Lecture Series: Observables in the effective BV-formalism; Talk 5:
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BRriaAN WILLIAMS

We reach the main construction of this lecture series, which we will state as one
of the central theorems of [1]

Theorem 1. [1] Let M be a manifold. There is an assignment
Obs? : {QFTs on M} — {factorization algebras on M }

called the quantum observables.

There is a simpler construction at the classical level. Let us fix a classical
BV-theory (€, (—,—),I). We have defined the global observables via the classical
BV-complex

Obs(M) := (Sym(E(M)"), Q +{I,-}).
Since £ is a sheaf of sections of some vector bundle, it makes sense to consider, for
each open U, the subcomplex

Obs™(U) := (Sym(£(U)"), Q + {1, ~})
that we call the classical observable supported on U.

Proposition 1. The assignment U — Obs (U) defines a factorization algebra on
M.

In fact, this is a corollary of the @-construction from the last talk, but we can
be explicit. If L;U; — V is a disjoint union of open subsets inside of the open set
V then we have a map

E(V) = E(LiU;) = @:iE(Uh)

because £ is a sheaf. Taking the duals and noticing that Sym is a symmetric
monoidal functor we have a map

®;Sym(E(U;)Y) = Sym(E(V)).

That is, a map ®;Obs® (U;) — Obs® (V). One shows directly that this is a cochain
map and defines the factorization structure maps.

Now, suppose we have a quantum field theory on M. This is the data of
(€,Q,(—,—)) together with a collection {I[r]} of effective functionals that satisfy
the RG-flow equation and the regularized quantum master equation. We have
constructed the global quantum observables Obs?(M). An element is a collection
of functionals {O[r]} where each O[r] € Obs?(M)[r] that are related by RG-flow.

To define the factorization algebra, we first need to define what we mean by a
quantum observable {O[r]} to be supported on an open set U. The naive definition
used in the classical case does not work here: both the regularized BV-laplacian
A, and the Poisson bracket {—, —}, increase the support of an element O[r] so
that the total differential

Qr =Q+ hA, + {I[T’], 7}
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also increases support. For instance, if O[r] is in an element of subspace Sym(E(U))[[A]]
then Q,O[r] may not be.

Luckily, the magnitude in which Qr does increase support is controllable. One
says that a quantum observable {O[r]} is supported on U C M iff there exists a
closed subset K C U and a small enough regularization r such that

Supp O[r] C K.

A main technical result of [1] is that if we have such an observable supported on U
then Q. applied to it is still supported on U. Thus we have defined the subcomplex

Obs?(U) C Obs?(M)

of observables supported on U.
We now describe the structure maps of the factorization algebra. Focus on the
case U LUU" < V where U, U’ are disjoint. We need to describe a map

Obs?(U) ® Obs?(U") — Obs?(V).

Take quantum observables {O][r|} and {O[r']} supported on U,U’ respectively.
Viewing the functionals as elements of the symmetric algebra O(E)[[R]] we may
consider the product

O[r] - O[] € O(&)][[n].
Theorem 2. The following limit
Jim W7 (O[] - Or']) € O(€)[[7]
exists and will be denoted (O - O')[r].
We can then define the factorization product ([?]) by
{OF} @ {O'[r]} = {(O- O")[r]}.

It is straightforward to check that this is a cochain map and satisfies the associa-
tivity and commutativity properties necessary to define a prefactorization map. A
spectral sequence argument is needed to show that

Obs? : U — Obs?(U)

actually is a factorization algebra.
The connection with the classical observables is the following.

Theorem 1. [1] Suppose {I[r]} is a quantization of the classical theory I €
O1oc(E). Then Obs? is a factorization algebra in C[[h]]-modules. Moreover, there
is an isomorphism

Obs? ®cyn) C = Obs®
between the reduction of the factorization algebra of quantum observables modulo

h, and the factorization algebra of classical observables.
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