Lecture Series: Observables in the effective BV-formalism; Talk 3: Effective BV-quantization
 Si Li

One intepretation of BV-quantization is a general approach to quantize gauge theories. As we saw in the last lecture one of the difficulties in physical/geometric applications of quantum gauge theories is the fact that the space of fields is infinite dimensional.

One incarnation of this is the so-called ultra-violet divergence which was briefly mentioned last time. Suppose $(\mathcal{E}, Q,\langle-,-\rangle)$ is a free classical BV-theory. The (-1)-shifted symplectic pairing $\langle-,-\rangle$ induces a partially defined Poisson bracket on $\mathcal{O}(\mathcal{E})=\operatorname{Sym}\left(\mathcal{E}(M)^{\vee}\right)$. It is partially defined because the dual $\mathcal{E}(M)^{\vee}$ involves distributional sections and one cannot multiply such elements. Moreover, the naive definition of the BV-laplacian

$$
\left.\Delta\right|_{\mathrm{Sym}}=2=\{-,-\}
$$

is also ill-defined. In general, the naive definition of the BV -laplacian is by contraction with the element in $\overline{\mathcal{E}} \otimes \overline{\mathcal{E}}$ determined by the pairing.

The usual fix of this problem by physicists is the method of renormalization. In this talk, we discuss a homotopic approach to the effective renormalization of quantum gauge theories as developed by Kevin Costello in [1].

The basic idea is to use the homotopy equivalence between distributions and smooth functions to regularize the BV quantization formalism into homotopic families.

Suppose $(\mathcal{E}(M), Q)$ is an arbitrary elliptic complex on a manifold M. This means that $\mathcal{E}(M)$ is the global sections of some \mathbb{Z}-graded sheaf, Q is a differential operator of degree +1 of square zero, and that the induced complex is elliptic. For instance, any free BV-theory gives such an object. One can also consider the induced complex $(\overline{\mathcal{E}}(M), Q)$ where the bar denotes distributional sections.

A famous result of Atiyah-Bott [3] states that there is a homtopy equivalence between the smooth sections and distributional sections

$$
(\mathcal{E}(M), Q) \simeq(\overline{\mathcal{E}}(M), Q)
$$

A lift of a distributional section to a smooth section is sometimes called a regularization.

The pairing of a free BV-theory determines an element $K_{0} \in \overline{\mathcal{E}} \otimes \overline{\mathcal{E}}$ of degree one. According to the above we can choose a regularization

$$
K_{r}=K_{0}+Q P_{r}
$$

where $K_{r} \in \mathcal{E} \otimes \mathcal{E}$ is smooth. In particular, contraction with K_{r}

$$
\Delta_{r}:=\partial_{K_{r}}: \mathcal{O}(\mathcal{E}) \rightarrow \mathcal{O}(\mathcal{E})
$$

is well-defined.
Suppose r, r^{\prime} are two regularizations

$$
K_{0}=K_{r}+Q P_{r}=K_{r^{\prime}}+Q P_{r^{\prime}}
$$

Then, $K_{r}-K_{r^{\prime}}=Q\left(P_{r}^{r^{\prime}}\right)$ for some element $P_{r}^{r^{\prime}} \in \mathcal{E} \otimes \mathcal{E}$ of degree zero. Note that $P_{r}^{r^{\prime}}$ is smooth.

The main idea here is that $P_{r}^{r^{\prime}}$ is an instance of the propogator from the effective construction of local functionals. The operator $e^{\hbar \partial_{P_{r}^{r^{\prime}}}}$ intertwines the differential:

$$
e^{\hbar \partial_{P_{r}^{r^{\prime}}}}\left(Q+\hbar \Delta_{r}\right)=\left(Q+\hbar \Delta_{r^{\prime}}\right) e^{\hbar \partial_{P_{r}^{r^{\prime}}}}
$$

Using this, we can "homtopy transfer" the interaction $I \in \mathcal{O}(\mathcal{E})$ via

$$
I[r]=e^{\hbar P_{0}^{r}} e^{I / \hbar}
$$

This is precisely the expansion in terms of Feynman weights $I[L]=W\left(P_{0}^{L}, I\right)$ given in Lecture 1 in the case that the regularization is "length scale". This type of regularization is defined in terms of heat kernels as in [1].

Definition 1. ([2]) An effective $B V$-quantum field theory based on $(\mathcal{E}, Q,\langle-,-\rangle)$ consists of the following data:
(1) For each regularization r we have a functional

$$
I[r] \in \mathcal{O}(\mathcal{E})[[\hbar]] .
$$

Moreover, $I[r]$ must be at least cubic.
(2) Given r, r^{\prime} then $I[r]$ must be related by $R G$-flow

$$
I[r]=W\left(P\left(r^{\prime}, r\right), I\left[r^{\prime}\right]\right)
$$

(3) For each r, $I[r]$ must satisfy the scale r quantum master equation

$$
Q I[r]+\hbar \Delta_{L} I[r]+\frac{1}{2}\{I[r], I[r]\}_{r}=0
$$

(4) Locality axiom garaunteeing that in the limit as $r \rightarrow 0$ the functionals $I[r]$ become local.

The limit of $I[r] \bmod \hbar$ exists and is local, which is denoted $I \in \mathcal{O}_{l o c}(\mathcal{E})$. Moreover, it determines a classical field theory for the same underlying free BVtheory. Such a QFT is called a quantization of I.

Given a QFT we can defined the following quantum BV-complex. For each regularization r define

$$
\operatorname{Obs}^{q}(M)[r]:=\left(\operatorname{Sym}\left(\mathcal{E}(M)^{\vee}\right)[[\hbar]], Q+\hbar \Delta_{r}+\{I[r],-\}_{r}\right)
$$

It is called the complex of global observables associated to the regularization r. Moreover, the homotopy $P_{r}^{r^{\prime}}$ defines a homotopy equivalence

$$
\operatorname{Obs}^{q}(M)[r] \simeq \operatorname{Obs}^{q}(M)\left[r^{\prime}\right]
$$

for any regularizations r, r^{\prime}.

References

[1] K. Costello, Renormalization and effective field theory, AMS, 2011.
[2] K. Costello and O. Gwilliam, Factorization algebras in quantum field theory, Volume I \& II, Cambridge University Press (submitted), 2015.
[3] M.F. Atiyah and R. Bott, A Lefshetz fixed point formula for elliptic complexes, Ann. of Math. (2), 86 (1967), 374-407. MR 0212836 (35 \#3701).

