Lecture Series: Observables in the effective BV-formalism; Talk 2: A rapid introduction to the BV -formalism

Brian Williams
The goal of classical field theory is to describe the critical locus of the action functional. The classical BV-formalism is a description of a critical locus of such an action functional in terms of homological algebra.

Suppose V is a finite dimensional vector space and that $S: V \rightarrow \mathbb{C}$ is a quadratic function. The critical locus of S is, by definition

$$
\operatorname{Crit}(S):=\{v \in V \mid \mathrm{d} S(v)=0\}
$$

The exterior derivative $\mathrm{d} S$ is a linear function on the space V. That is, we can view it as a linear map

$$
\begin{equation*}
\mathrm{d} S: V \rightarrow V^{\vee} \quad v \mapsto\left(w \mapsto \mathrm{~d} S_{v}(w)\right) \tag{1}
\end{equation*}
$$

The first step is to interpret (1) as a two-term complex with V in degree zero, V^{\vee} in degree one, and with differential $\mathrm{d} S$. I.e.

$$
V \xrightarrow{\mathrm{~d} S} V^{\vee}[-1] .
$$

The classical BV-complex is the space of algebraic functions on the differential graded vector space above. Explicitly

$$
\mathcal{O}\left(V \xrightarrow{\mathrm{~d} S} V^{\vee}[-1]\right)=\left(\operatorname{Sym}\left(V^{\vee} \oplus V[1]\right), Q\right)
$$

where Q is the induced differential. This complex satisfies $\mathrm{H}^{0}=\mathcal{O}(\operatorname{Crit}(S))$, so it is a derived replacement for the critical locus.

For a more general S (at least quadratic) we can split it up as $S=S^{\text {free }}+I$ where $S^{\text {free }}$ is quadratic and I is a functional with only cubic or higher terms. The BV-complex is

$$
\begin{equation*}
\left(\operatorname{Sym}\left(V^{\vee} \oplus V[1]\right), Q+\{I,-\}\right) \tag{2}
\end{equation*}
$$

Again, one checks that $\mathrm{H}^{0}=\mathcal{O}(\operatorname{Crit}(S))$. Note that this complex is equal to functions on the graded vector space $T^{*}[-1] V=V \oplus V^{\vee}[-1]$ with some nontrivial differential determined by S. The bracket $\{-,-\}$ of degree -1 comes from the pairing between V and V^{\vee} and has the structure of a (shifted) Poisson bracket. This bracket is present on the space of polyvector fields on any manifold and is known as the Schouten-Nijenhuis bracket.

We consider a generalization of the above constructions to infinite dimensional vector spaces.

There are two things that we need to be careful of in this more general case:
(1) All vector spaces carry a topology. Functionals will mean functions on the vector space that are continuous for this topology.
(2) All vector spaces will be spaces of sections of certain sheaves on a manifold. The notion of locality discussed in Lecture 1 will be critical for the definition of action functionals of classical field theories.

Example 1. Let M be a smooth manifold equipped with a Riemannian metric g and consider the space of smooth functions on $M, V=C^{\infty}(M)$. Define the functional S on $C^{\infty}(M)$ by

$$
S(\varphi)=\frac{1}{2} \int_{M} \varphi \mathrm{D} \varphi
$$

where D denotes the Laplacian on M times the volume form. I.e. we view it as an operator

$$
\mathrm{D}: C^{\infty}(M) \rightarrow \operatorname{Dens}(M), \varphi \mapsto\left(\Delta_{g} \varphi\right) \mathrm{dvol}_{g}
$$

Clearly, S is a quadratic functional. Note that the functional S is local, i.e. it belongs to the subspace of local functionals $S \in \mathcal{O}_{\mathrm{loc}}\left(C^{\infty}(M)\right) \subset \mathcal{O}\left(C^{\infty}(M)\right)$ defined in Lecture 1.

Note that in infinite dimensions, the bracket $\{-,-\}$ is only partially defined: the bracket between arbitrary functionals is not well defined. When at least one of the functionals is local then the bracket does make sense.

We are now ready to make a general definition of a classical field theory in our formalism. Recall some of the structure from above:
(1) We want to study the critical locus of a functional on some (infinite dimensional) vector space of fields.
(2) The fields should exists locally on the manifold in which the field theory is defined. That is, they should form a sheaf. Moreover, classical functionals should respect this locality.
(3) The collection of functions on the space of fields should have a Poisson bracket of degree 1.
With this in mind we have the following definition from [2].
Definition 1. A free $B V$-theory on a manifold M consists of the following:
(1) $A \mathbb{Z}$-graded vector bundle $\pi: E \rightarrow M$ of finite rank;
(2) $A m a p$

$$
\langle-,-\rangle: E \otimes E \rightarrow \mathrm{Dens}_{M}
$$

of degree -1 that is graded antisymmetric and fiberwise nondegenerate.
(3) A square-zero differential operator $Q: \mathcal{E} \rightarrow \mathcal{E}$ of cohomological degree 1 that is skew self-adjoint for $\langle-,-\rangle$.
We assume that the complex $(\mathcal{E}(M), Q)$ is elliptic.
A general BV-theory is a free BV-theory together with a local functional $I \in$ $\mathcal{O}_{\text {loc }}^{+}(\mathcal{E})$ of degree zero that satisfies the classical master equation

$$
Q I+\frac{1}{2}\{I, I\}=0
$$

Given this data we can define the analogous BV complex as in (2). We denote

$$
\operatorname{Obs}_{\mathcal{E}}^{c l}(M):=\left(\operatorname{Sym}\left(\mathcal{E}(M)^{\vee}\right), Q+\{I,-\}\right)
$$

which we will also refer to as the global classical observables. Note that $\{I,-\}$ is well defined as I is local, and that the operator $Q+\{I,-\}$ squares to zero by the classical master equation.

We now turn to the quantum $B V$-formalism: an approach to the path integral in QFT. More precisely, the quantum BV-formalism is a tool to make sense of expectation values of observables of a quantum field theory. If $S: \mathcal{E} \rightarrow \mathbb{C}$ is the action functional, an observable O is a function on $\operatorname{Crit}(S)$. I.e., a measurement of the physical system. It's expectation value is

$$
\langle O\rangle:=\frac{1}{Z_{S}} \int_{\varphi \in \mathcal{E}} O(\varphi) e^{-S(\varphi) / \hbar} \mathrm{D} \varphi
$$

Here $e^{-S(\varphi) / \hbar} \mathrm{D} \varphi$ is thought of a probability measure on the space of fields. The normalization Z_{S} is the partition function of the quantum field theory and equals $\langle 1\rangle$, the expectation of the unit observable. Just as in the classical approach to the BV-formalism, there is a complex that encodes this approach to integration.

We will motivate the definition of the quantum BV-complex by means of a finite dimensional example. Let M be a closed, oriented, smooth, finite-dimensional manifold of dimension n. Let $\mu \in \Omega_{M}^{n}$ be a top form, which we think of a probability density on M. Normalize the image of μ in cohomology $[\mu]=\int_{M} \mu \in \mathrm{H}_{d R}^{n}(M)$ to be 1. Note that $\mathrm{H}_{d R}^{n}(M)$ is one-dimensional in our case. Contraction with μ defines an isomorphism of graded vector spaces

$$
i_{\mu}: \mathrm{PV}^{\#}(M) \stackrel{\cong}{\cong} \Omega^{n-\#}(M)
$$

which we use to pull-back the de Rham differential to poly-vector fields which we denote div_{μ}. This operator on poly-vector fields is known as a divergence operator. The complex $\left(\mathrm{PV}^{*}(M), \operatorname{div}_{\mu}\right)$ is the simplest example of a quantum $B V$-complex. The incarnation of integration in the BV-complex is simple:

Proposition 1. Given a function $f: M \rightarrow \mathbb{R}$, the cohomology class $[f]_{\mathrm{BV}}$ in $\mathrm{H}^{0}\left(\mathrm{PV}^{*}(M), \operatorname{div}_{\mu}\right)$ satisfies

$$
[f]_{\mathrm{BV}}=\langle f\rangle_{\mu}[1]_{\mathrm{BV}}
$$

The goal is to equip the BV-complex for a general field theory $(\mathcal{E}, Q,\langle-,-\rangle, I)$ on M

$$
(\mathcal{O}(\mathcal{E}), Q+\{I,-\})=\left(\operatorname{Sym}\left(\mathcal{E}^{\vee}\right), Q+\{I,-\}\right)
$$

with a type of divergence operator that encodes integration. This is the $B V$ Laplacian. In the case of a general field theory the naive definition of the BVlaplacian above is ill-posed. The central idea in [2] is to use the effective approach formulated in [1] to come up with a regularized version of quantum BV-complex.

References

[1] K. Costello, Renormalization and effective field theory, AMS, 2011.
[2] K. Costello and O. Gwilliam, Factorization algebras in quantum field theory, Volume I \mathcal{B} II, Cambridge University Press (submitted), 2015.

