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We reach the main construction of this lecture series, which we will state as one
of the central theorems of [1]

Theorem 1. [1] Let M be a manifold. There is an assignment

Obsq : {QFTs on M} → {factorization algebras on M}
called the quantum observables.

There is a simpler construction at the classical level. Let us fix a classical
BV-theory (E , 〈−,−〉, I). We have defined the global observables via the classical
BV-complex

Obscl(M) := (Sym(E(M)∨), Q + {I,−}) .
Since E is a sheaf of sections of some vector bundle, it makes sense to consider, for
each open U , the subcomplex

Obscl(U) := (Sym(E(U)∨), Q + {I,−})
that we call the classical observable supported on U .

Proposition 1. The assignment U 7→ Obscl(U) defines a factorization algebra on
M .

In fact, this is a corollary of the O-construction from the last talk, but we can
be explicit. If tiUi → V is a disjoint union of open subsets inside of the open set
V then we have a map

E(V )→ E(tiUi) = ⊕iE(Ui)

because E is a sheaf. Taking the duals and noticing that Sym is a symmetric
monoidal functor we have a map

⊗iSym(E(Ui)
∨)→ Sym(E(V )).

That is, a map ⊗iObscl(Ui)→ Obscl(V ). One shows directly that this is a cochain
map and defines the factorization structure maps.

Now, suppose we have a quantum field theory on M . This is the data of
(E , Q, 〈−,−〉) together with a collection {I[r]} of effective functionals that satisfy
the RG-flow equation and the regularized quantum master equation. We have
constructed the global quantum observables Obsq(M). An element is a collection
of functionals {O[r]} where each O[r] ∈ Obsq(M)[r] that are related by RG-flow.

To define the factorization algebra, we first need to define what we mean by a
quantum observable {O[r]} to be supported on an open set U . The naive definition
used in the classical case does not work here: both the regularized BV-laplacian
∆r and the Poisson bracket {−,−}r increase the support of an element O[r] so
that the total differential

Q̂r := Q + ~∆r + {I[r],−}
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also increases support. For instance, if O[r] is in an element of subspace Sym(E(U))[[~]]

then Q̂rO[r] may not be.

Luckily, the magnitude in which Q̂r does increase support is controllable. One
says that a quantum observable {O[r]} is supported on U ⊂ M iff there exists a
closed subset K ⊂ U and a small enough regularization r such that

Supp O[r] ⊂ K.

A main technical result of [1] is that if we have such an observable supported on U

then Q̂r applied to it is still supported on U . Thus we have defined the subcomplex

Obsq(U) ⊂ Obsq(M)

of observables supported on U .
We now describe the structure maps of the factorization algebra. Focus on the

case U t U ′ ↪→ V where U,U ′ are disjoint. We need to describe a map

Obsq(U)⊗Obsq(U ′)→ Obsq(V ).

Take quantum observables {O[r]} and {O[r′]} supported on U,U ′ respectively.
Viewing the functionals as elements of the symmetric algebra O(E)[[~]] we may
consider the product

O[r] ·O[r′] ∈ O(E)[[~]].

Theorem 2. The following limit

lim
r′→0

W r
r′(O[r] ·O[r′]) ∈ O(E)[[~]]

exists and will be denoted (O ·O′)[r].

We can then define the factorization product ([?]) by

{O[r]} ⊗ {O′[r]} 7→ {(O ·O′)[r]}.

It is straightforward to check that this is a cochain map and satisfies the associa-
tivity and commutativity properties necessary to define a prefactorization map. A
spectral sequence argument is needed to show that

Obsq : U 7→ Obsq(U)

actually is a factorization algebra.
The connection with the classical observables is the following.

Theorem 1. [1] Suppose {I[r]} is a quantization of the classical theory I ∈
Oloc(E). Then Obsq is a factorization algebra in C[[~]]-modules. Moreover, there
is an isomorphism

Obsq ⊗C[[~]] C ∼= Obscl

between the reduction of the factorization algebra of quantum observables modulo
~, and the factorization algebra of classical observables.
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