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In this talk we presented some basics of factorization algebras as defined by Costello
and Gwilliam in [1]. Further, we explained some examples and constructions of
factorization algebras coming from sheaves of differential graded Lie algebras.

Let M be a manifold, a prefactorization algebra F on M , taking values in vector
spaces, is a rule that assigns to each open U ⊂M a vector space F(U) along with
the following maps and combatibilities.

(1) For each inclusion U ⊂ V , a linear map mU
V : F(U)→ F(V );

(2) For each finite collection of pairwise disjoint open sets {Ui} with Ui ⊂ V ,

a linear map mU1,...,Un

V : F(U1)⊗ · · · ⊗ F(Un)→ F(V );
(3) The maps satisfy the obvious compatibility condition, i.e., if Ui,1 t · · · t

Ui,n ⊂ Vi and V1 t · · · t Vk ⊂W , then the following diagram commutes.

⊗k
i=1 ⊗

ni
j=1 F(Uj) //

''

⊗k
i=1F(Vi)

yy
F(W ) .

Note that F(∅) is necessarily a commutative algebra. A prefactorization algebra
F is unital if F(∅) is a unital commutative algebra.

A fundamental example is the factorization algebra on R determined by an
associative algebra A. In this example, each open interval (a, b) is assigned the
algebra A, the map induced by an inclusion (a, b) ⊂ (c, d) is the identity and the
map induced by including disjoint intervals is determined by the multiplication in
A. That the compatibility condition (3) holds follows from the associativity of the
multiplication.

The preceding example is universal for prefactorization algebras on R which are
locally constant, i.e., the map induced by an inclusion of intervals is an isomor-
phism.

Proposition 1. Let F be a locally constant, unital prefactorization algebra on
R taking values in vector spaces. Then F(R) has the structure of an associative
algebra.

Alternatively, one can define prefactorization algebras on M valued in a mul-
ticategory C as functors F : DisjM → C, where DisjM is the multicategory with
objects the connected open subsets of M and morphisms corresponding to inclu-
sions of pairwise disjoint collections of opens into another open set. There is an
associated symmetric monoidal category SDisjM and for any symmetric monoidal
category C⊗, a prefactorization algebra valued in C⊗ is a symmetric monoidal
functor F : SDisjM → C.

1



Prefactorization algebras have a flavor similar to precosheaves. It is often useful
for objects to satisfy descent or a local-to-global property, e.g., cosheaves, and such
prefactorization algebras are called factorization algebras.

Definition 1. Let U be an open set. A collection of open sets U = {Ui} is a Weiss
cover of U if for any finite collection of points {x1, . . . , xk} in U , there is an open
set Ui ∈ U such that {x1, . . . , xk} ⊂ Ui.

The Weiss covers define a Grothendieck topology on the category of open subsets
of a space M which is called the Weiss topology. A Weiss cover is a cover in the
traditional sense, but typically contains an enormous number of open sets. Given
a manifold M of dimension n, there are several ways to construct a Weiss cover of
M . For instance, the collection of all open sets in M diffeomorphic to a disjoint
union of finitely many copies of the open n-disk forms a Weiss cover.

Definition 2. A prefactorization algebra F on M is a factorization algebra if F
is a cosheaf with respect to the Weiss topology.

Generalizing the proposition of the previous section, factorization algebras (val-
ued in cochain complexes) on Rn resemble En algebras (algebras over the operad
of little n-disks). In fact, En algebras form a full subcategory of factorization al-
gebras on Rn: those that are locally constant, i.e., those for which an inclusion of
open discs induces a quasi-isomorphism. The following theorem of Lurie [3] makes
this claim precise (see also the work of Matsuoka [4]).

Theorem 1. There is an equivalence of (∞, 1)-categories between En algebras and
locally constant factorization algebras on Rn.

Let E be a vector bundle on M and let E denote the sheaf of sections. Sim-
ilarly, let Ec denote the cosheaf of compactly supported sections. It is easy to
verify that the symmetric algebra of a cosheaf is a prefactorization algebra, it
is more difficult to check the local-to-global (factorization) property. However,

Costello and Gwilliam prove that both SymEc and the completed version ŜymEc
form factorization algebras on M .

The preceding construction can be bootstrapped to the case of Chevalley-
Eilenberg chains/cochains of a sheaf of differential graded Lie algebras. If L is
such a sheaf, we will denote Chevalley-Eilenberg chains by C∗(L) and cochains by
C∗(L).

Theorem 2. Let L be a local dg Lie algebra on M . Then for U ⊂M an open set,
the assignemnts

UL : U 7→ C∗(Lc(U)) and OL : U 7→ C∗(L(U))

define factorization algebras.

As a simple example, let g be an ordinary Lie algebra and consider the sheaf

of differential graded Lie algebras on R given by gR
def
= Ω∗

R ⊗ g, where Ω∗ denotes
differential forms. By the preceding theorem UgR is a factorization algebra on R
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valued in complexes. Passing to cohomology, we obtain a locally constant factor-
ization algebra on R valued in vector spaces. Hence, by the proposition above
H∗(UgR) corresponds to an associative algebra; one can identify this algebra as
the universal enveloping algebra Ug.
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