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The goal of classical field theory is to describe the critical locus of the action
functional. The classical BV-formalism is a description of a critical locus of such
an action functional in terms of homological algebra.

Suppose V is a finite dimensional vector space and that S : V → C is a quadratic
function. The critical locus of S is, by definition

Crit(S) := {v ∈ V | dS(v) = 0}

The exterior derivative dS is a linear function on the space V . That is, we can
view it as a linear map

(1) dS : V → V ∨ v 7→ (w 7→ dSv(w)).

The first step is to interpret (1) as a two-term complex with V in degree zero,
V ∨ in degree one, and with differential dS. I.e.

V
dS // V ∨[−1].

The classical BV-complex is the space of algebraic functions on the differential
graded vector space above. Explicitly

O (V
dS // V ∨[−1]) = (Sym (V ∨ ⊕ V [1]) , Q)

where Q is the induced differential. This complex satisfies H0 = O(Crit(S)), so it
is a derived replacement for the critical locus.

For a more general S (at least quadratic) we can split it up as S = Sfree + I
where Sfree is quadratic and I is a functional with only cubic or higher terms. The
BV-complex is

(2) (Sym(V ∨ ⊕ V [1]), Q+ {I,−}) .

Again, one checks that H0 = O(Crit(S)). Note that this complex is equal to
functions on the graded vector space T ∗[−1]V = V ⊕ V ∨[−1] with some non-
trivial differential determined by S. The bracket {−,−} of degree −1 comes from
the pairing between V and V ∨ and has the structure of a (shifted) Poisson bracket.
This bracket is present on the space of polyvector fields on any manifold and is
known as the Schouten-Nijenhuis bracket.

We consider a generalization of the above constructions to infinite dimensional
vector spaces.

There are two things that we need to be careful of in this more general case:

(1) All vector spaces carry a topology. Functionals will mean functions on the
vector space that are continuous for this topology.

(2) All vector spaces will be spaces of sections of certain sheaves on a mani-
fold. The notion of locality discussed in Lecture 1 will be critical for the
definition of action functionals of classical field theories.
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Example 1. Let M be a smooth manifold equipped with a Riemannian metric
g and consider the space of smooth functions on M , V = C∞(M). Define the
functional S on C∞(M) by

S(ϕ) =
1

2

∫
M

ϕDϕ

where D denotes the Laplacian on M times the volume form. I.e. we view it as
an operator

D : C∞(M)→ Dens(M) , ϕ 7→ (∆gϕ)dvolg.

Clearly, S is a quadratic functional. Note that the functional S is local, i.e. it be-
longs to the subspace of local functionals S ∈ Oloc(C

∞(M)) ⊂ O(C∞(M)) defined
in Lecture 1.

Note that in infinite dimensions, the bracket {−,−} is only partially defined:
the bracket between arbitrary functionals is not well defined. When at least one
of the functionals is local then the bracket does make sense.

We are now ready to make a general definition of a classical field theory in our
formalism. Recall some of the structure from above:

(1) We want to study the critical locus of a functional on some (infinite di-
mensional) vector space of fields.

(2) The fields should exists locally on the manifold in which the field theory is
defined. That is, they should form a sheaf. Moreover, classical functionals
should respect this locality.

(3) The collection of functions on the space of fields should have a Poisson
bracket of degree 1.

With this in mind we have the following definition from [2].

Definition 1. A free BV-theory on a manifold M consists of the following:

(1) A Z-graded vector bundle π : E →M of finite rank;
(2) A map

〈−,−〉 : E ⊗ E → DensM

of degree −1 that is graded antisymmetric and fiberwise nondegenerate.
(3) A square-zero differential operator Q : E → E of cohomological degree 1

that is skew self-adjoint for 〈−,−〉.
We assume that the complex (E(M), Q) is elliptic.

A general BV-theory is a free BV-theory together with a local functional I ∈
O+

loc(E) of degree zero that satisfies the classical master equation

QI +
1

2
{I, I} = 0.

Given this data we can define the analogous BV complex as in (2). We denote

ObsclE (M) := (Sym(E(M)∨), Q+ {I,−})
which we will also refer to as the global classical observables. Note that {I,−} is
well defined as I is local, and that the operator Q+ {I,−} squares to zero by the
classical master equation.
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We now turn to the quantum BV-formalism: an approach to the path integral
in QFT. More precisely, the quantum BV-formalism is a tool to make sense of
expectation values of observables of a quantum field theory. If S : E → C is the
action functional, an observable O is a function on Crit(S). I.e., a measurement
of the physical system. It’s expectation value is

〈O〉 :=
1

ZS

∫
ϕ∈E

O(ϕ)e−S(ϕ)/~Dϕ.

Here e−S(ϕ)/~Dϕ is thought of a probability measure on the space of fields. The
normalization ZS is the partition function of the quantum field theory and equals
〈1〉, the expectation of the unit observable. Just as in the classical approach to
the BV-formalism, there is a complex that encodes this approach to integration.

We will motivate the definition of the quantum BV-complex by means of a fi-
nite dimensional example. Let M be a closed, oriented, smooth, finite-dimensional
manifold of dimension n. Let µ ∈ ΩnM be a top form, which we think of a probabil-
ity density on M . Normalize the image of µ in cohomology [µ] =

∫
M
µ ∈ Hn

dR(M)
to be 1. Note that Hn

dR(M) is one-dimensional in our case. Contraction with µ
defines an isomorphism of graded vector spaces

iµ : PV#(M)
∼= // Ωn−#(M).

which we use to pull-back the de Rham differential to poly-vector fields which we
denote divµ. This operator on poly-vector fields is known as a divergence operator.
The complex (PV∗(M),divµ) is the simplest example of a quantum BV-complex.
The incarnation of integration in the BV-complex is simple:

Proposition 1. Given a function f : M → R, the cohomology class [f ]BV in
H0(PV∗(M),divµ) satisfies

[f ]BV = 〈f〉µ[1]BV.

The goal is to equip the BV-complex for a general field theory (E , Q, 〈−,−〉, I)
on M

(O(E), Q+ {I,−}) = (Sym(E∨), Q+ {I,−})
with a type of divergence operator that encodes integration. This is the BV-
Laplacian. In the case of a general field theory the naive definition of the BV-
laplacian above is ill-posed. The central idea in [2] is to use the effective approach
formulated in [1] to come up with a regularized version of quantum BV-complex.
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