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One intepretation of BV-quantization is a general approach to quantize gauge
theories. As we saw in the last lecture one of the difficulties in physical/geometric
applications of quantum gauge theories is the fact that the space of fields is infinite
dimensional.

One incarnation of this is the so-called ultra-violet divergence which was briefly
mentioned last time. Suppose (E , Q, 〈−,−〉) is a free classical BV-theory. The
(−1)-shifted symplectic pairing 〈−,−〉 induces a partially defined Poisson bracket
on O(E) = Sym(E(M)∨). It is partially defined because the dual E(M)∨ involves
distributional sections and one cannot multiply such elements. Moreover, the naive
definition of the BV-laplacian

∆|Sym=2 = {−,−}

is also ill-defined. In general, the naive definition of the BV-laplacian is by con-
traction with the element in Ē ⊗ Ē determined by the pairing.

The usual fix of this problem by physicists is the method of renormalization.
In this talk, we discuss a homotopic approach to the effective renormalization of
quantum gauge theories as developed by Kevin Costello in [1].

The basic idea is to use the homotopy equivalence between distributions and
smooth functions to regularize the BV quantization formalism into homotopic
families.

Suppose (E(M), Q) is an arbitrary elliptic complex on a manifold M . This
means that E(M) is the global sections of some Z-graded sheaf, Q is a differential
operator of degree +1 of square zero, and that the induced complex is elliptic.
For instance, any free BV-theory gives such an object. One can also consider the
induced complex (Ē(M), Q) where the bar denotes distributional sections.

A famous result of Atiyah-Bott [3] states that there is a homtopy equivalence
between the smooth sections and distributional sections

(E(M), Q) ' (Ē(M), Q).

A lift of a distributional section to a smooth section is sometimes called a regular-
ization.

The pairing of a free BV-theory determines an element K0 ∈ Ē ⊗ Ē of degree
one. According to the above we can choose a regularization

Kr = K0 + QPr

where Kr ∈ E ⊗ E is smooth. In particular, contraction with Kr

∆r := ∂Kr
: O(E)→ O(E)

is well-defined.
Suppose r, r′ are two regularizations

K0 = Kr + QPr = Kr′ + QPr′ .
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Then, Kr −Kr′ = Q(P r′

r ) for some element P r′

r ∈ E ⊗E of degree zero. Note that

P r′

r is smooth.

The main idea here is that P r′

r is an instance of the propogator from the effective

construction of local functionals. The operator e
~∂

Pr′
r intertwines the differential:

e
~∂

Pr′
r (Q + ~∆r) = (Q + ~∆r′)e

~∂
Pr′
r .

Using this, we can “homtopy transfer” the interaction I ∈ O(E) via

I[r] = e~P
r
0 eI/~.

This is precisely the expansion in terms of Feynman weights I[L] = W (PL
0 , I)

given in Lecture 1 in the case that the regularization is “length scale”. This type
of regularization is defined in terms of heat kernels as in [1].

Definition 1. ([2]) An effective BV-quantum field theory based on (E , Q, 〈−,−〉)
consists of the following data:

(1) For each regularization r we have a functional

I[r] ∈ O(E)[[~]].

Moreover, I[r] must be at least cubic.
(2) Given r, r′ then I[r] must be related by RG-flow

I[r] = W (P (r′, r), I[r′]).

(3) For each r, I[r] must satisfy the scale r quantum master equation

QI[r] + ~∆LI[r] +
1

2
{I[r], I[r]}r = 0.

(4) Locality axiom garaunteeing that in the limit as r → 0 the functionals I[r]
become local.

The limit of I[r] mod ~ exists and is local, which is denoted I ∈ Oloc(E).
Moreover, it determines a classical field theory for the same underlying free BV-
theory. Such a QFT is called a quantization of I.

Given a QFT we can defined the following quantum BV-complex. For each
regularization r define

Obsq(M)[r] := (Sym(E(M)∨)[[~]], Q + ~∆r + {I[r],−}r) .

It is called the complex of global observables associated to the regularization r.
Moreover, the homotopy P r′

r defines a homotopy equivalence

Obsq(M)[r] ' Obsq(M)[r′]

for any regularizations r, r′.
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