Lecture Series: Observables in the effective BV-formalism; Talk 5: The factorization algebra of observables
 Brian Williams

We reach the main construction of this lecture series, which we will state as one of the central theorems of [1]
Theorem 1. [1] Let M be a manifold. There is an assignment
$\mathrm{Obs}^{q}:\{\mathrm{QFTs}$ on $M\} \rightarrow\{$ factorization algebras on $M\}$
called the quantum observables.
There is a simpler construction at the classical level. Let us fix a classical BV-theory $(\mathcal{E},\langle-,-\rangle, I)$. We have defined the global observables via the classical BV-complex

$$
\operatorname{Obs}^{c l}(M):=\left(\operatorname{Sym}\left(\mathcal{E}(M)^{\vee}\right), Q+\{I,-\}\right)
$$

Since \mathcal{E} is a sheaf of sections of some vector bundle, it makes sense to consider, for each open U, the subcomplex

$$
\operatorname{Obs}^{c l}(U):=\left(\operatorname{Sym}\left(\mathcal{E}(U)^{\vee}\right), Q+\{I,-\}\right)
$$

that we call the classical observable supported on U.
Proposition 1. The assignment $U \mapsto \mathrm{Obs}^{c l}(U)$ defines a factorization algebra on M.

In fact, this is a corollary of the \mathbb{O}-construction from the last talk, but we can be explicit. If $\sqcup_{i} U_{i} \rightarrow V$ is a disjoint union of open subsets inside of the open set V then we have a map

$$
\mathcal{E}(V) \rightarrow \mathcal{E}\left(\sqcup_{i} U_{i}\right)=\oplus_{i} \mathcal{E}\left(U_{i}\right)
$$

because \mathcal{E} is a sheaf. Taking the duals and noticing that Sym is a symmetric monoidal functor we have a map

$$
\otimes_{i} \operatorname{Sym}\left(\mathcal{E}\left(U_{i}\right)^{\vee}\right) \rightarrow \operatorname{Sym}(\mathcal{E}(V))
$$

That is, a map $\otimes_{i} \mathrm{Obs}^{c l}\left(U_{i}\right) \rightarrow \mathrm{Obs}^{c l}(V)$. One shows directly that this is a cochain map and defines the factorization structure maps.

Now, suppose we have a quantum field theory on M. This is the data of $(\mathcal{E}, Q,\langle-,-\rangle)$ together with a collection $\{I[r]\}$ of effective functionals that satisfy the RG-flow equation and the regularized quantum master equation. We have constructed the global quantum observables $\operatorname{Obs}^{q}(M)$. An element is a collection of functionals $\{O[r]\}$ where each $O[r] \in \operatorname{Obs}^{q}(M)[r]$ that are related by RG-flow.

To define the factorization algebra, we first need to define what we mean by a quantum observable $\{O[r]\}$ to be supported on an open set U. The naive definition used in the classical case does not work here: both the regularized BV-laplacian Δ_{r} and the Poisson bracket $\{-,-\}_{r}$ increase the support of an element $O[r]$ so that the total differential

$$
\hat{Q}_{r}:=Q+\hbar \Delta_{r}+\{I[r],-\}
$$

also increases support. For instance, if $O[r]$ is in an element of subspace $\operatorname{Sym}(\mathcal{E}(U))[[\hbar]]$ then $\hat{Q}_{r} O[r]$ may not be.

Luckily, the magnitude in which \hat{Q}_{r} does increase support is controllable. One says that a quantum observable $\{O[r]\}$ is supported on $U \subset M$ iff there exists a closed subset $K \subset U$ and a small enough regularization r such that

$$
\text { Supp } O[r] \subset K \text {. }
$$

A main technical result of [1] is that if we have such an observable supported on U then \hat{Q}_{r} applied to it is still supported on U. Thus we have defined the subcomplex

$$
\operatorname{Obs}^{q}(U) \subset \operatorname{Obs}^{q}(M)
$$

of observables supported on U.
We now describe the structure maps of the factorization algebra. Focus on the case $U \sqcup U^{\prime} \hookrightarrow V$ where U, U^{\prime} are disjoint. We need to describe a map

$$
\operatorname{Obs}^{q}(U) \otimes \operatorname{Obs}^{q}\left(U^{\prime}\right) \rightarrow \operatorname{Obs}^{q}(V)
$$

Take quantum observables $\{O[r]\}$ and $\left\{O\left[r^{\prime}\right]\right\}$ supported on U, U^{\prime} respectively. Viewing the functionals as elements of the symmetric algebra $\mathcal{O}(\mathcal{E})[[\hbar]]$ we may consider the product

$$
O[r] \cdot O\left[r^{\prime}\right] \in \mathcal{O}(\mathcal{E})[[\hbar]] .
$$

Theorem 2. The following limit

$$
\lim _{r^{\prime} \rightarrow 0} W_{r^{\prime}}^{r}\left(O[r] \cdot O\left[r^{\prime}\right]\right) \in \mathcal{O}(\mathcal{E})[[\hbar]]
$$

exists and will be denoted $\left(O \cdot O^{\prime}\right)[r]$.
We can then define the factorization product ([?]) by

$$
\{O[r]\} \otimes\left\{O^{\prime}[r]\right\} \mapsto\left\{\left(O \cdot O^{\prime}\right)[r]\right\} .
$$

It is straightforward to check that this is a cochain map and satisfies the associativity and commutativity properties necessary to define a prefactorization map. A spectral sequence argument is needed to show that

$$
\operatorname{Obs}^{q}: U \mapsto \operatorname{Obs}^{q}(U)
$$

actually is a factorization algebra.
The connection with the classical observables is the following.
Theorem 1. [1] Suppose $\{I[r]\}$ is a quantization of the classical theory $I \in$ $\mathcal{O}_{\text {loc }}(\mathcal{E})$. Then Obs^{q} is a factorization algebra in $\mathbb{C}[[\hbar]]$-modules. Moreover, there is an isomorphism

$$
\operatorname{Obs}^{q} \otimes_{\mathbb{C}[[\hbar]]} \mathbb{C} \cong \mathrm{Obs}^{c l}
$$

between the reduction of the factorization algebra of quantum observables modulo \hbar, and the factorization algebra of classical observables.

References

[1] K. Costello and O. Gwilliam, Factorization algebras in quantum field theory, Volume I \& II, Cambridge University Press (submitted), 2015.

