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In this talk we describe Costello’s mathematical formulation of the low-energy
effective field theory approach to perturbative quantum field theory (QFT). Phys-
ically, this approach was developed by Kadanoff, Polchinski, Wilson, and others.
A key theorem of Costello is a bijection between local functionals on fields and
(effective) pertubative QFTs.

The setting for field theory is an action S which is a function on a space of
fields

S : E → C.
Classical field theory studies the critical set of the function S. A sample compu-
tation in quantum field theory is computing the expectation of an observable, i.e.,
another function O : E → C. The expectation of O is given (at least formally) by
a functional integral

〈O〉 =

∫
E
O(ϕ)e−S(ϕ)/~Dϕ.

This integral is often ill-defined, but, in good cases, it has a well defined expansion
in the limit ~ → 0. If E is finite dimensional and Dϕ is the Lebesgue measure,
then this ~ → 0 limit concentrates on a neighborhood of the critical set of S and
this procedure is the classical stationary phase approximation.

A key element in the definition of (effective) perturbative quantum field theory
is renormalization flow (called renormalization group flow in [1] and sometimes
exact renormalization group flow in the physics literature).

Let V be a finite dimensional vector space over R and Φ a non-degenerate
negative definite quadratic form Φ. Define P ∈ Sym2V to be the inverse to −Φ.
Let

O(V )
def
= S̃ym(V ∨),

so O(V ) is the ring of formal power series in a variable v ∈ V . Denote by
O+(V )[[~]] ⊂ O(V )[[~]] the subspace of functionals which are at least cubic modulo
~. For a functional I ∈ O(V )[[~]], we write

I =
∑
i,k≥0

~iIi,k,

where Ii,k is homogeneous of degree k.
Given a triple (V, P, I) as above, we define the a new functional W (P, I) ∈

O+(V )[[~]] as follows

W (P, I) =
∑
γ

~g(γ)wγ(P, I)

|Aut(γ)|
,

where the sum is over connected (stable) graphs γ, and g(γ) is the genus of the
graph. The graph weight wγ(P, I) ∈ O(V ) is defined by contracting tensors with
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the components of I placed on the vertices (a vertex of valency k and internal
degree i is labeled by Ii,k) and internal edges are labeled by P . The map

W (P,−) : O+(V )[[~]]→ O+(V )[[~]]

is called the renormalization flow operator. The diagrammatic expansion appear-
ing in the definition of W (P, I) can also be understand as an asymptotic series in ~
for an integral on U (assuming we’ve normalized the measure on U appropriately):

W (P, I)(a) = ~ log

∫
x∈U

e(Φ(x,x)+2I(x+a))/2~.

The integral appearing above doesn’t alway make sense in infinite dimensions,
however contraction of tensors does. Therefore, we can still define W (P, I) in the
case that V is replaced by a nuclear Fréchet space E (e.g., E is the space of sections
of a vector bundle E over a manifold M); we work with strong duals and use the
completed projective tensor product. In particular, for any P ∈ Sym2 we have the
renormalization flow operator

W (P,−) : O+(E)[[~]]→ O+(E)[[~]].

The Wilsonian yoga is that we have a collection of effective actions {S[Λ]} and
that they are related by renormalization flow.

Let us discuss this paradigm in the setting of scalar field theory on a compact
Riemannian manifold M . In this case, our fields are just the smooth functions
C∞(M). Let D be the (positive) Laplacian on M and m ∈ R>0, we assume our
effective action has the form

S[Λ](φ) = −1

2
〈φ, (D +m2)φ〉+ I[Λ](φ).

The functional I[Λ] (which is at least cubic modulo ~) is called the effective inter-
action. In this picture Λ corresponds to “energy” and let C∞(M)[Λ′,Λ) denote the
span of functions whose eigenvalues lie between Λ′ and Λ. The key requirement is
that the effective interactions satisfy the flow equation:

I[Λ′](a) = ~ log

∫
φ∈C∞(M)[Λ′,Λ)

e(−〈φ,(D+m2)φ〉+2I[Λ](φ+a))/2~.

If we define a cut off kernel P[Λ′,Λ) (we sum only over certain eigenvalues of the

operator (D +m2)), then we can rewrite the flow equation as

I[Λ′](a) = W (P[Λ′,Λ), I[Λ])(a).

For a number of reasons, we actually use a smooth cut-off based on the heat ker-

nel. For l ∈ R>0, let Kl be the kernel for the operator e−l(D+m2). Our propagator
with infrared cut-off L and ultraviolet cut-off ε (ε, L ∈ [0,∞]), is given by

P (ε, L) =

∫ L

l=ε

Kldl.

The operator W (P (ε, L),−) implements renormalization flow from length scale ε
to length scale L.
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Lastly, we call a functional I ∈ O(C∞(M)) local if it is given by an integral of
some Lagrangian density.

Definition 1. A perturbative QFT, with fields C∞(M) and kinetic action − 1
2 〈φ, (D+

m2)φ〉, is given by a set of effective interactions I[L] ∈ O+(C∞(M))[[~]] for all
L ∈ (0,∞], such that

(1) The flow equation is satisfied for all ε, L ∈ (0,∞]:

I[L] = W (P (ε, L), I[ε]).

(2) For each i, k, Ii,k[L] has a small L asymptotic expansion by local function-
als.

There is an extension of this definition to vector-bundle valued theories, i.e.,
where the space of fields is given by the space of sections of a vector bundle over
M .

Theorem 1 (Costello). Fix a renormalization scheme. There is a bijection be-
tween the set of perturbative QFTs and the set of local action functions I ∈
O+

loc(C
∞(M))[[~]].

A renormalization scheme is a way to extract the singular part of certain func-
tions of one variable; we won’t belabor this detail. The proof of the theorem
above is constructive. Given a local functional I, we can construct a series of
counterterms ICT(ε) which cancel certain ultraviolet divergences, so that the ef-
fective interaction is given by

I[L] = lim
ε→0

W (P (ε, L), I − ICT(ε)).

Conversely, if I[L] is a family of effective interactions, then a certain renormalized
limit as L→ 0 defines a local functional (the naive limit doesn’t exist and certain
counter terms must be subtracted).
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