ordinary Lie algebra produces its ordinary
universal enveloping algebra, shows that there is a quasi-isomorphism of factorization algebras
on R,

(Uĝd,θ)
f act '−→ CLie

∗ (G0).

The factorization Lie algebra G0 is a central extension of the factorization Lie algebra Ω∗R,c⊗ (Ad⊗
g) by the trivial module Ω∗c ⊕C ·K. Indeed, the cocycle determining the central extension is given
by

θ0(ϕ0α0, . . . , ϕdαd) = (ϕ0 ∧ · · · ∧ ϕd)θAd(α1, . . . , αd).

The factorization Lie algebra Ω∗R,c ⊗ (Ad ⊗ g) is the compactly supported sections of the local Lie
algebra Ω∗R ⊗ (Ad ⊗ g) and this cocycle determining the extension is a local cocycle.

Next, we define the factorization dg Lie algebra G1 on R. This is also obtained as a central exten-
sion of the factorization Lie algebra Ω∗R,c ⊗ (Ad ⊗ g):

0→ C · K[−1]→ G1 → Ω∗R,c ⊗ (Ad ⊗ g)→ 0

determined by the following cocycle. For an open interval I write ϕi ∈ Ω∗c (I), αi ∈ Ad ⊗ g. The
cocycle is defined by

θ1(ϕ0α0, . . . , ϕdαd) =

(∫
I

ϕ0 ∧ · · · ϕd

)
θFHK(α0, . . . , αd) (4.10)

where θFHK was defined in Equation 4.7.
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The functional θ1 determines a local cocycle in C∗loc (Ω
∗
R ⊗ (Ad ⊗ g)) of degree one.

We now define a map of factorization Lie algebras Φ0 : G0 → G1. On and open set I ⊂ R, we
define the map Φ0(I) : G0(I)→ G1(I) by

Φ0(I)(ϕα, ψK) =
(

ϕα,
∫

ψ · K
)

.

For a fixed open set I ⊂ R, the map Φ0 fits into the commutative diagram of short exact sequences

0 // Ω∗c (I)⊗C · K∫
'
��

// G0(I)

Φ0(I)
��

// Ω∗c (I)⊗ (Ad ⊗ g) // 0

0 // C · K[−1] // G1(I) // Ω∗c (I)⊗ (Ad ⊗ g) // 0.

To see that Φ0(I) is a map of dg Lie algebras we simply observe that the cocycles determining
the central extensions are related by θ1 =

∫
◦ θ0, where

∫
: Ω∗c (I) → C as in the diagram above.

Since
∫

is a quasi-isomorphism, the map Φ0(I) is as well. It is clear that as we vary the interval I
we obtain a quasi-isomorphism of factorization Lie algebras Φ0 : G0

'−→ G1.

We now define the factorization dg Lie algebra G′1. Like G0 and G0, it is a central extension of
Ω∗R,c ⊗ (Ad ⊗ g). The cocycle determining the central extension is defined by

θ′1(ϕ0a0X0, . . . , . . . , ϕdadXd) = θ1(ϕ0a0X0, . . . , . . . , ϕdadXd) + θ̃1(ϕ0a0X0, . . . , . . . , ϕdadXd)

where θ1 was defined in Equation (4.10). Before writing down the explicit formula for θ̃1 we
introduce some notation. Set

E = r
∂

∂r
,

dϑ = ∑
i

dzi
zi

.

We view E as a vector field on R>0 and dϑ as a (1, 0)-form on Cd \ 0. Define the functional

θ̃1(ϕ0a0X0, . . . , ϕdadXd) =
1
2

d

∑
i=1

(∫
I

ϕ0(E · ϕi)ϕ1 · · · ϕ̂i · · · ϕd

)(∮
(a0aidϑ) ∂a1 · · · ∂̂ai · · · ∂ad

)
θ(X0, . . . , Xd).

The functional θ̃ defines a local functional in C∗loc

(
Ω∗R>0

⊗ (Ad ⊗ g)
)

of cohomological degree
one. One immediately checks that it is a cocycle. This completes the definition of the factorization
Lie algebra G′1.

The factorization Lie algebras G1 and G′1 are identical as precosheaves of vector spaces. In fact,
if we put a filtration on G1 and G′1 where the central element K has filtration degree one, then
the associated graded factorization Lie algebras Gr G1 and Gr G′1 are also identified. The only
difference in the Lie algebra structures comes from the deformation of the cocycle determining
the extension of G′1 given by θ̃1.

In fact, we will show that θ̃1 is actually an exact cocycle via the cobounding element η ∈ C∗loc

(
Ω∗R>0

⊗ (Ad ⊗ g)
)

defined by

η(ϕ0a0X0, . . . , ϕdadXd) =
d

∑
i=1

(∫
I

ϕ0 (ιE ϕi) ϕ1 · · · ϕ̂i · · · ϕd

)(∮
(a0aidϑ) ∂a1 · · · ∂̂ai · · · ∂ad

)
θ(X0, . . . , Xd).
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Lemma 4.2.3. One has dη = θ̃1, where d is the differential for the cochain complex C∗loc(Ω
∗
R>0
⊗ (Ad ⊗

g)). In particular, the factorization Lie algebras G1 and G′1 are quasi-isomorphic (as L∞ algebras). An
explicit quasi-isomorphism is given by the L∞ map Φ1 : G1 → G′1 that sends the central element K to itself
and an element (ϕ0a0X0, . . . , ϕdadXd) ∈ Symd+1(Ω∗c ⊗ (Ad ⊗ g) to

(ϕ0a0X0, . . . , ϕdadXd) + η(ϕ0a0X0, . . . , ϕdadXd) · K ∈ Symd+1(Ω∗c ⊗ (Ad ⊗ g))⊕C · K.

Finally, we define the factorization Lie algebra G2. We have already seen that the local cocycle
J(θ) ∈ C∗loc(g

Cd
) determines a central extension of factorization Lie algebras

0→ C · K[−1]→ GJ(θ) → Ω0,∗
Cd ,c ⊗ g→ 0.

Of course, we can restrict GJ(θ) to a factorization algebra on Cd \ 0. The factorization algebra G2 is

defined as the pushforward of this restriction along the radial projection: G2 := ρ∗
(
GJ(θ)|Cd\0

)
.

Recall the map Φ : Ω∗R>0,c ⊗ (Ad ⊗ g)→ ρ∗(Ω0,∗
Cd\0,c ⊗ g) defined in Equation (4.9). On each open

set I ⊂ R>0 we can extend Φ by the identity on the central element to a linear map Φ2 : G′1(I)→
G2(I).
Lemma 4.2.4. The map Φ2 : G′1(I)→ G2(I) is a map of dg Lie algebras. Moreover, it extends to a map of
factorization Lie algebras Φ2 : G′1 → G2.

Proof. Modulo the central element Φ2 reduces to the map Φ, which we have already seen is a map
of factorization Lie algebras in Proposition 4.2.2. Thus, to show that Φ2 is a map of factorization
Lie algebras we need to show that it is compatible with the cocycles determing the respective
central extensions. That is, we need to show that

θ′1(ϕ0a0X0, . . . , ϕdadXd) = θ2(Φ(ϕ0a0X0), . . . , Φ(ϕdadXd)) (4.11)

for all ϕiaiXi ∈ Ω∗c (I) ⊗ (Ad ⊗ g). The cocycle θ′1 is only nonzero if one of the ϕi inputs is a 1-
form. We evaluate the left-hand side on the (d + 1)-tuple (ϕ0dra0X0, ϕ1a1X1, . . . , ϕdadXd) where
ϕi ∈ C∞

c (I), ai ∈ Ad, Xi ∈ g for i = 0, . . . , d. The result is(∫
I

ϕ0 · · · ϕddr
)(∮

a0∂a1 · · · ∂ad

)
θ(X0, . . . , Xd) (4.12)

+
1
2

d

∑
i=1

(∫
I

ϕ0(E · ϕi)ϕ1 · · · ϕ̂i · · · ϕddr
)(∮

(a0aidϑ) ∂a1 · · · ∂̂ai · · · ∂ad

)
θ(X0, . . . , Xd)(4.13)

We wish to compare this to the right-hand side of Equation (4.11). Recall that Φ(ϕ0dra0X0) =

ϕ(r)dra0(z)X0 and Φ(ϕiaiXi) = ϕ(r)ai(z)Xi. Plugging this into the explicit formula for the cocy-
cle θ2 we see the right-hand side of (4.11) is(∫

ρ−1(I)
ϕ0(r)dra0(z)∂(ϕ1(r)a1(z)) · · · ∂(ϕd(r)ad(z))

)
θ(X0, . . . , Xd). (4.14)

We pick out the term in (4.14) in which the ∂ operators only act on the elements ai(z), i = 1, . . . , d.
This term is of the form∫

ρ−1(I)
ϕ0(r) · · · ϕd(r)dra0(z)∂(a1(z)) · · · ∂(ad(z))θ(X0, . . . , Xd).
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Separating variables we find that this is precisely the first term (4.12) in the expansion of the
left-hand side of (4.11).

Now, note that we can rewrite the ∂-operator in terms of the radius r as

∂ =
d

∑
i=1

dzi
∂

∂zi
=

d

∑
i=1

dzizi
∂

∂(r2)
=

d

∑
i=1

dzi
r2

2zi

∂

∂r
.

The remaining terms in (4.14) correspond to the expansion of

∂(ϕ1(r)a1(z)) · · · ∂(ϕd(r)ad(z)),

using the Leibniz rule, for which the ∂ operators act on at least one of the functions ϕ1, . . . , ϕd. In
fact, only terms in which ∂ acts on precisely one of the functions ϕ1, . . . , ϕd will be nonzero. For
instance, consider the term

(∂ϕ1)a1(z)(∂ϕ2)a2(z)∂(ϕ3(z)a3(z)) · · · ∂(ϕd(z)ad(z)). (4.15)

Now, ∂ϕi(r) = ω
∂ϕ
∂r where ω is the one-form ∑i(r2/2zi)dzi. Thus, (4.15) is equal to(

ω
∂ϕ1

∂r

)
a1(z)

(
ω

∂ϕ2

∂r

)
a2(z)∂(ϕ3(z)a3(z)) · · · ∂(ϕd(z)ad(z),

which is clearly zero as ω appears twice.

We observe that terms in the expansion of (4.14) for which ∂ acts on precisely one of the functions
ϕ1, . . . , ϕd can be written as

d

∑
i=1

∫
ρ−1(I)

ϕ0(r)
(

r
∂

∂r
ϕi(r)

)
ϕ1(r) · · · ϕ̂i(r) · · · ϕd(r)dr

r
2zi

dzia0(z)ai(z)∂a1(z) · · · ∂̂ai(z) · · · ∂ad(z).

Finally, notice that the function zi/2r is independent of the radius r. Thus, separating variables
we find the integral can be written as

1
2

d

∑
i=1

(∫
I

ϕ0

(
r

∂

∂r
ϕi

)
ϕ1 · · · ϕ̂i · · · ϕddr

)(∮ dzi
zi

a0ai∂a2 · · · ∂̂ai · · · ∂ad

)
.

This is precisely equal to the second term (4.13) above. Hence, the cocycles are compatible and
the proof is complete.

4.2.3 An Ed algebra from tori

There is another direction that one may look to extend the notion of affine algebras to higher
dimensions. The affine algebra is a central extension of the loop algebra on g. Instead of looking
at higher dimensional sphere algebras, one can consider higher torus algebras; or iterated loop
algebras:

Ldg = C[z±1 , · · · , z±d ]⊗ g.

150



These iterated loop algebras are algebraic versions of the torus mapping space Map(S1 × · · · ×
S1, g). In this section we show what information the Kac-Moody vertex algebra implies about
extensions of such iterated loop algebras.

To do this we specialize the Kac-Moody factorization algebra to the complex manifold (C×)d,
which is homotopy equivalent to the topologists torus (S1)×d. We show, in a similar way as
above, how to extract the structure of an Ed algebra from considering the nesting of “polyannuli”
in (C×)d. These Ed-algebras are related to interesting extensions of the Lie algebra Ldg.

When d = 1, we have seen that the nesting of ordinary annuli give rise to the structure of an
associative algebra. For d > 1, a polyannulus is a complex submanifold of the form Ann1 × · · · ×
Annd ⊂ (C×)d where each Anni ⊂ C× is an ordinary annulus. Equivalently, a polyannulus is the
complement of a closed polydisk inside of a larger open polydisk. We will see how the nesting of
annuli in each component gives rise to the structure of a locally constant factorization algebra in
d real dimensions, and hence defines an Ed algebra.

A result of Knudsen [Knu], which we recall below, states that every dg Lie algebra determines an
Ed-algebra, for any d > 1, called the universal Ed enveloping algebra. To state the result precisely
we need to be in the context of ∞-categories.
Theorem 4.2.5 ([Knu]). Let C be a stable, C-linear, presentable, symmetric monoidal ∞-category. There
is an adjunction

UEd
: LieAlg(C)� EdAlg(C) : F

such that for any object X ∈ C one has FreeEd(X) ' UEd FreeLie(Σd−1X).

We are most interested in the case C is the category of chain complexes with tensor product Ch⊗.
In this situation, the enveloping algebra UEd

agrees with the ordinary universal enveloping alge-
bra when d = 1.

When the twisting cocycle defining the Kac-Moody factorization algebra is zero we will see that
the Ed algebra coming from the product of polyannuli is equivalent to UEd(Ldg). When we turn
on a twisting cocycle we will find the Ed-enveloping algebra of a central extension of the iterated
loop algebra.

The Kac-Moody factorization algebra on the d-fold (C×)d determines a real d-dimensional fac-
torization algebra by considering the radius in each complex direction. This factorization algebra
on (R>0)

d is defined by the pushforward ~ρ∗ (GC×d), where ~ρ : (C×)d → (R>0)
d is the projection

(z1, . . . , zd) 7→ (|z1|, · · · , |zd|).

On the Lie algebra side, it is an immediate calculation to see that the following formula defines a
cocycle on Ldg of degree (d + 1):

Ldθ : (Ldg)⊗d+1 → C

( f0 ⊗ X0)⊗ · · · ⊗ ( fd ⊗ Xd) 7→ θ(X0, . . . , Xd)
∮
|z1|=1

· · ·
∮
|zd |=1

f0d f1 · · ·d fd.

Here fi ⊗ Xi ∈ Ldg = C[z±1 , · · · , z±d ]⊗ g. The above is just an iterated version of the usual residue
pairing. This cocycle determines a shifted Lie algebra extension of the iterated loop algebra

C[d− 1]→ L̂dgθ → Ldg,
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that appears in the theorem below.

The following can be proved in exact analogy as the above result for sphere algebras and we omit
the proof here.
Proposition 4.2.6. Fix θ ∈ Symd+1(g∗)g and let ~ρ∗UθG(C×)d be the factorization algebra on (R>0)

d

obtained by reducing the Kac-Moody factorization algebra along the d-torus. There exists a dense d-
dimensional subfactorization algebra Flc that is locally constant and is equivalent, as Ed-algebras, to

UEd
(

L̂dgθ

)
.

4.3 The Kac-Moody factorization algebra on general manifolds

In this section we explore global properties of the Kac-Moody factorization algebra on complex
manifolds. The first of which is the (shifted) Poisson structure on the “classical limit” of the
Kac-Moody factorization algebra. In the world of CFT, many vertex algebras admit classical lim-
its which have the structure of Poisson vertex algebras. Roughly, these are vertex algebras with
a commutative OPE together with a family of z-dependent brackets which are biderivations for
the OPE. The concept of a P0-factorization algebra specializes to this in the case of complex one-
dimensional holomorphic factorization algebras but applies more generally to factorization alge-
bras in any dimension.

Next, we will compute the factorization homology, or global sections, of the Kac-Moody factor-
ization algebra along a class of complex manifolds called Hopf manifolds. We choose to focus on
these because the answer admits a concise description in terms of classical algebra, and for the ap-
plication for studying the gauge equivariance for the partition function of the higher dimensional
σ-model from Chapter 3. After this, we discuss variants of the twisted Kac-Moody factorization
algebra that exist on complex d-folds. These variants are related to the approach of studying
higher dimensional holomorphic gauge symmetries due to Nekrasov, et. al..

4.3.1 The P0-structure

We will exhibit the P0 structure present in arbitrary Kac-Moody factorization algebras. The con-
tent of this section is rather technical, but we will use the results in a forthcoming paper where we
realize the Kac-Moody factorization algebra as the boundary operators of certain supersymmetric
gauge theories.

Every associative algebra determines a Lie algebra via the commutator. There is a left adjoint to
this forgetful functor given by the enveloping algebra of a Lie algebra. Given a Lie algebra g, this
enveloping algebra Ug can also be thought of as a quantization of a certain Poisson algebra. The
Poincaré-Birkoff-Witt theorem says that the associated graded Gr Ug by the filtration given by
symmetric degree is precisely C[g∗]. It is a classical fact that the linear dual g∗ of a Lie algebra
has the structure of a Poisson manifold. The Poisson bracket on C[g∗] = Sym(g) is defined by
extending the Lie bracket on the quadratic functions by the Leibniz rule.
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In a completely analogous way, the factorization enveloping algebra of a local Lie algebra has a
“classical limit” given by a P0 factorization algebra. Recall, the factorization enveloping algebra
of a local Lie algebra L evaluated on an open set U is given by the Chevalley-Eilenberg complex
of the compactly supported sections on U

U(L)(U) = CLie
∗ (L(U)) = (Sym∗(L(U)[1]), dL + dCE) .

There is a filtration of this complex defined by Fk = Sym≥k(L(U)[1]). Moreover, this defines a
filtration of the factorization algebra U(L).
Lemma 4.3.1. Let L be a local Lie algebra. Then, the associated graded factorization algebra Gr U(L) has
the structure of a P0 factorization algebra. Similarly, if α ∈ C∗loc(L) is a cocycle of cohomological degree
one then Gr Uα(L) has the structure of a P0 factorization algebra.

Up to issues of functional analysis, one should think of the P0 algebra Gr U(L) as the algebra of
functions on the sheaf of dg vector spaces L∨[−1] with differential induced from that on L. The
P0 algebra Gr Uα(L) is equal to functions on the same sheaf of dg vector spaces but with bracket
modified by α.
Corollary 4.3.2. For any principal G-bundle P→ X consider the associated graded factorization algebra

Gr U(Ad(P)) : U 7→
(

Sym∗(Ω0,∗
c (U)[1]), ∂

)
.

Then, any element Θ ∈ H1
loc(Ad(P)) determines the structure of a P0 factorization algebra on Gr U(Ad(P)).

In the case that Θ = JX(θ) is the local cocycle corresponding to a symmetric polynomial θ ∈
Symd+1(g∗)g the Poisson structure can be described explicitly as follows. The Poisson tensor is of
the form Π = Π[−,−] + Πθ where

Π[−,−] = ∧⊗ [−,−] :
(

Ωd,∗
X ⊗ g

)
⊗
(

Ω0,∗
X ⊗ g

)
→ Ωd,∗

X ⊗ g

and
Πθ :

(
Ω0,∗

X ⊗ g
)⊗d
→ Ωd,∗

X ⊗ g

sends α1⊗ · · · ⊗ αd 7→ ∂α1 ∧ · · · ∧ ∂αd. In complex dimension one, Butson and Yoo [BY] show that
this P0 algebra is compatible with the usual Poisson vertex algebra structure on the classical limit
of the ordinary Kac-Moody vacuum module.

4.3.2 Factorization homology along Hopf manifolds

We focus on a family of complex manifolds defined by Hopf in [Hop48] defined in every complex
dimension d.
Definition 4.3.3. Fix an integer d ≥ 1. Let f : Cd → Cd be a polynomial map such that f (0) = 0
such that its Jacobian at zero Jac( f )(0) is invertible with eigenvalues {λi} all satisfying |λi| < 1.
Define the Hopf manifold associated to f to be the d-dimensional complex manifold

X f :=
(

Cd \ {0}
)/

(x ∼ f (x)).
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Note that X f is compact for any f . In the case d = 1 all Hopf surfaces are equivalent to elliptic
curves.
Lemma 4.3.4. For any f there is a diffeomorphism X f

∼= S2d−1 × S1.

This implies that when d > 1, the cohomology H2
dR(X f ) = 0 for any f . In particular, X f is not

Kähler when d > 1. For 1 ≤ i ≤ d let qi ∈ D(0, 1)× be a nonzero complex number of modulus
|qi| < 1. The d-dimensional Hopf manifold of type q = (q1, . . . , qd) is the following quotient of
punctured affine space Cd \ {0} by the discrete group Zd:

Xq =
(

Cd \ {0}
)/(

(z1, . . . , zd) ∼ (q2πiZ
1 z1, . . . , q2πiZ

d zd)
)

.

Note that in the case d = 1 we recover the usual description of an elliptic curve Xq = Eq =

C×/q2πiZ. We will denote the quotient map pq : Cd \ {0} → Xq.

For any d and tuple (q1, . . . , qd) as above, we see that as a smooth manifold there is a diffeomor-
phism Xq ∼= S2d−1 × S1. Indeed, the radial projection map Cd \ {0} → R>0 defines a smooth
S2d−1-fibration over R>0. Passing to the quotient, we obtain an S2d−1-fibration

Xq → R>0/
(

r ∼ λZ · r
)
∼= S1.

Here, λ = (|q1|2 + · · ·+ |qd|2)1/2 > 0. Since there are no non-trivial S2d−1 fibrations over S1 we
obtain Xq = S2d−1 × S1 as smooth manifolds.
Proposition 4.3.5. Let X be a Hopf manifold and suppose θ ∈ Symd+1(g∗)g is any g-invariant polyno-
mial of degree (d + 1). Then, there is a quasi-isomorphism of C[K]-modules∫

X
Uθ(GX) ' Hoch∗(Ug)[K].

Proof. Let’s first consider the untwisted case where the statement reduces to
∫

X U(GX) ' Hoch∗(Ug).
The factorization homology on the left hand side is computed by∫

X
U(GX) = CLie

∗ (Ω0,∗(X)⊗ g).

Now, since every Hopf manifold is Dolbeualt formal there is a quasi-isomorphism of commuta-
tive dg algebras (

H0,∗(X), 0
)
'
(

Ω0,∗(X), ∂
)

.

In fact, we have written down a preferred presentation for the cohomology ring of X given by
H0,∗(X) = C[δ] where |δ| = 1. A particular Dolbeault representative for δ given by

∂(log |z|2) = ∑
i

zidzi
|z|2

where z = (z1, . . . , zd) is the coordinate on Cd \ {0}.

Applied to the global sections of the Kac-Moody we see that there is a quasi-isomorphism∫
X

U(GX) ' CLie
∗ (C[δ]⊗ g).
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Now, note that CLie
∗ (C[δ]⊗ g) = CLie

∗ (g⊕ g[−1]) = CLie
∗ (g, Sym(g)), where Sym(g) is the symmet-

ric product of the adjoint action of g on itself. By Poincaré-Birkoff-Witt there is an isomorphism
of vector spaces Sym(g) = Ug, so we can write this as CLie

∗ (g, Sym(g)).

Now, any U(g)-bimodule M is automatically a module for the Lie algebra g by the formula x ·m =

xm−mx where x ∈ g and m ∈ M. Moreover, for any such bimodule there is a quasi-isomorphism
of cochain complexes

CLie
∗ (g, M) ' Hoch∗(Ug, M).

This is proved, for instance, in Section 2.3 of [CR11]. Applied to the bimodule M = Ug itself we
obtain a quasi-isomorphism CLie

∗ (g, Ug) ' Hoch(Ug).

The twisted case is similar. Let θ be as in the statement. Then, the factorization homology is equal
to ∫

X
Uθ(GX) =

(
Sym(Ω0,∗(X)⊗ g)[K], ∂ + dCE + dθ

)
.

Applying Dolbeualt formality again we see that this is quasi-isomorphic to the cochain complex

(Sym(g[δ])[K], dCE + dθ) . (4.16)

We note that dθ is identically zero on Sym(g[δ]). Indeed, for degree reasons, at least one of the
inputs must be from g ↪→ g[δ] = g⊕ g[−1], which consists of constant functions on X with values
in the Lie algebra g. In the formula for the local cocycle from Proposition 4.1.12 associated to θ it
is clear that if any one of the inputs is constant the cocycle vanishes. Indeed, one can integrate by
parts to put it in the form

∫
∂α · · · ∂α, which is the integral of a total derivative, hence zero since

X has no boundary. Thus (4.16) just becomes the Chevalley-Eilenberg complex with values in the
trivial module C[K]. By the same argument as in the untwisted case, we conclude that in this case
the factorization homology is quasi-isomorphic to Hoch∗(Ug)[K] as desired.

There is an interesting consequence of this calculation to the Hochschild homology for the A∞

algebra U(ĝd,θ). It is easiest to state this when X is a Hopf manifold of the form (Cd \ {0})/qZ

for a single q = q1 = · · · = qd ∈ D(0, 1)× where the quotient is by the relation (z1, . . . , zd) '
(qZz1, . . . , qZ). Let pq : Cd \ {0} → X be the quotient map. Consider the following diagram

Cd \ {0}
pq
//

ρ

��

X

ρ

��

R>0
pq
// S1

Here, ρ is the radial projection map and ρ is the induced map defined by the quotient. The action
of Z on Cd \ {0} gives GCd\{0} the structure of a Z-equivariant factorization algebra. In turn,
this determines an action of Z on pushforward factorization algebra ρ∗GCd\{0}. We have seen
that there is a dense locally constant subfactorization algebra on R>0 of the pushforward that is
equivalent as an E1 algebra to U(ĝd,θ). A consequence of excision for factorization homology, see
Lemma 3.18 [AF15], implies that there is a quasi-isomorphism

Hoch∗(U(ĝd,θ), q) '
∫

S1
ρ∗Uα(GX),
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where the right-hand side is the Hochschild homology of the algebra Uĝd,θ with coefficients in
the bimodule Uĝd,θ with the ordinary left-module structure and right-module structure given by
twisting the ordinary action by the automorphism corresponding to the element 1 ∈ Z on the
algebra.

Moreover, by the push-forward for factorization homology, Proposition 3.23 [AF15], there is an
equivalence ∫

S1
ρ∗Uα(GX)

'−→
∫

X
Uα(GX).

We have just shown that the factorization homology of GX is equal to the Hochschild homology
of Ug so that

Hoch∗(U(ĝd,θ), q) ' Hoch∗(Ug)[K].

This statement is purely algebraic as the dependence on the manifold for which the Kac-Moody
lives has dropped out. It may be easiest to understand in the case d = 1 and θ = 0. Then
gd,θ is the loop algebra Lg = g[z, z−1]. The action of Z on Lg rotates the loop parameter: for
zn ⊗ g ∈ Lg = C[z, z−1]⊗ g the action of 1 ∈ Z is 1 · (zn ⊗ g) = qnzn ⊗ g. In turn, the bimodule
structure of U(g[z, z−1]) on itself, which we denote U(g[z, z−1])q is the ordinary one on the left
and on the right is given by twisting by the automorphism corresponding to 1 ∈ Z. The complex
Hoch∗(U(g[z, z−1]), q) is the Hochschild homology of U(g[z, z−1]) with values in this bimodule.
Thus, the statement implies that there is a quasi-isomorphism

Hoch∗
(

U(g[z, z−1]), U(g[z, z−1])q

)
' Hoch(Ug).

4.3.3 A variant of the factorization algebra

So far we have mostly restricted ourselves to studying the Kac-Moody factorization algebra cor-
responding to local cocycles of type JX(θ) where θ ∈ Symd+1(g∗)g. There is another class of
local cocycles that appear when studying symmetries of holomorphic theories. Unlike the cocy-
cle JX(θ), which in some sense did not depend on the manifold X, this class of cocycles is more
dependent on the manifold for which the current algebra lives.

Let X be a complex manifold of dimension d and suppose ω is a (k, k) form on X. Fix, in addition,
a form θd+1−k ∈ Sym(g∗)g. Then, we may consider the cochain on G(X):

φθ,ω : G(X)⊗d+1−k → C

α0 ⊗ · · · ⊗ αd−k 7→
∫

X
ω ∧ θd+1−k(α0, ∂α1, . . . , ∂αd−k)

It is clear that φθ,ω is a local cochain on G(X).
Lemma 4.3.6. Let θ ∈ Symd+1−k(g∗)g and suppose ω ∈ Ωk,k(X) satisfies ∂ω = 0 and ∂ω = 0. Then,
φθ,ω ∈ C∗loc(GX) is a local cocycle. Moreover, for fixed θ the cohomology class [φθ,ω ] ∈ H1

loc(GX) only
depends on the cohomology class

[ω] ∈ Hk(X, Ωk
cl).
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Note that when ω = 1 it trivially satisfies the conditions of the lemma. In this case φθ,1 = JX(θ)

in the notation of the last section.

This class of cocycles is related to the ordinary Kac-Moody factorization and vertex algebra on
Riemann surfaces in a natural way. Consider the following two examples.
Example 4.3.7. We consider the complex manifold X = Σ× Pd−1 where Σ is a Riemann surface
and Pd−1 is (d− 1)-dimensional complex projective space. Suppose that ω ∈ Ωd−1,d−1(Pd−1) is
the natural volume form, this clearly satisfies the conditions of Lemma 4.3.6 and so determines a
degree one cocycle φκ,ω ∈ C∗loc(GΣ×Pd−1) where κ is some g-invariant bilinear form κ : g× g→ C.
We can then consider the twisted factorization enveloping algebra of GΣ×Pd−1 by the cocycle φκ,ω.

Recall that if p : X → Y and F is a factorization algebra on X, then the pushforward p∗F on Y is
defined on opens by p∗F : U ⊂ Y 7→ F(p−1U).
Proposition 4.3.8. Let π : Σ×Pd−1 → Σ be the projection. Then, there is a quasi-isomorphism between
the following two factorization algebras on Σ:

1. π∗Uφκ,θ

(
GΣ×Pd−1

)
, the pushforward along π of the Kac-Moody factorization algebra on Σ×Pd−1

of type φκ,ω;

2. Uvol(ω)κ(GΣ), the Kac-Moody factorization algebra on Σ associated to the invariant pairing vol(ω) ·
κ.

The twisted factorization envelope on the right-hand side is the familiar Kac-Moody factorization
alegbra on Riemann surfaces associated to a multiple of the pairing κ. The twisting vol(ω)κ

corresponds to a cocycle of the type in the previous section

J(vol(ω)κ) = vol(ω)
∫

Σ
κ(α, ∂β)

where vol(ω) =
∫

Pd−1 ω.

Proof. Suppose that U ⊂ Σ is open. Then, the factorization algebra π∗Uφκ,θ

(
GΣ×Pd−1

)
assigns to

U the cochain complex(
Sym

(
Ω0,∗(U ×Pd−1)

)
[1][K], ∂ + Kφκ,ω |U×Pd−1

)
, (4.17)

where φκ,ω |U×Pd−1 is the restriction of the cocycle to the open set U×Pd−1. Since projective space
is Dolbeault formal its Dolbeault complex is quasi-isomorphic to its cohomology. Thus, we have

Ω0,∗(U ×Pd−1) = Ω0,∗(U)⊗Ω0,∗(Pd−1) ' Ω0,∗(U)⊗ H∗(Pd−1,O) ∼= Ω0,∗(U).

Under this quasi-isomorphism, the restricted cocycle has the form

φκ,ω |U×Pd−1(α⊗ 1, β⊗ 1) =
∫

U
κ(α, ∂β)

∫
Pn−1

ω

where α, β ∈ Ω0,∗(U) and 1 denotes the unit constant function on Pd−1. This is precisely the value
of the local functional vol(ω)JΣ(κ) on the open set U ⊂ Σ. Thus, the cochain complex (4.17) is
quasi-isomorphic to (

Sym
(

Ω0,∗(U)
)
[1][K], ∂ + Kvol(ω)JΣ(κ)

)
. (4.18)
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We recognize this as the value of the Kac-Moody factorization algebra on Σ of type vol(ω)JΣ(κ).
It is immediate to see that identifications above are natural with respect to maps of opens, so that
the factorization structure maps are the desired ones. This completes the proof.

Example 4.3.9. Fix two Riemann surfaces Σ1, Σ2 and let ω1, ω2 be the Kähler forms. Then, we can
consider the two projections

Σ1 × Σ2

Σ1 Σ2

π1 π2

Consider the following closed (1, 1) form ω = π∗1 ω1 + π∗2 ω2 ∈ Ω1,1(Σ1 × Σ2). According to the
proposition above, for any symmetric invariant pairing κ ∈ Sym2(g∗)g this form determines a
bilinear local functional

φκ,ω(α) =
∫

Σ1×Σ2

ω ∧ κ(α, ∂α)

on the local Lie algebra GΣ1×Σ2 . A similar calculation as in the previous example implies that the
pushforward factorization algebra πi∗Uφκ,ωG, i = 1, 2, is isomorphic to the two-dimensional Kac-
Moody factorization algebra on the Riemann surface Σi with level equal to the Euler characteristic
χ(Σj), where j 6= i. This result was alluded to in the work of Johansen in [Joh94b] where he
showed that there exists a copy of the Kac-Moody chiral algebra inside the operators of a twist
of the N = 1 supersymmetric multiplet (both the gauge and matter multiplets, in fact) on the
Kähler manifold Σ1 × Σ2. In the next section we will see how the two-dimensional Kac-Moody
factorization algebra embeds inside the operators of a holomorphic theory on a complex surface.
This holomorphic theory is the twist (as we stated in the previous chapter) of theN = 1 multiplet.
Thus, we obtain an enhancement of Johansen’s result to a two-dimensional current algebra.

4.4 Universal Grothendieck-Riemann-Roch from BV quantiza-

tion

The main goal of the BV formalism developed in [Cos11] is to rigorously construct quantum field
theories using a combination of homological methods and a rigorous model for renormalization.
A particular nicety of this approach is the ability to study families of field theories, which we
will turn into an equivariant version of BV quantization, see Section 2.4. In this section we will
consider a family of QFT’s parametrized by the moduli space of principal G-bundles. Our main
result is to interpret a certain anomaly coming from BV quantization as a families index over
BunG(X). This anomaly is computed via an explicit Feynman diagrammatic calculation and is
related to a local cocycle of the current algebra discussed in Section 4.1.3.1.

We interpret this result as a formal universal version of the Grothendieck-Riemann-Roch theorem
over the moduli space of bundles. The main idea is that the local cocycles we have just discussed
in Section 4.1.3.1 can be interpreted as characteristic classes on the (formal neighborhood) of the
moduli space of G-bundles.
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We will arrive at the result in a way that is local-to-global on spacetime which we formulate in
terms of factorization algebras. The main them of Costello and Gwilliam’s approach to QFT is
that the observables of a QFT determine a factorization algebra. We study the associated family
of factorization algebras associated to the family of QFT’s over the moduli space of G-bundles.
We will recollect a formulation of Noether’s theorem for symmetries of a theory in terms of fac-
torization algebras developed in Chapter 11 of [CG]. The central object in this discussion is a
“local index” which describes how the Kac-Moody factorization algebra acts on the observables
of the QFT. Locally on spacetime we see how Noether’s theorem provides a free field realization of
the Kac-Moody factorization algebra generalizing that of the Kac-Moody vertex algebra in chiral
conformal field theory [Fre92].

We now give a brief summary of the results, with a background for the situation we consider.
Suppose that P is a fixed holomorphic G-bundle on a complex manifold X. We have already
seen how to express the formal deformation space of P inside of the moduli of G-bundles using
the dg Lie algebra Ad(P)(X) = Ω0,∗(X, ad(P)). In particular, any Maurer-Cartan element of
Ad(P)(X) defines a deformation of P. We have seen that there is a refinement of this dg Lie
algebra to a local Lie algebra Ad(P) whose factorization envelope defines the higher Kac-Moody
factorization algebra above. To any G-representation V we will define a holomorphic theory with
fields EV that is equivariant for this local Lie algebra. Equivalently, we can think of EV as defining
a family of theories over the formal completion of P in the moduli of G-bundles

EV |P′

��

// EV

��

{P′} // BunG(X)∧P .

Over each fiber P′ the theory EV |P′ is a free theory, so admits a canonical BV quantization. Our
formulation of equivariant BV quantization is codification of the problem of gluing together these
quantizations in a compatible way. We will show how this presents itself in the failure of the BV
quantization to be a flat family. Our main result is the following.
Theorem 4.4.1. Let P be any principal G-bundle over a compact affine complex manifold X of dimension
d. Suppose V is a G-representation. Then, the factorization homology

∫
X Obsq

V defines a line bundle over
the formal neighborhood of P inside of the moduli of G-bundles. Moreover, its first Chern class is

c1

(∫
X

Obsq
V

)
= Cchg

d+1(V)

under the identification of chg
d+1(V) as a cohomology class on the formal neighborhood of P inside of the

moduli of G-bundles in Equation (4.22) explained below. Here, C is some nonzero complex number.

There is an elucidating geometric description of how the classes chd+1(V) appear: they describe
curvatures of line bundles over the moduli of G-bundles. Let BunG(X) denote the moduli space
of G-bundles on the complex d-fold X. 3 Over the space BunG(X)× X there is the universal G-
bundle. If P → X is a G-bundle, the fiber over the point {[P]} × X is precisely the G-bundle

3For d > 1 [FHK] have constructed a global smooth derived realization of this space, but its full structure will not be
used in this discussion.
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P → X. This universal G-bundle is classified by a map f : BunG(X)× X → BG. Consider the
following diagram

BunG(X)× X
f

%%

π

ww

BunG(X) BG

where π : BunG(X)×X → BunG(X) denotes the projection. If θ ∈ Symd+1(g∗)g ∼= Hd+1(G, Ωd+1) ⊂
H2d+2(BG) then we obtain via push-pull in the diagram above∫

π
◦ f ∗θ ∈ H2(BunG(X)).

Let P denote the universal principal G-bundle. This is the G-bundle over BunG(X) × X whose
fiber over {[P→ X]} × X is the principal G-bundle P→ X itself. Given any representation V we
can define the vector bundle

V = P×G V

over BunG(X)× X. The fiber of this bundle over {[P → X]} × X is the associated vector bundle
P×G V. We take the determinant of the derived pushforward of V along π to obtain a line bundle
det(Rπ∗V) on BunG(X). We will see how the global observables

∫
X Obsq

P,V provide a formal
version of this line bundle near a fixed principal bundle P. Moreover, if we naively apply the
Grothendieck-Riemann-Roch theorem in this universal context one finds

c1(det(Rπ∗V)) =
∫

π
TdX · ch(V) ∈ H2(BunG(X)).

In the case that X is affine, so that TdX = 1, our theorem provides a proof of this formula using
methods of perturbative QFT. To prove the theorem on a general complex manifold we need to
take into account the action of holomorphic vector fields, which is the content of the next section.

4.4.1 The classical family

In this section, we consider a BV theory that is equivariant for the local Lie algebra Ad(P) in the
language of Section 2.4.3 Let V be any G-representation, and define the associated vector bundle
VP = P ×G V on X. The holomorphic theory we consider is based on the graded holomorphic
vector bundle VP⊕KX⊗V∗P[d− 1], where V∗P is the linear dual bundle. The fields of the associated
free BV theory are

EP,V = Ω0,∗(X,VP)⊕Ωd,∗(X,V∗P)[d− 1].

This is simply the βγ system on X twisted by the vector bundle VP. The action functional is∫
〈β, ∂γ〉V where the pairing is between V and its dual. In particular, the theory EV is free. Let

Obsq
P,V denote the corresponding factorization algebra of quantum observables.

The action of g on V extends to an action of the local Lie algebra Ad(P) on this classical BV theory.
To define this equivariance we need to presribe a Noether current.
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Lemma 4.4.2. The local Noether current Ig ∈ C∗loc(Ad(P))⊗Oloc(EP,V) defined by

Ig(α, γ, β) =
∫

X
〈β, α · γ〉V

satisfies the equivariant classical master equation

(dg + ∂)Ig +
1
2
{Ig, Ig} = 0,

where dg encodes the Lie algebra structure on Ad(P). Hence, Ig gives EV the structure of a classical
Ad(P)-equivariant theory.

Proof. If α is an element in Ad(P) and γ ∈ Ω0,∗(X,VP) we define α · γ through the g-module
structure of g on V combined with the wedge product of Dolbeault forms. Note that Ig is arises
from holomorphic differential operators so that ∂Ig = 0. From the definition of the bracket we
see that for α1, α2 one has {

∫
〈β, α1 · γ〉,

∫
〈β, α2 · γ〉} =

∫
〈β, [α1, α2] · γ〉 which cancels the term

coming from dg.

4.4.2 BV quantization in families

The main technique we employ is equivariant BV quantization, which we have reviewed in Sec-
tion 2.4. Our main result holds for a compact affine manifold, which we will view as coming from
a quotient of an open set in affine space Cd. Thus, we will mostly work with the theory defined
on Cd and afterwards deduce our main result on the quotient via descent. Thus, we will work
with the βγ system

EV = Ω0,∗(Cd, V)⊕Ωd,∗(Cd, V∗)[d− 1]

where V is some g-module. The local Lie algebra which acts on this theory is G = Ω0,∗(Cd, g).

Our first step is to construct an equivariant effective prequantization. for the G-equivariant the-
ory. As has been the case over and over again in this thesis, our situation for constructing the
prequantization is vastly simplified since our theory comes from holomorphic data. Indeed, the
equivariant βγ system is a holomorphic theory on Cd so that we can apply Lemma 2.0.1. As an
immediate corollary, the following definition is well-defined.
Definition 4.4.3. For L > 0, let

Ig[L] := lim
ε→0

W(Pε<L, Ig) = lim
ε→0

∑
Γ

h̄g(Γ)

|Aut(Γ)|WΓ(Pε<L, Ig).

Here the sum is over all isomorphism classes of stabled connected graphs, but only graphs of
genus ≤ 1 contribute nontrivially. By construction, the collection satisfies the RG flow equation
and its tree-level L → 0 limit is manifestly Ig. Hence {Ig[L]}L∈(0,∞) is a G-equivariant prequantiza-
tion.

Our next step is to compute the obstruction to quantization of the G-equivariant theory. By defini-
tion, the scale L obstruction cocycle ΘV [L] is the failure for the interaction Ig[L] to satisfy the scale
L equivariant quantum master equation. Explicitly, one has

h̄ΘV [L] = (dg + Q)Ig[L] + h̄∆L Ig[L] + {Ig[L], Ig[L]}L.
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α(0)

Pε<L

Pε<L

α(2)

Kε α(1)

Figure 4.1: The diagram representing the weight WΓ,e(Pε<L, Kε, Ig) in the case d = 2. On the black
internal edges are we place the propagator Pε<L of the βγ system. On the red edge labeled by e
we place the heat kernel Kε. The external edges are labeled by elements α(i) ∈ Ω0,∗

c (C2).

A completely analogous argument as in Corollary 16.0.5 of [Cosa] we see that the scale L obstruc-
tion is given by a sum over wheels.
Lemma 4.4.4. Only wheels contribute to the anomaly cocycle ΘV [L]. Moreover, one has

ΘV [L] = ∑
Γ∈Wheels
e∈Edge(Γ)

WΓ,e(Pε<L, Kε, Ig),

where the sum is over wheels and distinguished edges. The notation WΓ,e(Pε<1, Kε, Ig[ε]) means we place
the propagator at all edges besides the distinguished one, where we place Kε.

The only fields that propagate are the βγ fields with values in V. Since all vertices are trivalent
we see that the anomaly cocycle is only a functional of the background fields G, see Figure 4.1.4

In particular, there is no obstruction to having an action by G, only an obstruction to having an
inner action. Concretely, the external edges of any closed wheel occurring in the expansion of the
anomaly must be labeled by G. As an immediate consequence we have the following.
Lemma 4.4.5. The effective family {Ig[L]} defines a one-loop exact G-equivariant quantum field theory.
In other words, it satisfies the G-equivariant quantum master equation modulo functionals purely of the
background fields G.

It follows that the anomaly {Θ[L]}measures the obstruction to {Ig[L]} to defining an inner action.

4.4.2.1 The anomaly calculation

We now perform the main technical calculation of the anomaly cocycle.
Proposition 4.4.6. The L→ 0 limit of the anomaly cocycle Θ = limL→0 ΘV [L] ∈ C∗loc(G) is of the form

ΘV = C · JCd(chg
d+1(V)),

where chg
d+1(V) ∈ Symd+1(g∗)g and where JCd : Symd+1(g∗)g → C∗loc(G) is the map of Lemma 4.1.12

and where C some constant only depending on the dimension d.
4We use squiggly arrows for elements in G to be consistent with usual physics conventions for gauge fields.
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To compute the anomaly we refer to the following result about the expression for the anomaly
cocycle in terms of the Feynman diagram expansion. As a direct corollary of our general charac-
terization of chiral anomalies, Lemma 2.3.6, we have the following result.
Lemma 4.4.7. The limit ΘV := limL→0 ΘV [L] exists and is an element of degree one in C∗Lie(Wn, C∗loc(g

C
n )).

Moreover, it is given by

ΘV = lim
ε→0

∑
Γ∈(d+1)-vertex wheels

e∈Edge(Γ)

WΓ,e(Pε<1, Kε, Ig[ε]),

where the sum is over wheels Γ with (d + 1) vertices and a distinguished inner edge e.

The lemma implies that we only need to consider the wheel with d + 1 vertices. Each trivalent
vertex is labeled by both an analytic factor and Lie algebraic factor. The Lie algebraic part of
each vertex can be thought of as the defining map of the representation ρ : g → End(V). The
diagrammitcs of the wheel amounts to taking the trace of the symmetric (d+ 1)st power of this Lie
algebra factor. Thus, the Lie algebraic factor of the weight of the wheel is the (d + 1)st component
of the character of the representation

chg
d+1(V) =

1
(d + 1)!

Tr
(

ρ(X)d+1
)
∈ Symd+1(g∗).

To finish the calculation we must compute the analytic weight of the wheel with d + 1 vertices.
Recall, our goal is to identify the anomaly Θ with the image of chg

d+1(V) under the map

J : Symd+1(g∗)g → C∗loc(Ω
0,∗(Cd)⊗ g)

that sends an element θ to the local functional
∫

θ(α∂α · · · ∂α). We have just seen that the Lie alge-
bra factor in local functional representing the anomaly agrees with the (d + 1)st Chern character.
Thus, to finish we must show the following.
Lemma 4.4.8. As a functional on the abelian dg Lie algebra Ω0,∗(Cd), the analytic factor of the weight
limL→0 limε→0 WΓ,e(Pε<L, Kε, Ig) is equal to a multiple of the local functional∫

α∂α · · · ∂α ∈ C∗loc(Ω
0,∗(Cd)).

Proof. Let’s fix some notation. We enumerate the vertices by integers a = 0, . . . , d. Label the
coordinate at the ith vertex by z(a) = (z(a)

1 , . . . , z(a)
d ). The incoming edges of the wheel will be

denoted by homogeneous Dolbeault forms

α(a) = ∑
J

A(a)
J dz(a)

J ∈ Ω0,∗
c (Cd).

where the sum is over the multiindex J = (j1, . . . , jk) where ja = 1, . . . , d and (0, k) is the homoge-
nous Dolbeault form type. For instance, if α is a (0, 2) form we would write

α = ∑
j1<j2

A(j1,j2)dzj1dzj2 .

Denote the functional obtained as the ε → 0 weight of the wheel with (d + 1) vertices from
Lemma 4.4.7 by WL. The L → 0 limit of WL is the local functional representing the one-loop
anomaly Θ.
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The weight has the form

WL(α
(0), . . . , α(d)) = ± lim

ε→0

∫
Cd(d+1)

(
α(0)(z(0)) · · · α(d)(z(d))

)
Kε(z(0), z(d))

d

∏
a=1

Pε,L(z(a−1), z(a)).

We introduce coordinates

w(0) = z(0)

w(a) = z(a) − z(a−1) 1 ≤ a ≤ d.

The heat kernel and propagator part of the integral is of the form

Kε(w(0), w(d))
d

∏
a=1

Pε,L(w(a−1), w(a)) =
1

(4πε)d

∫ L

t1,...,td=ε

dt1 · · ·dtd

(4πt1)d · · · (4πtd)d
1

t1 · · · td

×ddw(0)
d

∏
i=1

(dw(1)
i + · · ·+ dw(d)

i )
d

∏
a=1

ddw(a)

(
d

∑
i=1

w(a)
i ∏

j 6=i
dw(a)

j

)
×e−∑d

a,b=1 Mabw(a) ·w(b)
.

Here, Mab is the d× d square matrix satisfying

d

∑
a,b=1

Mabw(a) · w(b) = |
d

∑
a=1

w(a)|2/ε +
d

∑
a=1
|w(a)|2/ta.

Note that
d

∏
i=1

(dw(1)
i + · · ·+ dw(d)

i )
d

∏
a=1

(
d

∑
i=1

w(a)
i ∏

j 6=i
dw(a)

j

)
=

(
∑

i1,...id

εi1···id

d

∏
a=1

w(a)
ia

)
d

∏
a=1

ddw(a).

In particular, only the dw(0)
i components of α(0) · · · α(d) can contribute to the weight.

For some compactly supported function Φ we can write the weight as

W(α(0), . . . , α(d)) = limε→0

∫
Cd(d+1)

(
d

∏
a=0

ddw(a)ddw(a)

)
Φ

× 1
(4πε)d

∫ L

t1,...,td=ε

dt1 · · ·dtd

(4πt1)d · · · (4πtd)d
1

t1 · · · td
∑

i1,...,id

εi1···id w(1)
i1
· · ·w(d)

id
e−∑d

a,b=1 Mabw(a) ·w(b)

Applying Wick’s lemma in the variables w(1), . . . , w(d), together with some elementary analytic
bounds, we find that the weight above becomes to the following integral over Cd

f (L)
∫

w(0)∈Cd
ddw(0)ddw(0) ∑

i1,...,id

εi1···id

 ∂

∂w(1)
i1

· · · ∂

∂w(d)
id

Φ

 |w(1)=···=w(d)=0

where
f (L) = lim

ε→0

∫ L

t1,...,td=ε

ε

(ε + t1 + · · ·+ td)d+1 ddt.

In fact, f (L) is independent of L and is equal to some nonzero constant C 6= 0. Finally, plugging
in the forms α(0), . . . , α(d), we observe that the integral over w(0) ∈ Cd simplifies to

C
∫

Cd
α(0)∂α(1) · · · ∂α(d)

as desired.

This completes the proof of Proposition 4.4.6.
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4.4.3 Local to global

In this section we finish the proof of our main result Theorem 4.4.1 by showing how our local
calculation above implies the formula for the anomaly on a general compact affine manifold X.
By an complex affine manifold, we mean a quotient

q : U ⊂ Cd → X

of an open subset U ⊂ Cd by a free and proper action of a discrete subgroup of the affine group
U(d)n Cd. We consider affine manifolds that are also compact. To deduce our main theorem we
will show that the theory and the anomaly above also exhibit equivariance for the affine group
on Cd, thus it will descend to any affine manifold.

We have stated the main result for an arbitrary principal G-bundle P on the affine manifold X.
Suppose the discrete subgroup Γ ≤ U(d)n Cd defines the affine manifold q : U → X = U/Γ as
above. Then, principal G-bundles on X are equivalent to Γ-equivariant principal G-bundles on
U.

Let E be an arbitrary elliptic complex on X, and suppose the Lie algebra h acts on E. Since X is
compact, the cohomology H∗(E(X)) is finite dimensional. It therefore makes sense to define the
character of the action of h on H∗(E(X)).

χE : h→ C , M ∈ h 7→ STrH∗(E(X))(M). (4.19)

Here, STr denotes the supertrace. The character factors through the determinant of the represen-
tation. For the graded character above, we must use the superdeterminant which we denote by
det(H∗(E(X))). Free BV quantization gives a natural field theoretic interpretation of this deter-
minant.
Proposition 4.4.9 ([CG] Lemma 12.7.0.1). Let E be any elliptic complex on a compact manifold X and
let T∗[−1]E be the corresponding free BV theory given by the shifted cotangent bundle. Let Obsq

E be the
factorization algebra of quantum observables of this theory. Then, there is an isomorphism

H∗
(

Obsq
E(X)

)
∼= det H∗(E(X))[n]

where n is the Euler characteristic of E(X) modulo 2.
Remark 4.4.10. In [GH18] they prove that an abstracted version of linear BV quantization behaves
like a determinant over formal moduli problems. An immediate consequence is that given a
classical theory with an action of a Lie algebra g, the BV quantization as we consider produces a
line bundle over the moduli space Bg. Our calculation of the obstruction produces a calculation
in terms of Feynman diagrams of the first Chern class of this line bundle.

Notice that the classical free theory EV is equivariant for the affine group U(d) n Cd. Thus, it
defines a classical theory on any affine manifold X. This theory is free and of the form

EV(X) = T∗[−1](Ω0,∗(X, V))

where T∗[−1] denotes the shifted cotangent bundle. Thus, the global quantum observables satisfy

H∗(Obsq
V(X)) = det

(
H∗(X,Ohol)⊗V

)
(4.20)
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In Section 4.4.1 we have showed how the classical theory EV has an an action by the local Lie
algebra GX . This arose from an action of G(X) = Ω0,∗(X, g) on the elliptic complex Ω0,∗(X, V). At
the level of cohomology we have an action of H∗(G(X)) on H∗(Ω0,∗(X, V)) and hence a character
χV as in Equation (4.19) which is an element in H∗red(G(X)).

The local Lie algebra cohomology of any local Lie algebra embeds inside its ordinary (reduced)
Lie algebra cohomology of global sections C∗loc(L(X)) ⊂ C∗Lie,red(L(X)). The character (4.19)
is an element in H∗red(L(X)). As an immediate corollary of [CG] Theorem 12.6.0.1 we have the
following relationship between the anomaly cocycle and the character.
Proposition 4.4.11. Suppose L is a local Lie algebra that acts on the elliptic complex E on a compact
manifold X. Let ΘE ∈ C∗loc(L) be the local cocycle measuring the failure to satisfy the L-equivariant
classical master equation (that is, the obstruction to having an inner action). Then, its global cohomology
class satisfies [ΘE(X)] = χE ∈ C∗Lie,red(L(X)) where χE is the trace of the action of H∗(L(X)) on
H∗(E(X)).

For the case of L = GX we have an embedding of cochain complexes

C∗loc(G(X)) ↪→ C∗Lie,red(G(X)) = C∗Lie,red(Ω
0,∗(X)⊗ g).

By Kodaira-Spencer theory have already seen that the global sections of the local Lie algebra
G(X) is a model for the formal neighborhood of the trivial G-bundle inside of G-bundles. In
particular, the G(X)-module of quantum observables defines a line bundle

∫
X Obsq

EV
over this

formal neighborhood. Its character as a G(X)-module is identified with the first Chern class of
the corresponding line bundle χE(Obsq

V(X)) = c1(
∫

X Obsq
V).

Now, notice that the one-loop quantization we constructed in the previous section, as well as the
anomaly cocycle ΘV ∈ C∗loc(GCd) are equivariant for the group U(d)n Cd. Thus, they descend
to the global sections of C∗loc(GX) for any affine manifold X. Explicitly, if Γ ⊂ U(d)n Cd is the
discrete subgroup such that X = U/Γ where U ⊂ Cd, then under the isomorphism

C∗loc(G(X)) ∼= C∗loc(G(U))Γ

we have ΘV(X)↔ ΘV(U).

Further, we have an identification

C∗Lie,red(Ω
0,∗(X)⊗ g) = Ored

(
BunG(X)∧triv

) ∼= Ω1
cl
(
BunG(X)∧triv

)
where we have used the equivalence of reduced functions and closed one-forms which makes
sense on any formal moduli space. At the level of H1 we have the composition composition

Symd+1(g∗)g
JX
−→ H1

loc(G(X))→ H1(Ω1
cl
(
BunG(X)∧triv

)
. (4.21)

As a corollary of Proposition 4.4.11 and our calculation of the local anomaly cocycle we see that
the image of chg

d+1(V) is equal to [ΘV(X)] = [c1(
∫

X Obsq
V)].

The same holds when we work around any holomorphic principal bundle P on X, so that we
have an embedding of cochain complexes

C∗loc(Ad(P)(X)) ↪→ Ω1
cl
(
BunG(X)∧P

)
.
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which determines a composition

Symd+1(g∗)g
JX
P−→ H1

loc(Ad(P)(X))→ H1(Ω1
cl
(
BunG(X)∧P

)
. (4.22)

Since every principal G-bundle P on X is trivial when we pull it back to U ⊂ Cd, the above local
anomaly calculation proves that [c1(

∫
X Obsq

P,V)] = Cchg
d+1(V) in this case as well. This completes

the proof of Theorem 4.4.1.

4.4.4 A module for the higher Kac-Moody

The last part of this section we diverge to deduce a consequence of the quantum Noether theorem
using our analysis above by exhibiting a module for the higher affine algebras from the previous
section. For convenience, we fix the trivial g-bundle P = triv so that Ad(P) = GX .

On any manifold X, the quantum Noether theorem, Theorem 12.1.0.1 of [CG], provides a map of
factorization algebras

ΦX : Uα(GX)→ Obsq
V ,

for some α ∈ H1
loc(GX). The factorization algebra Obsq

V is the quantum observables of the βγ

system on X with values in the g-module V. This is a free field theory, thus the above map has the
flavor of a free field realization of the Kac-Moody factorization algebra. In particular when X = Cd,
or any affine manifold, the calculation above shows that there is a map of factorization algebras

ΦCd : Uchd+1(V)(GCd)→ Obsq
V .

Next, consider the case X = Cd \ {0}. By functoriality of pushforwards, the quantum Noether
theorem produces a map of one-dimensional factorization algebras

ρ∗Φ : ρ∗Uchd+1(V)(GCd\{0})→ ρ∗Obsq
V .

We have exhibited a locally constant dense subfactorization algebra Flc
1d of ρ∗Uα(GX) which is

equivalent, as an E1-algebra, to Uĝd,chd+1(V). Similarly, in Section 4.2 we have shown that there is
a locally constant dense subfactorization algebra that is equivalent to the dg algebra AV .

The map ρ∗Φ restricts to these dense subfactorization algebras and so defines a map of E1 algebras

ρ∗Φ : Uĝd,chd+1(V) → AV .

Also, in Section 3.6.4 we have shown how the disk operators VV form a module, through the
factorization product, for the dg algebra AV . This is essentially the Fock module of the algebra
AV , thus we should view the above map ρ∗Φ as being a higher dimensional analog of the “free
field realization” for the higher dimensional affine algebras.

Further, by induction along the map ρ∗Φ, we obtain the following.
Proposition 4.4.12. The map ρ∗Φ endows the space VV with the structure of a module over the E1-algebra
Uĝd,chd+1(V). Equivalently, VV is an A∞-module for Uĝd,chd+1(V).

167



The module VV is the prototype for a higher dimensional version of the vacuum Verma module
for ordinary affine algebras. It is enticing to construct the higher excitation Verma modules as dg
modules for the higher affine algebras we’ve considered in this thesis. We do not do that here,
but hope to return to it in future work.

4.5 Holomorphic diffeomorphisms

The next type of symmetry we consider is that of holomorphic reparametrizations, or holomor-
phic diffeomorphisms. A holomorphic diffeomorphism f : X → Y between complex manifolds
is a bijective holomorphic map whose inverse is also holomorphic. Under composition, holomor-
phic diffeomorphisms from X to itself combine to form a Lie group Diffhol(X). We study theories
that have an action of holomorphic diffeomorphisms which leave the action functional invari-
ant. An example of such a theory is one for which the action functional can be written down in a
holomorphically covariant way (e.g. one that only uses universal constructions in complex geom-
etry). Morally speaking, the Lie algebra of holomorphic diffeomorphisms from X to itself is equal
to holomorphic vector fields on X. This may seem obvious, but some care must be taken to make
this precise as Diffhol(X) is not a finite dimensional manifold. In [KM97] a formalism for studying
infinite dimensional diffeomorphism groups and their Lie algebras is developed, and we refer the
reader there for a more in depth discussion of these issues. We will not be concerned with these
functional analytic issues since we will take as a starting point theories that have symmetries by
the Lie algebra of holomorphic vector fields. It is an interesting question if our constructions lift
to the level of the Lie group, but we will not address that here.

4.5.1 Holomorphic vector fields

Covariance in field theory is usually reserved for theories that can be written in a way that uses
only natural constructions in differential geometry and so is independent of a choice of a local
coordinate. This is precisely the condition that the theory is invariant with respect to the group
of diffeomorphisms The obvious holomorphic analog of this makes sense for theories defined on
complex manifolds. In this section we introduce a local-to-global Lie algebraic version of holo-
morphic covariance using a natural local Lie algebra associated to holomorphic diffeomorphisms.

In the two-dimensional chiral case we will see that a holomorphic covariant theory is the same
thing as a chiral conformal field theory. In higher dimensions, holomorphically covariant theories
arise from natural mathematical situations such as the holomorphic σ-model we met in the last
chapter.

From a physical standpoint, holomorphically covariant theories can be obtained via holomorphic
twists of supergravity theories. In this thesis, we have not addressed what it means to twist a su-
pergravity theory (let alone what supergravity is), but the foundational work has been developed
in [CL]. In collaboration with Chris Elliott, we will show in a future publication how the twist of
the most basic supergravity theory, four-dimensional N = 1 supergravity, admits a holomorphic
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twist to a holomorphically covariant theory. The relationship of the symmetry by holomorphic
vector fields on twists of supergravity theories is one of our main applications for developing the
theory in this section.

4.5.1.1 The local Lie algebra

Just as in the case of holomorphic gauge symmetries, there is a local Lie algebra associated to
holomorphic vector fields. For any complex manifold X, the holomorphic tangent bundle T1,0X
is a holomorphic vector bundle and hence admits a Dolbeault complex Ω0,∗(X, T1,0X). Together
with the ∂ operator, there is a natural extension of the Lie bracket of holomorphic vector fields
that gives this complex the structure of a dg Lie algebra. The underlying graded vector space
of Ω0,∗(X, T1,0X) is clearly the global sections of a smooth graded vector bundle. Moreover, the
differential and Lie bracket are differential and bidifferential operators respectively. Thus:
Definition/Lemma 3. For any complex manifold X, Ω0,∗(X, T1,0X) has the structure of a local Lie
algebra that we denote TX .

In keeping with the conventions above, when we want to stress the sheaf-like nature of this local
Lie algebra we use the notation Tsh

X . This is a sheaf of dg Lie algebras which assigns to an open
set U ⊂ X the dg Lie algebra Ω0,∗(U, T1,0U). We will use the notation TX to denote the associated
cosheaf U 7→ Ω0,∗

c (U, T1,0U).

4.5.1.2 Holomorphically covariant theories

The local Lie algebra TX allows us to define the following stronger notion of a holomorphic theory.
Recall the definition of a holomorphic theory on a complex manifold X from Section 2.2. This
consists of the data of a holomorphic vector bundle V → X, a holomorphic differential operator
Qhol : V → V[1], a shifted symplectic pairing (−,−)V on V, and a holomorphic Lagrangian
density Ihol .
Definition 4.5.1. A holomorphic theory (V, Qhol , ω, (−,−)V , Ihol) is holomorphically covariant if the
associated BV theory admits an action by the local Lie algebra TX .

Many of the holomorphic theories we have encountered are, in addition, holomorphically co-
variant. Recall that the data of an action of a local Lie algebra L on a theory E is given by a
Maurer-Cartan element in the the dg Lie algebra Act(L,E)[−1] from Section 2.4.3. This is a sub
dg Lie algebra of C∗Lie,red(L(X)) ⊗ Oloc(E)[−1] where the dependence on the local Lie algebra
must also be local.
Example 4.5.2. Consider the βγ system on a complex manifold X with values in a vector space
V. We consider this theory extensively in Section 3.6. The fields EV consist of elements γ ∈
Ω0,∗(X, V) together with their conjugates. The dg Lie algebra T(X) acts on the cochain complex
Ω0,∗(X, V) via Lie derivative: if ξ ∈ T(X) of degree k and γ ∈ Ω0,l(X) then Lξγ ∈ Ω0,k+l(X, V) is
defined. It is immediate to see that this is compatible with the ∂ operator. The classical Noether
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current defining the classical action is

IT(ξ, β, γ) =
∫
〈β, Lξγ〉V ,

where 〈−,−〉 is, as usual, the pairing between V and its dual. This functional defines a Maurer-
Cartan element in

IT ∈ Act(T,EV)[−1] ⊂ C∗Lie,red(T(X))⊗Oloc(EV)[−1]

and hence we have a classical action of TX on EV .

There is a variation of this example that plays an important role for us. The holomorphic tensor
bundle of type (r, s) on a manifold X is the holomorphic vector bundle

Vs
r = T1,0X⊗ · · · ⊗ T1,0X︸ ︷︷ ︸

r copies

⊗ T∗1,0X⊗ · · · ⊗ T∗1,0X︸ ︷︷ ︸
s copies

.

Similarly, there are anti-holomorphic versions. The local Lie algebra TX acts on any holomorphic
tensor bundle on X via Lie derivative. This extends to a map

L : TX ×Ω0,∗(X, Vs
r )→ Ω0,∗(X, Vs

r ) , (ξ, γ) 7→ Lξ γ,

giving the Dolbeault complex Ω0,∗(X, Vs
r ) the structure of a dg module for T(X). In a completely

analogous way to the lemma above, we have the following.
Lemma 4.5.3. The βγ system twisted by the tensor bundle of type (r, s) has an action by the local Lie
algebra TX given by the local functional

IT(ξ, γ, β) =
∫
〈β, Lξ γ〉Vs

r .

Hence, it is a holomorphically covariant theory.

4.5.1.3 Higher central charges

Just as in the case of the current algebra, we can apply the factorization enveloping algebra to TX

to obtain a factorization algebra U(TX) on any complex manifold X. The interesting deformations
of this factorization algebra come from local cocycles on TX which define the twisted enveloping
algebras.
Definition 4.5.4. Let α ∈ H1

loc(TX). The Virasoro factorization algebra on X of central charge α is the
twisted factorization enveloping algebra Uα(TX).

The motivation for the term central charge will become clear momentarily. For a complex mani-
fold of dimension one, we have shown in [Wil17] that H∗loc(TΣ) = Ω∗(Σ)[1]. Thus, on a connected
Riemann surface there is a unique, up to scale, local cohomology class of degree one that we nor-
malize by H1

loc(TΣ) = C · ωVir. This cocycle ωVir, which we will recall below, is related to the
cocycle defining the usual extension of the one-dimensional Witt algebra. Moreover, in [Wil17],
we have shown that locally this twisted factorization envelope recovers the Virasoro vertex al-
gebra. Implicit in the statement below is the relationship between one-dimensional holomorphic
factorization algebras and vertex algebras that we recalled at the beginning of Section 4.2.
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Theorem 4.5.5 ([Wil17]). Let c ∈ C. The factorization envelope Uc·ωVir (TC) is a holomorphically transla-
tion invariant factorization algebra and its cohomology defines a vertex algebra Vert(Uc·ωVir (TC)). More-
over, this vertex algebra is isomorphic to the Virasoro vertex algebra of charge c:

Vert(Uc·ωVir (TC)) ∼= Virc.

We will see how this twisted factorization enveloping algebra appears when studying quantiza-
tion of holomorphically covariant theories in any dimension.

The definition of a quantum field theory that is holomorphically covariant is similar to the classi-
cal case. We refer again to Section 2.4.3 for the definition of an action of a local Lie algebra on a
quantum field theory. Recall, there were essentially two separate notions of a quantum symme-
try: that of an action by a local Lie algebra L, and that of an inner action. To have an action of a
local Lie algebra, one must prescribe a family of L-dependent functionals {IL[L]} satisfying the
renormalized quantum master equation modulo functionals that dependent solely on L. To have
an inner action, the quantum master equation must be satisfied on the nose. We have discussed
a deformation theory for lifting an action to an inner action; in particular, there is an obstruction
that lives in H1

loc(L) to lifting an action to an inner action.
Definition 4.5.6. A quantum field theory is holomorphically covariant if it admits an action by
the local Lie algebra TX . The central charge of a holomorphically covariant quantum field theory
is the obstruction to lift this action to an inner action. This is an element

cE ∈ H1
loc(TX)[[h̄]].

In complex dimension one, this definition agrees with the usual definition of the central charge in
chiral conformal field theory.

4.5.1.4 Chiral conformal field theory

In complex dimension one there is an intimate relationship between complex structures and Rie-
mannian structures. Every Riemann surface admits a natural Riemannian metric and hence a
conformal structure. Conversely, a conformal class of a metric defines a complex structures. It is
well-known that the moduli of Riemann surfaces is equivalent to the moduli of conformal struc-
tures.

We can see this at the level of local Lie algebras as follows. Fix a Riemann surface Σ and denote
by g0 the associated Riemannian metric. Define the Riemannian local Lie algebra as follows. Using
the fixed metric g0 define the two-term complex

Riem(Σ, g0) = Γ(Σ, TΣ)
Lg0−−→ Sym2(T∗Σ)[−1]

where the differential sends a vector field X to LX g0, the Lie derivative of g0 with respect to X.
The Lie bracket of vector fields gives this complex the structure of a dg Lie algebra. Better yet,
it is immediate to see that it is a local Lie algebra. The dg Lie algebra Riem(Σ, g0) is the derived
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replacement for the one-shifted tangent space of the moduli space of Riemannian structures on Σ
at g0.

There is a natural map of local Lie algebras TΣ → Riem(Σ, g0). In degree zero this is just the
inclusion of the holomorphic tangent bundle inside of the full tangent bundle. In degree one,
note that the metric g0 defines an inclusion

T∗0,1Σ⊗ T1,0Σ ∼=g0 T∗0,1Σ⊗ T∗1,0Σ ⊂ Sym2(T∗Σ).

Elements of degree one are sections of the bundle on the left-hand side. The map in degree one is
the inclusion above.

Next, we define the conformal local Lie algebra. This is similar to the Riemannian local Lie algebra
where we take into account conformal equivalences of metrics. Define the two-term complex

Conf(Σ, g0) = Γ(Σ, TΣ)⊕ C∞(Σ)
Dg0−−→ Sym2(T∗Σ)[−1].

The differential is defined by Dg0(X, f ) = LX g0 + f g0. The second term encodes the infinitesimal
action of the conformal group. The Lie bracket of vector fields combined with the obvious action
of vector fields on functions gives the above complex the structure of a local Lie algebra. Of
course, every Riemannian structure defines a conformal structure, so there is a map of local Lie
algebras Riem(Σ, g0)→ Conf(Σ, g0).

Thus, we obtain a composition

TΣ → Riem(Σ, g0)→ Conf(Σ, g0). (4.23)

Every conformal field theory (in perturbation theory around the metric g0) is hence a holomor-
phically covariant theory in our sense.

For conformal field theories, the Weyl, or trace, anomaly is the quantity that measures the central
charge. At the level of the Lie algebra Conf(Σ, g0) the Weyl anomaly is represented by the local
1-cocycle

φ
g0
Weyl(X, f , α) =

∫
Σ

f Rg0+αdvolg0+α +
∫

Σ
Jac(X)Rg0+αdvolg0+α,

where Rg0+α is the scalar curvature of the metric g0 + α expanded formally in the variable α.
One immediately checks that φ

g0
Weyl ∈ C∗loc(Conf(Σ, g0)) is a cocycle of cohomological degree one.

Moreover, under the map of local Lie algebras, one checks that φ
g0
Weyl pulls back to the cocycle

ωVir ∈ C∗loc(TΣ) defined by

ωVir(ξ1, ξ2dz) =
∫

Σ
Jac(ξ1)∂(Jac(ξ2))dz

We have already remarked that ωVir is the generator of the cohomology H1
loc(TΣ) for any Riemann

surface. Thus, in complex dimension one we see that our definition of central charge agrees with
the usual one from CFT. We have verified an explicit calculation of the central charge in the BV
formalism for a particular holomorphic theory on Riemann surfaces in [Wil17].
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4.5.2 Gelfand-Fuks cohomology

Our aim is to classify the space of central charges of a holomorphically covariant quantum field
theory in any dimension. The description we give will be in terms of a certain cohomology of
vector fields on the disk, called Gelfand-Fuks cohomology. In this section we recall some facts
about the Lie algebra cohomology of formal vector fields Wd on the d-disk with values in certain
non-trivial modules. We refer to Section 3.1 for the requisite notation for objects living on the
formal disk.

In Section 3.1.5.3 we have constructed the formal Atiyah class for any formal vector bundle V on
D̂n. It is an element of the relative Gelfand-Fuks cohomology

AtGF(V) ∈ C1
Lie(Wd, GLd; Ω̂1

d ⊗Ôd
End

Ôd
(V)).

From the Atiyah class we have built the formal Chern character using the usual formula

chGF(V) = Tr
(

exp
(

1
2πi

AtGF(V)
))

,

and have studied how components of this formal Chern character give rise to L∞ extensions of Wd

that appear as natural universal symmetries of quantizations of higher dimensional holomorphic
σ models with target D̂d.

In this section we arrive at the Lie algebra of formal vector fields, and its cohomology, from
a different perspective. Instead of using formal geometry to construct universal objects on the
target of a σ model, we will see how Gelfand-Fuks classes characterize holomorphic symmetries
on the higher world-sheet, or source manifold.

The symmetry is that of holomorphic reparametrizations. Infinitesimally, this is described by
the Lie algebra of holomorphic vector fields. Classical theories on a complex manifold X with
such a symmetry by holomorphic reparametrizations admit an action by the local Lie algebra
TX = Ω0,∗(X, T1,0

X ).

The Gelfand-Fuks classes we will consider in this section appear as anomalies for quantizing
an action by the local Lie algebra TX . In other words, these classes parametrize shifted central
extensions of TX , just as the classes θ ∈ Symd+1(g∗)g defined central extensions of the current
algebra gX . By our usual yoga of studying equivariant quantizations, we know such anomalies
live in the local cohomology complex C∗loc(TX).
Definition/Lemma 4. Consider the following two classes of cocycles on Wd.

Chern type: For 1 ≤ k ≤ d, let τk ∈ Ck
Lie(Wd; Ω̂k

d) be the cocycle

τk = sk

(
AtGF(T̂d)

)
,

where sk(AtGF(T̂d)) is the homogeneous degree k piece of the characteristic polynomial
defined by det(I + tAtGF(T̂d)).

GL type: For 1 ≤ i ≤ d let ai ∈ C2i−1
Lie (Wd; Ôd) be the cocycle

ai : (ξ1, . . . , ξ2i−1) 7→ ∑
σ∈S2i−1

sign(σ)Tr(Jac(ξσ(1)) · · · Jac(ξσ(2i−1)).
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We will use the notation Ω̂#
d = ⊕kΩ̂k

d[−k] to denote the graded Wd-module with Ω̂k
d sitting in

degree k. The wedge product of forms endows this Wd-module with the structure of a graded
commutative algebra.

If V is a graded vector space then we use the notation C[V] to denote the free graded C-algebra
on V. If V is spanned by vectors {vi} we will use the shorthand C[vi] for this graded algebra.
Theorem 4.5.7 ([GF70]). The bigraded commutative algebra H∗(Wd; Ω̂#

d) is isomorphic to the bigraded
commutative algebra

(C[a1, . . . , a2d−1, τ1, . . . , τd])
/ (

τ
j1
1 · · · τ

jd
d

)
,

where the quotient is over all indices {j1, . . . , jd} that satisfiy j1 + 2j2 + · · ·+ djd > d. Here a2i−1 is in
bidegree (2i− 1, 0) and τj is in bidegree (j, j).

In the above result we have not turned on the de Rham differential ddR : Ω̂k
d → Ω̂k+1

d . This
endows Ω̂∗d = (Ω̂#

d, ddR) with the structure of a dg commutative algebra in Wd-modules. The
formal Poincaré lemma asserts that the inclusion of the trivial Wd-module

C
'−→ Ω̂∗d

is a quasi-isomorphism. In turn, we obtain a quasi-isomorphism of Chevalley-Eilenberg com-
plexes

C∗Lie(Wd)
'−→ C∗Lie(Wd; Ω̂∗d).

We may think of the cochain complex C∗Lie(Wd; Ω̂∗d) as the total complex of the double complex
with vertical differential given by the Wd Chevalley-Eilenberg differential for the graded module
Ω̂#

d, and horizontal differential equal to the de Rham differential.

To any double complex there is a spectral sequence abutting to the cohomology of the total com-
plex. The E1 page of this spectral sequence is given by the cohomology of the vertical differential.
Moreover, if the double complex is a bigraded algebra so are each of the pages. In this case, the
E1 page is precisely the bigraded algebra of Theorem 4.5.7 and we have a spectral sequence

Ep,q
2 =

(
Hq(Wd; Ω̂p

d), ddR

)
=⇒ H∗(Wd; Ω̂∗d) ∼= H∗(Wd). (4.24)

Example 4.5.8. For the case d = 1 the spectral sequence collapses at the E2 page. The only non-
trivial cohomology is C in bidegree (0, 0) and a1 · τ1 in bidgree (1, 2). The 1-cocycle valued in
formal power series a1 is given by a1( fi∂i) = ∂i fi ∈ Ôn. The 1-cocycle valued in formal 1-forms
τ1 is given by τ1(gj∂j) = ddR(∂jgj). To obtain the generator of H3(W1) we perform the following
zig-zag:

C3
Lie(W1) // C3

Lie(W1; Ô1)

C2
Lie(W1; Ô1)

dCE

OO

ddR // C2
Lie(W1; Ω̂1

1).

The de Rham differential kills a1 · τ1, so there exists an α ∈ C2
Lie(W1; Ô1) such that ddRα = −a1 · τ1.

Now, the class dÔ
CEα ∈ C3

Lie(W1; Ôn) satisfies

ddR(d
Ô
CEα) = −dCE(a1τ1) = 0

dCEdÔ
CEα = 0.
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Here, dÔ
CE denote the Chevalley-Eilenberg differential for C∗Lie(W1; Ô1) and dCE is the restriction

of this Chevalley-Eilenberg differential to C∗Lie(W1). The first line says that dCEα lifts to C3
Lie(W1),

and the second line says that it is a cocycle for the absolute cohomology. Finally, note that (dÔ
CE +

ddR)α = dÔ
CEα− a1τ1. Thus, in the total complex dÔ

CEα is homotopic to a1τ1, and so [dÔ
CEα] is the

generator of H3(W1).

For general d ≥ 1, one can apply this spectral sequence to understand the cohomology H∗(Wd).
To describe it, we introduce the following topological space. Let Gr(d, n) be the complex Grass-
mannian of d-planes in Cn. Denote by Gr(d, ∞) the colimit of the natural sequence

Gr(d, d)→ Gr(d, d + 1)→ · · · .

It is a standard fact that Gr(d, ∞) is a model for the classifying space BU(d) of principal U(d)-
bundles. Let EU(d) → BU(d) be the universal principal U(d)-bundle. Using the colimit descrip-
tion above, we have a natural skeletal filtration of BU(d) by

skkBU(d) = Gr(d, k).

Let Xd denote the restriction of EU(d) over the 2d-skeleton:

Xd //

��

EU(d)

��

sk2dBU(d) // BU(d).

Remark 4.5.9. Though not the way the Gelfand and Fuks originally proved the result, one can
use the computation of the cohomology of Wd with coefficients in Ω̂k

d together with the spec-
tral sequence (4.24) to prove this description of H∗(Wd). Indeed, the spectral sequence (4.24)
is isomorphic, up to regradings, to the Serre spectral sequence for the principal U(d)-bundle
Xd → sk2dBU(d). In other words, the formal de Rham differential on Ω̂∗d is exactly the E2 dif-
ferential for the Serre spectral sequence.
Theorem 4.5.10 ([Fuk86] Theorem 2.2.4). There is an isomorphism of graded vector spaces

H∗(Wd) ∼= H∗dR(Xd).

Moreover, the commutative algebra structure on H∗(Wd) is trivial.

Note that when d = 1 we have sk2BU(1) = P1 ⊂ P∞ = BU(1). Moreover, the restriction of the
universal bundle is Hopf fibration U(1) → S3 → P1. In particular, one has X1 = S3. An im-
mediate application of the Serre spectral sequence shows that first nontrivial cohomology above
degree zero of Xd is in degree (2d + 1) and is identified with H2d+2(BU(d)) for any dimension d.
Thus, H2d+1(Wd) = H2d+2(BU(d)).

4.5.3 The local cohomology of holomorphic vector fields

Our main result in this section is a complete classification of the local cohomology of the sheaf
of Dolbeualt complex of holomorphic vector fields TX = Ω0,∗(X; T1,0

X ) on any complex manifold.
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This description involves the Gelfand-Fuks cohomology of formal vector fields that we have just
discussed and will give a classifications of the higher dimensional central charges for holomor-
phically covariant field theories.

The proof relies heavily on our construction of Gelfand-Kazhdan descent from Chapter 3. The
key difference, is that the formal geometry utilized in this section is on the source rather than the
target as we used it in the previous chapter.
Theorem 4.5.11. Let X be a complex d-fold. There is a quasi-isomorphism of sheaves of cochain complexes

C∗loc(TX) ' Ω∗X ⊗C∗Lie,red(Wd)[2d]

where Ω∗X is the sheaf of de Rham forms on X.

The core of the argument is in interpretting the local Lie algebra cohomology as the cohomol-
ogy of vector fields on the formal disk through the process of Gelfand-Kazhdan descent that we
introduced in Chapter 3. Before moving on to the proof, we have the immediate cohomological
interpretation of the calculation. Recall that when we study classical BV theories equivariant for a
local Lie algebra L, the space the failure for quantizing the BV theory in a way that is equivariant
for the Lie algebra is measured by an anomaly class in the local cohomology. For holomorphic
diffeomorphisms, we obtain the following.
Corollary 4.5.12. For X any complex manifold of complex dimension d one has at the level of cohomology

Hk
loc(TX) ∼=

2d⊕
i=0

Hi
dR(X)⊗ H2d+k−i

Lie,red (Wd).

In particular, if the manifold is connected the space of anomalies for holomorphic diffeomorphisms for a
theory defined on X is:

H1
loc(TX) = H2d+1

Lie (Wd),

which is independent of the complex manifold.

Applying the isomorphism H2d+1(Wd) = H2d+2(BU(d)), we see that the local cocycles of holo-
morphic vector fields come from universal characteristic classes in d-dimensions. There is a geo-
metric explanation for this akin to the case of the moduli of G-bundles in the previous section. Let
M be the moduli space of complex manifolds of dimension d. A rigorous mathematical definition
of this object as a derived stack has not appeared in the detail that [FHK] give for G-bundles, but
we will only use it as a motivating object. Over the moduli space there is the universal complex
d-fold π : X→M whose fiber over [X] ∈M is X itself. Any tensor bundle V (those built from the
tangent bundle via duals and tensor products) defines a vector bundle over X. Further, this vector
bundle defines a locally free sheaf of M via the derived pushforward Rπ∗V and hence a Chern
class c1(V) = c1(Rπ∗V) ∈ H2(M). These are higher dimensional analogs of the tautological
classes on the moduli space of curves.

There is a relationship of these tautological classes with Gelfand-Fuks cohomology as follows.
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The vector bundle V→ X is classified by a map fV : X→ BU(d), and so we obtain the diagram.

V

X

BU(d) M.

πfV

If α ∈ H2d+2(BU(d)) we obtain the class via the push-pull construction π∗ f ∗Vα ∈ H2(M). Since
H2d+2(BU(d)) ∼= H2d+1(Wd), this shows that our Gelfand-Fuks classes define tautological classes
on the moduli of complex manifolds. It would be interesting to work out the precise relationship
between the classes c1(V) and Gelfand-Fuks classes, but we postpone this to future work.

The corollary implies that the cohomology H2d+1
Lie (Wd) deserves to be thought of as the space

of “higher dimensional central charges” of a classically holomorphic diffeomorphism invariant
theory. After the proof of our main result we will how this relates to the central extensions of
holomorphic vector fields and the role of these extensions in quantum field theory.

Proof. We recall a description of the local cohomology complex using D-modules given in Section
4.5 of [CG]. Let L be any local Lie algebra on X with associated graded vector bundle L. The local
Lie algebra cohomology is defined as the sheaf

C∗loc(L) = Ωd,d
X ⊗DX C∗Lie,red(JL)

where JL is the DX-module given by taking the ∞-jets of the underlying vector bundle of L. In
[Cos11] it was shown that C∗Lie,red(JL) is flat as a DX-module, thus we can replace the tensor
product above by a left-derived tensor product

Ωd,d
X ⊗DX C∗Lie,red(JL) ' Ωd,d

X ⊗
L
DX

C∗Lie,red(JL). (4.25)

The Spenser resolution is a free resolution of Ωd,d
X as a right DX-module (by DX we mean smooth

differential operators) given by

M∗ =
(
· · · → Ω2d−1 ⊗C∞

X
DX

∇D−−→ Ωd,d ⊗C∞
X

DX

)
The differential ∇D is determined by the natural flat connection on DX . This complex M∗ is
concentrated in degree −2d, . . . , 0. Via this resolution, we see that (4.25) is quasi-isomorphic to

M∗ ⊗DX C∗Lie,red(JL) '
(
· · · → Ω2d−1 ⊗C∞

X
C∗Lie,red(JL)

∇D−−→ Ωd,d ⊗C∞
X

C∗Lie,red(JL)
)

.

The right-hand side is, by definition, the shifted de Rham complex of the DX-module C∗Lie,red(JL)
so we obtain

C∗loc(L) ' Ω∗(X, C∗Lie,red(JL))[2d]. (4.26)
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Now, suppose that L is a holomorphic local Lie algebra of the form Ω0,∗(X, Lhol) where Lhol is
a holomorphic vector bundle. In the above notation, the underlying smooth vector bundle is
L =

∧∗ T0,1∗X⊗ Lhol .

We now turn to the local Lie algebra in question, namely TX . This is the local Lie algebra de-
fined by Dolbeualt complex of the holomorphic tangent bundle T1,0X, TX = Ω0,∗(X, T1,0X). As
sheaves, of course, there is a quasi-isomorphism TX ' Γhol

X (T1,0X) where the right-hand side is
the sheaf of holomorphic sections of the holomorphic tangent bundle. Similarly, there is a quasi-
isomorphism of DX-modules JTX ' JholT1,0X. In particular, there is a quasi-isomorphism of de
Rham complexes

Ω∗(X, C∗Lie,red(J(TX))) ' Ω∗(X, C∗Lie,red(JholT1,0X)).

On the right-hand side note that we take holomorphic jets.

Suppose now that V is any (Wd, GLd)-module. Then, Gelfand-Kazhdan descent along the com-
plex manifold X yields the DX-module descX(V). In the case that V = T̂d we have seen that the
DX-module descX(T̂d) is equivalent to the DX-module JholT1,0X.

Lemma 4.5.13. Gelfand-Kazhdan descent is symmetric monoidal. That is, if V,V′ are two (Wd, GLd)-
modules, then

V⊗
Ôn

V′ ' descX(V)⊗JholOhol
X

descX(V
′).

This implies that there is a string of isomorphisms of DX-modules

JholC∗Lie,red(T
1,0X) = desc(C∗Lie,red(Wd)) ∼= C∗Lie,red(desc(Wd)) = C∗Lie,red(JholT1,0X).

Alternatively, by Proposition A.2 of [GG] we know that the functor of jets is symmetric monoidal,
so the same result follows.

To summarize we see that the Gelfand-Kazhdan descent of the (Wn, GLd)-module CLie,red(Wd) is
equal to the DX-module C∗Lie,red(JholT1,0

X ). This is precisely the DX-module present in the defini-
tion of the local cohomology of TX . Indeed, we have the quasi-isomorphism

C∗loc(TX) ' Ω∗
(

X, C∗Lie,red(JholT1,0
X )
)

.

Thus, the de Rham complex of the DX-module given by descent is precisely the local cohomology

C∗loc(TX) ' Ω∗
(

X, descX(C∗Lie,red(Wd))
)

The interpretation via descent will allow us to describe this de Rham complex explicitly. Suppose
that g is any Lie algebra. Then g acts on itself (and its dual) via the adjoint action. This extends to
an action of g on its Chevalley-Eilenberg complex C∗Lie(g; M), where M is any g-module via the
formula

(x · ϕ)(x1, . . . , xk) = ∑
i

ϕ(x1, . . . , [x, xi], . . . , xk)− x · ϕ(x1, . . . , xk)

Here, x, xi ∈ g and ϕ is a k-cochain with values in M. The [−,−] denotes adjoint action, and the
· is the g-module structure on M. The following lemma is well-known. The same formula holds
for the reduced cochains.
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Lemma 4.5.14. The g-module structure on the cochain complexes C∗Lie(g) and C∗Lie,red(g) is homotopically
trivial.

For the case of an infinite dimensional Lie algebra, such as Wd, the same result holds when we use
the continuous, or Gelfand-Fuks, Lie algebra cohomology. Thus, Wd acts homotopically trivial on
C∗Lie,red(Wd).

This implies that the descent descX(Wd) has a homotopically trivial DX-module structure. Equiv-
alently, this means that the flat connection on C∗Lie,red(JholT1,0X) is gauge equivalent to the trivial
connection. Thus, there is a quasi-isomorphism of de Rham complexes

Ω∗
(

X, C∗Lie,red(JholT1,0
X )
)
' Ω∗(X)⊗C∞

X
C∗Lie,red(Wd)X

where the underline denotes the sections of the trivial bundle with fiber C∗Lie,red(Wd). We have
identified the left hand side with the local cohomology complex, so we are done.

4.5.4 An explicit description of the local cocycles

We’d like to leverage our knowledge of the the Gelfand-Fuks cohomology of formal vector fields
to provide an explicit description of local cocycles of TX . The theorem in the previous section
gives a very general equivalence of the local cohomology on any complex manifold with the
Gelfand-Fuks cohomology, but writing down the form of the local cocycle from the description
on a formal disk is not so obvious.

We start with the familiar case d = 1 and we work on X = C. The cohomology H∗Lie,red(W1) is one-
dimensional concentrated in degree 3. We’d like to describe the local cocycle corresponding to the
generator of H3(W1) ∼= H1

loc(TC) explicitly. Recall, using the formal Hodge-to-de Rham spectral
sequence we saw that the generator of H3(W1) came from the element a1τ1 ∈ H2

Lie(W1; Ω̂1
1) on

the E2 page of the spectral sequence (4.24).

Now, the 1-cocycles a1, τ1 can both be interpreted as functionals on the Dolbeault complex Ω0,∗(C, T1,0C).
Indeed, if ξ = α(z, z)∂z is an element of the Dolbeault complex we can define

ã1(ξ) = ∂zα(z, z) ∈ Ω0,∗(C)

τ̃1(ξ) = ∂(∂zα(z, z)) ∈ Ω1,∗(C).

Each of these cocycles clearly only depends on the jet of the vector field α∂z. Similarly, the product
is ã1τ̃1 is the bilinear functional on jets of TC:

ã1τ̃1(ξ1, ξ2) = ∂zα1(z, z)∂(∂zα2(z, z)) ∈ Ω1,∗(C)

This is a density precisely when |α1|+ |α2| = 1. Thus, ã1τ̃1 determines a degree +1 density valued
cochain on JTC; in other other words an element of C∗loc(TC) that we write as∫

C
∂zα1(z, z)∂(∂zα2(z, z)),
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which is the local cocycle we denoted ωVir above. If we integrate by parts, we can put this local
functional in the form

∫
f ∂3

z gdzdz. If one restricts this local functional to the annulus and per-
forms the radial integration, we recover the usual formula for the generator of H2(Vect(S1)), see
[Wil17], defining the central extension of the Virasoro Lie algebra.

4.5.4.1 From GF classes to local functionals

The description of the one-dimensional local cocycle above be generalized to arbitrary dimen-
sions in a natural way. From a Gelfand-Fuks cocycle ϕ ∈ Hk(Wd; Ω̂d

d), we will construct a local
functional on the local Lie algebra TCd . We take a representative for ϕ and view it as a symmetric
linear map

ϕ : W⊗k
d → Ω̂d

d.

By Corollary 2.2.5 in Chapter 3 of [Fuk86] they show that any cohomology class on Wd with
values in any tensor module can be represented by a cocycle which depends only on the 2-jets of
its inputs. Thus, up to an exact cocycle, we can assume that ϕ is of the form

ϕ(X1, . . . , Xk) = ∑
I=(i1,...,ik)

Di1(X1) · · ·Dik (Xk)d
dt

where Dij : Wd → Ôd are order two differential operators.

Choosing a coordinate {zi} on Cd these operators define holomorphic differential operators

Dij : Γhol(Cd; T1,0Cd)→ Ohol ,

and hence extend to differential operators on the compactly supported Dolbeualt complex

Dij : TCd → Ω0,∗
c (Cd).

Thus, we see that ϕ defines a symmetric linear map

ϕ : T⊗k
Cd → Ωd,∗

c (Cd).

In other words, for a collection of compactly supported Dolbeault valued sections of the holo-
morphic tangent bundle ξ1, . . . , ξk we obtain a compactly supported (d, ∗)-form ϕ(ξ1, . . . , ξk). In
turn, we can integrate this to get a number. We denote the resulting cochain by

Kϕ : T⊗k
Cd → C , (ξ1, . . . , ξk) 7→

∫
Cd

ϕ(ξ1, . . . , ξk).

Lemma 4.5.15. For any ϕ the cochain Kϕ is a local cochain, that is Kϕ ∈ C∗loc(TCd).

For degree reasons, each of the classes in Hd+1(Wd; Ω̂d
d) survive to the E∞-page of the formal

Hodge-to-de Rham spectral sequence converging to H∗(Wd), though there may be relations
among them. We expect, though have not thoroughly checked, that for such the classes Kϕ are
cocycles in the local Chevalley-Eilenberg complex. In dimension two, this is the case.
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Example 4.5.16. Consider the case d = 2. Using the formal Hodge-to-de Rham spectral sequence,
we can choose generators of H5

Lie(W2) = C2 defined by the classes

a1τ2
1 , a1chGF

2 ∈ H3
Lie(W2; Ω̂2

2).

Where chGF
2 = 1

2 (τ
2
1 − 2τ2). Following the prescription above, the local functionals associated to

these cocycles read

Ka1τ2
1
(ξ1, ξ2, ξ3) =

∫
C2

Tr(Jac(ξ1)) ∧ Tr(∂Jac(ξ2)) ∧ Tr(∂Jac(ξ3)).

and
Ka1chGF

2
(ξ1, ξ2, ξ3) =

∫
C2

Tr(Jac(ξ1)) ∧ Tr(∂Jac(ξ2) ∧ ∂Jac(ξ3)).

It is a direct calculation to show that both Ka1τ2
1
, Ka1τ2 are local cocycles.

Remark 4.5.17. It is an interesting, and subtle, problem to write down the explicit formula for a
global representative of the local cocycle corresponding to a Gelfand-Fuks class in H2d+1(Wd).
The primary issue is that the formula for the cocycle on Cd, which we defined above, depends on
the choice of a coordinate. When d = 1 we show how the choice of a projective connection on a
Riemann surface allows one to “correct” the naive expression for the local cocycle to one that is
coordinate independent and hence glues to define a global cocycle. Moreover, any two projective
connections define the same cohomology class associated to the local cocycle. Such constructions
have also appeared in the physics literature related to the “diffeomorphism anomaly” in confor-
mal field theory [KLT90]. In future work we aim to classify the geometric structure on a general
complex d-fold needed to correct the naive local cocycle to one that glues across the global mani-
fold.

4.5.4.2 A comparison to other cocycles

We have already seen in Section 4.5.1.4 that when d = 1 the unique local cocycle associated to the
generator in H3(W1) agrees with the Weyl anomaly in CFT. There has been an extensive effort
in both the physics and math community to classify cocycles pertaining to conformal anoma-
lies in any dimension. In real dimensions 4 and 6 see [BPB86, KMM96] and for conjectures in
higher dimensions see [DS93]. Our results above classify holomorphic versions of these confor-
mal anomalies in arbitrary even dimensions.

In complex dimensions 2 and 3 the dimension of the space of the degree one local cohomology
H1

loc(TX) agrees with dimension of the space of non-equivalent cocycles for the higher conformal
anomalies studied in [BPB86, DS93]. Specifically, in complex dimension 2 (so real dimension 4)
this space is 2-dimensional corresponding to the characteristic classes c3

1, c1c2 ∈ H6(BU(2)). In
complex dimension 3 this space is 4-dimensional corresponding to the classes c4

1, c2
1c2, c1c3, c2

2. It
would be interesting to directly relate our local cocycles to theirs.

These references describe two classes of cocycles: Type a and type b-cocycles. In any dimension,
there is a single type a-cocycle, and the remaining cocycles are of type b. Using the isomorphism
H2d+1(Wd) ∼= H2d+2(BU(d)) we conjecture that the type a-cocycle corresponds to the character-
istic class c1cd ∈ H2d+2(BU(d)).
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Chapter 5

Appendix

5.1 The dg model for punctured affine space

In this section we review a dg model for the derived space of sections of the structure sheaf
on punctured affine space in any dimensions. We will be mostly concerned with the sheaf of
algebraic functions. This model has appeared in the work of [FHK], based on the Jouanolou
resolution of singularities, and we recall its definition an properties here.

Let Ad be algebraic affine space with sheaf of functions given by Oalg(Ad) = C[z1, . . . , zd]. Denote
Ad× = Ad \ {0}. When d = 1 the punctured space A1× is an affine scheme with H0(A1×,Oalg) =

C[z±]. When d > 1 the punctured space Ad× is no longer affine. In fact, the cohomology is

H∗(Ad×,Oalg) =


0, ∗ 6= 0, d− 1

C[z1, . . . , zd], ∗ = 0

C[z−1
1 , . . . , z−1

d ] 1
z1···zd

, ∗ = d− 1

.

The dg commutative algebra R(Ad×,Oalg) is well-defined up to quasi-isomorphism. We will
recall the construction of an explicit model.
Definition 5.1.1. Let Ad = ⊕d

p=0 ⊕d
q=0 Ap,q

d be the bigraded commutative algebra generated by
elements

z1, . . . , zd, z∗1 , . . . , z∗d , (zz∗)−1

in bidegree (0, 0), where zz∗ = ∑i ziz∗i , elements

dz1, . . . , dzd

in bidegree (1, 0), and
dz∗1 , . . . , dz∗d

in bidegree (0, 1). Introduce a ∗-weight, so that z∗i , dz∗i have ∗-weight +1 and (z∗i )
−1 has ∗-weight

−1. We require that:
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(i) every element is of total ∗-weight zero and

(ii) the contraction of every element with the Euler vector field ∑i z∗i ∂z∗i
vanishes.

There is a map ∂ : Ap,q
d → Ap,q+1

d of bidegree (0, 1) defined formally by

∂ = ∑
i

dz∗i
∂

∂z∗i

and a map of bidegree (1, 0) defined by

∂ = ∑
i

dzi
∂

∂zi
.

This differentials commute ∂∂ = ∂∂ and each square to zero.

When p = 0 we see that the resulting complex (Ad, ∂) = (⊕q Aq
d[−q], ∂) has the structure of a

commutative dg algebra. This commutative dg algebra is model for R(Ad×,Oalg). Note that by
conditions (i),(ii) this complex is concentrated in degrees 0, 1, . . . , d− 1.

For each p, the complex Ap,∗
d = (⊕q Ap,q[−q], ∂) is a model for the RΓ(Ad×,Oalg)-module given

by the derived space of sections of holomorphic p-forms RΓ(Ad×, Ωp,alg). We will denote the
resulting bigraded algebra by

A∗,∗d = ⊕p=0 Ap,∗
d [−p] = ⊕p=0 ⊕q=0 Ap,q

d [−p− q].

It is immediate to check that the formula for the ordinary Bochner-Martinelli kernel makes sense
in the algebra Ad. That is, we define

ω
alg
BM(z, z∗) =

(d− 1)!
(2πi)d

1
(zz∗)d

d

∑
i=1

(−1)i−1z∗i dz∗1 ∧ · · · ∧ d̂z∗i ∧ · · · ∧ dz∗d ,

which is an element of Ad−1
d .

The key properties of the dg algebra Ad and its dg modules Ap,∗
d we will utilize are summarized

in the following result of [FHK].
Proposition 5.1.2 ([FHK] Proposition 1.3.1).

1. The commutative dg algebra (Ad, ∂) is a model for RΓ(Ad×,Oalg)

Ad ' RΓ(Ad×,Oalg).

Similarly, (Ap,∗
d , ∂) ' RΓ(Ad×, Ωp,alg).

2. There is a dense map of commutative bigraded algebras

j : A∗,∗d → Ω∗,∗(Cd \ {0})

sending zi 7→ zi, z∗i 7→ zi, and dz∗i 7→ dzi that is compatible with the ∂ and ∂ differentials on both
sides.
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3. Finally, there is a unique GLn-equivariant residue map

Resz=0 : Ad,d−1
d → C

that satisfies
Resz=0

(
f (z)ωalg

BM(z, z∗)dz1 · · ·dzd

)
= f (0)

where f (z) ∈ C[z1, . . . , zd]. In particular, for any ω ∈ Ad,d−1
d one has

Resz=0(ω) =
∮

S2d−1
j(ω)

where S2d−1 is any sphere centered at the origin in Cd.
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Grundlehren Text Editions. Springer-Verlag, Berlin, 2004. Corrected reprint of the
1992 original.

[BJ69] J. S. Bell and R. Jackiw. A PCAC puzzle: π → γγ in the sigma model. Nuovo Cim.,
A60:47–61, 1969.

[BK04] R. Bezrukavnikov and D. Kaledin. Fedosov quantization in algebraic context. Mosc.
Math. J., 4(3):559–592, 782, 2004.

[BL00] Lev A. Borisov and Anatoly Libgober. Elliptic genera of toric varieties and applica-
tions to mirror symmetry. Inventiones mathematicae, 140(2):453–485, 2000.

[BlB93] A. Beı̆ linson and J. Bernstein. A proof of Jantzen conjectures. In I. M. Gelfand Seminar,
volume 16 of Adv. Soviet Math., pages 1–50. Amer. Math. Soc., Providence, RI, 1993.

[Bor86] Richard E. Borcherds. Vertex algebras, Kac-Moody algebras, and the Monster. Proc.
Nat. Acad. Sci. U.S.A., 83(10):3068–3071, 1986.

[Bot73] R. Bott. On the Chern-Weil homomorphism and the continuous cohomology of Lie-
groups. Advances in Math., 11:289–303, 1973.

185



[BPB86] L. Bonora, P. Pasti, and M. Bregola. Weyl cocycles. Classical Quantum Gravity, 3(4):635–
649, 1986.

[BR73] I. N. Bernstein and B. I. Rosenfeld. Homogeneous spaces of infinite-dimensional Lie
algebras and the characteristic classes of foliations. Uspehi Mat. Nauk, 28(4(172)):103–
138, 1973.

[Bre07] Paul Bressler. The first Pontryagin class. Compos. Math., 143(5):1127–1163, 2007.

[Bru96] Marco Brunella. On transversely holomorphic flows. I. Invent. Math., 126(2):265–279,
1996.

[BY] Dylan Butson and Philsang Yoo. Degenerate classical field theories and boundary
theories. Available at https://arxiv.org/abs/1611.00311.

[CF00] Alberto S. Cattaneo and Giovanni Felder. A path integral approach to the Kontsevich
quantization formula. Comm. Math. Phys., 212(3):591–611, 2000.

[CF01] Alberto S. Cattaneo and Giovanni Felder. On the globalization of Kontsevich’s star
product and the perturbative Poisson sigma model. Progr. Theoret. Phys. Suppl.,
(144):38–53, 2001. Noncommutative geometry and string theory (Yokohama, 2001).

[CG] Kevin Costello and Owen Gwilliam. Factorization algebras in quantum field theory.
Vol. 2. available at http://people.mpim-bonn.mpg.de/gwilliam.

[CG17] Kevin Costello and Owen Gwilliam. Factorization algebras in quantum field theory. Vol. 1,
volume 31 of New Mathematical Monographs. Cambridge University Press, Cambridge,
2017.

[Che12] Pokman Cheung. Chiral differential operators on supermanifolds. Math. Z., 272(1-
2):203–237, 2012.

[CL] Kevin Costello and Si Li. Twisted supergravity and its quantization. Available at
https://arxiv.org/abs/1606.00365.

[CLL] Kwokwai Chan, Naichung Conan Leung, and Qin Li. A mathematical foundation of
Rozansky-Witten theory. available at http://arxiv.org/abs/1502.03510.

[Cosa] Kevin Costello. A geometric construction of the Witten genus, II. available at http:
//arxiv.org/abs/1112.0816.

[Cosb] Kevin Costello. Supersymmetric gauge theory and the Yangian. Available at http:
//arxiv.org/abs/1303.2632.

[Cos11] Kevin Costello. Renormalization and effective field theory, volume 170 of Mathematical
Surveys and Monographs. American Mathematical Society, Providence, RI, 2011.

[Cos13] Kevin Costello. Notes on supersymmetric and holomorphic field theories in dimen-
sions 2 and 4. Pure Appl. Math. Q., 9(1):73–165, 2013.

186

https://arxiv.org/abs/1611.00311
http://people.mpim-bonn.mpg.de/gwilliam
https://arxiv.org/abs/1606.00365
http://arxiv.org/abs/1502.03510
http://arxiv.org/abs/1112.0816
http://arxiv.org/abs/1112.0816
http://arxiv.org/abs/1303.2632
http://arxiv.org/abs/1303.2632


[CR11] Damien Calaque and Carlo A. Rossi. Lectures on Duflo isomorphisms in Lie algebra and
complex geometry. EMS Series of Lectures in Mathematics. European Mathematical
Society (EMS), Zürich, 2011.
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