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Abstract. We show that the local observables of the curved βγ system encode the sheaf of chiral

differential operators using the machinery of [CG], which combines renormalization, the Batalin-

Vilkovisky formalism, and factorization algebras. Our approach is in the spirit of deformation

quantization via Gelfand-Kazhdan formal geometry. We begin by constructing a quantization

of the βγ system with an n-dimensional formal disk as the target. There is an obstruction to

quantizing equivariantly with respect to the action of formal vector fields Wn on the target disk,

and it is naturally identified with the first Pontryagin class in Gelfand-Fuks cohomology. Any

trivialization of the obstruction cocycle thus yields an equivariant quantization with respect to

an extension of Wn by Ω̂2
cl, the closed 2-forms on the disk. By results in [CG], we then naturally

obtain a factorization algebra of quantum observables, which has an associated vertex algebra

easily identified with the formal βγ vertex algebra. Next, we introduce a version of Gelfand-

Kazhdan formal geometry suitable for factorization algebras, and we verify that for a complex

manifold X with trivialized first Pontryagin class, the associated factorization algebra recovers

the vertex algebra of CDOs of X.

Introduction

The curved βγ system is an elegant nonlinear σ-model of maps from a Riemann surface Σ into the

cotangent bundle T ∗X of a complex manifold X. The equations of motion pick out the holomorphic

maps. Thus, from a purely mathematical perspective, it is a compelling example to study because

the classical theory naturally involves complex geometry and so must the quantization, although

the meaning is less familiar. From a physical perspective, the curved βγ system arises naturally

as a close cousin of more central theories: it is a half-twist of the (0, 2)-supersymmetric σ-model

[Wit07], and it is also the chiral part of the infinite volume limit of the usual (non-supersymmetric)

σ-model (see the appendix). In consequence, the curved βγ system exhibits many features of these

theories while enjoying the flavor of complex geometry, rather than super- or Riemannian geometry.

In mathematics, however, this theory first appeared in a hidden form in the work of Beilinson-

Drinfeld and Malikov-Schechtman-Vaintrob [BD04, MSV99], and it was subsequently developed

by many mathematicians (see [KV, Che12, Bre07] among much else). The chiral differential

operators (CDOs) on a complex n-manifold X are a sheaf of vertex algebras locally resembling a

vertex algebra of n free bosons, and the name indicates the analogy with the differential operators,

a sheaf of associative algebras on X locally resembling the Weyl algebra for T ∗Cn. Unlike the

situation for differential operators, which exist on any manifold X, such a sheaf of vertex algebras

exists only if ch2(X) = 0 in H2(X,Ω2
cl), and each choice of trivialization α of this characteristic

class yields a different sheaf CDOX,α. In other words, there is a gerbe of vertex algebras over X,

[GMS00]. The appearance of this topological obstruction (essentially the first Pontryagin class,

but non-integrally) was surprising, and even more surprising was that the character of this vertex

algebra was the Witten genus of X, up to a constant depending only on the dimension of X
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[BL00]. These results exhibited the now-familiar rich connections between conformal field theory,

geometry, and topology, but arising from a mathematical process rather than a physical argument.

Witten [Wit07] explained how CDOs on X arise as the perturbative piece of the chiral algebra

of the curved βγ system, by combining standard methods from physics and mathematics. (In

elegant lectures on the curved βγ system [Nek], with a view toward Berkovit’s approach to the

superstring, Nekrasov also explains this relationship. Kapustin [Kap] gave a similar treatment of

the closely-related chiral de Rham complex.) This approach also gave a different understanding

of the surprising connections with topology, in line with anomalies and elliptic genera as seen

from physics. Let us emphasize that only the perturbative sector of the theory appears (i.e., one

works near the constant maps from Σ to T ∗X, ignoring the nonconstant holomorphic maps); the

instanton corrections are more subtle and not captured just by CDOs (see [KO03] for a treatment

of the instanton corrections for complex tori).

In this paper we construct mathematically the perturbative sector of the curved βγ system

via the approach to quantum field theory developed in [Cos11, CG], thus providing a rigorous

construction of the path integral for the curved βγ system. That means we work in the homotopical

framework for field theory known as the Batalin-Vilkovisky (BV) formalism, in conjunction with

Feynman diagrams and renormalization methods. As a very brief gloss, the BV formalism amounts

to deforming the classical action Scl to a “quantized action” Sq = Scl + ~S(1) + ~2S(2) + · · ·
satisfying a condition known as the quantum master equation. This quantized action Sq provides

a formal substitute for the path integral; more precisely, it is a homological version of the integrand

“exp(−S(φ)/~)Dφ” for the path integral. Indeed, given this quantized action Sq, one can extract

the algebraic relations that hold between the expected values of observables. Thus the quantum

master equation encodes homologically the condition that the associated quantum integrand is

well-posed. We find, for instance, that the curved βγ system admits a quantized action satisfying

the quantum master equation only if the target manifold X has ch2(X) = 0, where ch2(X) is a

component of the Chern character. (Given our context, this condition is that the first Pontryagin

class vanishes.) This condition was found in the earlier mathematical work by quite different

methods.

One key feature of the framework in [CG] is that every BV theory yields a factorization algebra of

observables. (We mean here the version of factorization algebras developed in [CG], not the version

of Beilinson and Drinfeld [BD04].) In our situation, the theory produces a factorization algebra

living on the source manifold C, and the machinery of [CG] allows one to extract a vertex algebra

from this factorization algebra. Our main result is that this vertex algebra is the CDOs. Thus, we

show that in a wholly mathematical setting, one can start with the action functional for the curved

βγ system and recover the sheaf CDOX,α of vertex algebras on X via the algorithms of [Cos11, CG].

To accomplish this, we develop machinery that ought to be useful in constructing nonlinear σ-

models in the BV framework and allows one to analyze explicitly the resulting factorization algebra.

Remark 0.1. In a sense, the curved βγ system is a perfect testing ground for the formalism of

[Cos11, CG]: physical arguments about anomalies and moduli ought to be codified on the BV

quantization side, and the consequences on the factorization algebra side ought to recover the

vertex algebra constructions of [MSV99, GMS00]. The work here shows that the formalism passes

this test.

Let us explain a little about our methods before stating our theorems precisely. The main

technical challenge is to encode the nonlinear σ-model in a way so that the BV formalism of

[Cos11] applies. In [Cos], Costello introduces a sophisticated approach by which he recovers the
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anomalies and the Witten genus as partition function, but it seems difficult to relate CDOs directly

to the factorization algebra of observables of his quantization. Instead, we use formal geometry

à la Gelfand and Kazhdan [GK71], as applied to the Poisson σ-model by Kontsevich [Kon03]

and Cattaneo-Felder [CF00]. The basic idea of Gelfand-Kazhdan formal geometry is that every

n-manifold X looks, very locally, like the formal n-disk, and so any representation V of the formal

vector fields and formal diffeomorphisms determines a vector bundle V → X, by a sophisticated

variant of the associated bundle construction. (Every tensor bundle arises in this way, for instance.)

In particular, the Gelfand-Kazhdan version of characteristic classes for V live in the Gelfand-Fuks

cohomology H∗GF(Wn) and map to the usual characteristic classes for V. There is, for instance, a

Gelfand-Fuks version of the Witten class for every tensor bundle.

Thus, we start with the βγ system with target the formal n-disk D̂n = SpecC[[t1, . . . , tn]] and

examine whether it quantizes equivariantly with respect to the actions of formal vector fields Wn

and formal diffeomorphisms on the formal n-disk. (These actions are compatible, so that we have

a representation of a Harish-Chandra pair.) We call this theory the equivariant formal βγ system

of rank n.

Theorem. The Wn-equivariant formal βγ system of rank n has an anomaly given by a cocycle

ch2(D̂n) in the Gelfand-Fuks complex C∗GF(Wn; Ω̂2
n,cl). This cocycle determines a Lie algebra

extension W̃n of Wn. The cocycle is exact in C∗GF(W̃n; Ω̂2
n,cl), and yields a W̃n-equivariant BV

quantization, unique up to homotopy. The partition function of this theory over the moduli of

elliptic curves is the formal Witten class in the Gelfand-Fuks complex C∗GF(Wn,
⊕

k Ω̂kn[k])[[~]].

Gelfand-Kazhdan formal geometry is used often in deformation quantization. See, for instance,

the elegant treatment by Bezrukavnikov-Kaledin [BK04]. Here we develop a version suitable for

vertex algebras and factorization algebras, which requires allowing homotopical actions of the Lie

algebra Wn. (Something like this appears already in [BD04, KV, Mal08], but we need a method

with the flavor of differential geometry and compatible with Feynman diagrammatics. It would be

interesting to relate directly these different approaches.) In consequence, our equivariant theorem

implies the following global version.

Theorem. Let X be a complex manifold. The curved βγ system admits a BV quantization if the

characteristic class ch2(X) vanishes, and each choice of trivialization α yields a BV quantization,

unique up to homotopy. The associated factorization algebra on X recovers the vertex algebra

CDOX,α of chiral differential operators associated to the trivialization α. Moreover, the partition

function is the Witten class Wit(X) in
⊕

kH
∗(X,Ωk[k]), where Ωk here denotes the sheaf of

holomorphic k-forms.

To identify CDOX,α as coming from the factorization algebra, we prove general statements

relating factorization algebras for such chiral theories with vertex algebras. Indeed, our work

shows how the elegant formulas uncovered in [MSV99, GMS00] arise explicitly by canceling the

anomalies that appear in setting the integrand of the quantum measure (or to use BV language, in

finding a solution to the quantum master equation). Via the factorization algebra of observables,

these BV manipulations become the computations that Witten and Nekrasov used in explaining

why the curved βγ system should recover the chiral differential operators.

Remark 0.2. We wish to emphasize that our central goal in this paper is not to provide yet another

method for constructing sheaves of vertex algebras or another understanding of the geometry

behind the Pontryagin class as an anomaly. Instead our goal is to offer an explanation for how
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CDOs appear as a quantization, from a path integral perspective as rigorously encoded in the BV

formalism.

Our techniques for assembling BV theories in families — and their factorization algebras in

families — apply to many σ-models already constructed , such as the topological B-model [LL16],

Rozansky-Witten theory [CLL], and topological quantum mechanics [GG14, GLL]. They also

allow us to recover quickly nearly all the usual variants on CDOs and structures therein, such as

the chiral de Rham complex and the Virasoro actions, and we intend to explain that elsewhere.

Other veins of research are also opened up, notably new approaches to quantum sheaf cohomology

and to the curved βγ system with higher-dimensional source manifold.

0.1. Overview. The paper is divided into three parts. Part I is devoted purely to the vertex

algebra of chiral differential operators, Part II constructs the curved βγ system as a BV field

theory and analyzes its associated factorization algebra of observables, and Part III explains how to

recover the vertex algebra from the factorization algebra. Each Part has its own introduction with

a detailed overview of its contents. We emphasize that Parts I and II can be read independently;

only in Part III are the two stories in explicit dialogue.
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Part I: Gelfand-Kazhdan descent and chiral differential operators

The goal of this part is to provide a construction of chiral differential operators via the meth-

ods of Gelfand-Kazhdan formal geometry; this approach is a modest modification of an approach

described for the chiral de Rham complex in [MSV99]. (In subsequent work we will provide a

BV construction of chiral de Rham complex, along with a family of related sheaves of vertex

algebras.) Our phrasing here aims to highlight the parallels with the next part, where we intro-

duce a homotopy-coherent version of Gelfand-Kazhdan formal geometry that works nicely with

the Batalin-Vilkovisky formalism and Feynman diagrammatics and thus allows us to construct a

factorization algebra refining CDOs.

Recall that Gelfand-Kazhdan formal geometry is an approach to any “natural” construction

in differential geometry, i.e., to constructions that apply uniformly to all manifolds of a given
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dimension (or with some other common, local geometric structure). The basic idea is that on

any n-manifold, the immediate neighborhood of every point looks the same, and so if some con-

struction can be described on any sufficiently small neighborhood and is equivariant for local

diffeomorphisms, the construction should apply to every n-manifold. In other words, it is a kind of

refinement of tensor calculus. To be more precise, in formal geometry, one works with a “formal”

neighborhood of a point p in Rn, namely the “space” whose algebra of functions is the ∞-jets of

functions at p (aka Taylor series at p of functions). Let us denote this space by D̂n.The relevant

group of “formal” diffeomorphisms then means the ∞-jet at p of diffeomorphisms that fix p (aka

Taylor series at p of diffeomorphisms), which we will denote by Autn. (Note that for every point

p, the group is isomorphic.) Every n-manifold X possesses a canonical flat principal Autn-bundle

Xcoor whose fiber over p ∈ X is the space of formal coordinates centered at p and is equipped

with a flat connection valued in formal vector fields Wn (which is slightly larger than the Lie

algebra of Autn). In the context of this paper we are interested in complex manifolds and there is

a corresponding bundle of holomorphic formal coordinates. These are ∞-jets of biholomorphisms.

From this reasoning we see that every Autn-representation V that has a compatible action of Wn

produces a flat vector bundle VX over each n-dimensional manifold X whose horizontal sections

typically encode familiar vector bundles. Such a representation is called a Harish-Chandra module.

As an example, consider Ôn, the functions on D̂n, whose flat sections over X are smooth functions

on X (holomorphic functions in the complex case). Or consider T̂n, the vector fields on D̂n, whose

flat sections over X are vector fields on X. This construction of a vector bundle on X from an

Autn-representation is an example of Gelfand-Kazhdan descent. In light of this, it should be no

surprise that there is a Gelfand-Kazhdan version of characteristic classes for these vector bundles

that recovers the usual Chern classes.

Remark 0.3. The Gelfand-Kazhdan approach to formal geometry can also be applied to more

interesting geometries. For example, symplectic, Poisson, or even Riemannian geometry can be

encapsulated by the formalism.

Chiral differential operators, like differential operators, are easy to define locally on an n-

manifold, using coordinates. The challenge is to glue these local descriptions to produce the

global object. The vertex algebra ĈDOn of CDOs on a formal n-disk D̂n is well-known, but it is

not equivariant for the Harish-Chandra pair of automorphisms of D̂n. The failure to be equivariant

is a characteristic class that globalizes to the first Pontryagin class, or ch2(TX), in Dolbeault coho-

mology. This class defines an extension of the Harish-Chandra pair, and ĈDOn is equivariant for

this extension. Each choice of trivialization α of ch2(TX) encodes an extension X̃coor
α of Xcoor to a

flat principal bundle for this extension of pairs. Hence, one can apply Gelfand-Kazhdan descent to

ĈDOn along X̃coor
α to produce a vertex algebra, and it is precisely the chiral differential operators

on X associated to the trivialization α.

Sections 1 and 2 of this part are devoted to articulating rigorously this machinery in a format

convenient for our problem. As mentioned parenthetically, we need a slight enlargement of the

theory of flat vector bundles involving Harish-Chandra pairs, which consist of a Lie group and a

thickening of its Lie algebra.

Specifically, in Section 2 we formulate a version of Harish-Chandra descent that we call Gelfand-

Kazhdan descent that is suitable for our purposes. In Section 3 we recall well-known facts about

the vertex algebra of affine chiral differential operators and extracting the relavent Harish-Chandra

structures. Sections 4 is devoted to developing an extended version of Gelfand-Kazhdan descent

that is applied to CDOs in Section 5.
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We will extract some familiar properties and structures of the sheaf of chiral differential operators

from the perspective of Gelfand-Kazhdan formal geometry. For instance, we show in Proposition

5.12 that chiral differential operators have the structure of a sheaf of conformal vertex algebras

only if X is Calabi-Yau (in addition to having ch2(TX) = 0, of course). Moreover, we show how

the Witten genus appears as the character of the sheaf of CDOs, which has already appeared in

the works [Che12, BL00].

Remark 0.4. We should emphasize here that Part I is not the truly novel aspect of this paper.

As mentioned in [MSV99], the standard arguments of Gelfand-Kazhdan formal geometry apply

to the chiral de Rham complex, and they certainly knew that a minor extension of such formal

geometry should allow one to construct CDOs. Our main goal in Part I is to explain these standard

arguments and this extension carefully and systematically. We do this for two reasons: first, to

allow a systematic comparison with the BV quantization in Part II, and second, to provide a

general tool that ought to be applicable to constructing many more interesting vertex algebras.

There are elegant machines for such purposes, thanks to [BD04, KV], but we wanted a version

closer to the concrete computations that most interest us.

1. Flat vector bundles and Harish-Chandra descent

This section is a discussion of the theory of vector bundles with flat connection arising from

Harish-Chandra pairs. It establishes notation and terminology but can likely be used as a reference.

In this section we have largely treated both the case of both smooth and holomorphic geometry,

but throughout the rest of the paper we are concerned with the latter.

1.1. Algebra of Harish-Chandra pairs.

1.1.1. Harish-Chandra pairs. All Lie algebras and Lie groups will be defined over C. For G a Lie

group, we use Lie(G) to denote its associated Lie algebra, which can be identified with the tangent

space of the identity element. To start, we work with finite-dimensional groups and algebras, but

we will eventually discuss certain infinite-dimensional examples.

Definition 1.1. A Harish-Chandra pair (or HC-pair) is a pair (g,K) where g is a Lie algebra

and K is a Lie group together with

(i) an action of K on g, ρK : K → Aut(g)

(ii) an injective Lie algebra map i : Lie(K) ↪→ g

such that the action of Lie(K) on g induced by ρK ,

Lie(ρK) : Lie(K)→ Der(g),

is the adjoint action induced from the embedding i : Lie(K) ↪→ g.

Example 1.2. If G is a Lie group and K is a closed subgroup, then the pair (Lie(G),K) is a

HC-pair.

Definition 1.3. A morphism of Harish-Chandra pairs (f, f) : (g,K)→ (g′,K ′) is

(i) a map of Lie algebras f : g→ g′ and

(ii) a map of Lie groups f : K → K ′
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such that the diagram in Lie algebras

Lie(K)
Lie(f)

//

i

��

Lie(K ′)

i′

��

g
f

// g′

commutes.

1.1.2. Modules. Fix a HC-pair (g,K). In this section we set up the notion of a module for (g,K).

Below, we discuss modules in the category of vector spaces, but the definition is easily generalized

to C-linear symmetric monoidal categories.

Definition 1.4. A (g,K)-module is a vector space V together with

(i) a Lie algebra map ρg : g→ End(V ) and

(ii) a Lie group map ρK : K → GL(V )

such that the composition

Lie(K)
i
// g

ρg
// End(V )

equals Lie(ρK).

A morphism of (g,K)-modules is a linear map intertwining the actions of g and K.

Denote the category of (g,K)-modules by Mod(g,K). Denote by Modfin(g,K) the full subcategory

whose objects consist of modules whose underlying vector space is finite-dimensional.

1.2. Bundles. We will need the analog of a torsor for a pair (g,K) over a manifold X. Our

definitions are structural and so apply equally well to both smooth and complex manifolds. In the

complex case we will need the notion of a holomorphic (g,K)-torsor.

When X is complex, we use Ohol(X) to denote the space of holomorphic functions and X hol(X)

to denote holomorphic vector fields, i.e., holomorphic sections of T 1,0X. We let Ωk(X) denote the

space of smooth k-forms and ddR the de Rham differential. If X is complex, then Ωk,l(X) denotes

the smooth (k, l)-forms according to the Hodge decomposition. We denote by Ωkhol(X) the space

of holomorphic k-forms, i.e., holomorphic sections of ΛkT ∗,(1,0)X. Finally, when we consider a

differential graded vector space (V,d) we let V # denote the underlying graded vector space V . For

instance, Ω#(X) denotes the graded vector space of differential forms on X.

Definition 1.5. A (g,K)-principal bundle with flat connection (or more concisely, flat (g,K)-

bundle) over X is

(i) a principal K-bundle P → X and

(ii) a K-invariant g-valued 1-form on P , ω ∈ Ω1(P ; g)

such that

(1) for all a ∈ Lie(K), we have ω(ξa) = a where ξa ∈ X (P ) denotes the induced vector field

and

(2) ω satisfies the Maurer-Cartan equation

ddRω +
1

2
[ω, ω] = 0

where the bracket is taken in the Lie algebra g.

The condition that ω(ξa) = a simply says that ω restricts to a connection 1-form for the principal

bundle P → X. The Maurer-Cartan condition says that ω is flat. In particular, if g = Lie(K),
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then we recover the usual notion of a principal K-bundle together with a flat connection, i.e., a

principal bundle for the discrete group Kδ.

In the complex case it is natural to include the holomorphic structure.

Definition 1.6. Let X be a complex manifold, K a complex Lie group, and g a complex Lie

algebra. A holomorphic (g,K)-principal bundle with flat connection is a holomorphic principal

K-bundle P → X together with a K-invariant g-valued holomorphic 1-form ω ∈ Ω1
hol(P ; g) such

that

(1) for all a ∈ Lie(K), we have ω(ξa) = a where ξa ∈ X hol(P );

(2) ω satisfies the Maurer-Cartan equation

∂ω +
1

2
[ω, ω] = 0.

Remark 1.7. Since ω in Definition 1.6 is assumed to be holomorphic, i.e., ∂ω = 0, the Maurer-

Cartan equation is equivalent to

ddRω +
1

2
[ω, ω] = 0

where ddR = ∂+∂ is the full de Rham differential decomposed via the complex structure on P → X.

Thus, a holomorphic (g,K)-principal bundle with flat connection (P → X,ω) is equivalent to an

ordinary (g,K)-principal bundle with flat connection (as in Definition 1.5) such that the underlying

K-bundle is holomorphic and ω is a (1, 0)-form.

Recall that one can interpret a connection on a principal K-bundle as a splitting of the tangent

bundle TP into horizontal and vertical components in a K-equivariant way. Indeed, a connection

ω ∈ Ω1(P,Lie(K)) determines a splitting

TP = TπP ⊕Hω

where Hω ⊂ TP is defined as kerω. That is, Hω|p is the subspace of TpP consisting of all vectors

Xp such that ω(Xp) = 0 so that Hω|p ∼= Tπ(p)X. Moreover, TπP is canonically isomorphic to the

trivial bundle Lie(K) over P .

There is a similar interpretation for Harish-Chandra pairs. The embedding i : Lie(K) ↪→ g

determines a map of trivial bundles iP : Lie(K)→ g over P . Define TgP to be the pushout

Lie(K) //

��

g

��

TP // TgP

in bundles over P . Then a K-equivariant element ω ∈ Ω1(P ; g) satisfying (ii) above is equivalent

to a K-equivariant splitting

TgP = g⊕Hω,

where Hω|p ∼= Tπ(p)X.

Note that if there is an inclusion of Lie groups K ↪→ G inducing Lie(K) ↪→ Lie(G) = g, then

this data is a flat G-bundle along with a reduction of structure group to a flat K-bundle. This

example indicates that the Harish-Chandra version is a useful replacement in the case where the

map i : Lie(K)→ g does not integrate to a map of Lie groups.

Example 1.8. The most important example is the case where g = Wn, the Lie algebra of formal

vector fields, and K = GLn. In fact, Wn is not the Lie algebra of any Lie group. The pair

(Wn,GLn) is fundamental for Gelfand-Kazhdan descent, defined in later sections.
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Definition 1.9. A morphism of (g,K)-bundles (P → X,ω) → (P ′ → X ′, ω′) is a map of K-

principal bundles

P
F
//

��

P ′

��

X
f
// X ′

such that F ∗ω′ = ω.

Denote the category of flat (g,K)-bundles by Loc(g,K).

Note that there is a forgetful functor from Loc(g,K) to Man, the category of manifolds which is

either (a) smooth manifolds with smooth maps or (b) complex manifolds with holomorphic maps.

As flat bundles pull back along maps of the underlying manifolds, we have that this functor is a

cartesian fibration.

1.3. Descent. Recall the associated bundle construction: given a principal K-bundle π : P → X

and a finite-dimensional K-representation V , form the vector bundle

VX := P ×K V

over X. One can view it as a pairing between the category of principal K-bundles and the category

of finite-dimensional K-modules, i.e., a functor

−×K − : Bunop
K ×ModfinK → VB

where BunK is the cartesian fibration whose fiber over a manifold X is the category of K-principal

bundles on X, where VB → Man is the cartesian fibration whose fiber over X is the category

of vector bundles on X, and where ModK denotes the category of K-modules. This is a functor

between cartesian fibrations over Man. This functor exhibits how natural the associated bundle

construction is, and it can be used to produce natural characteristic classes for K-bundles.

In this section, we will produce an analogous functor of Harish-Chandra descent

desc : Locop
(g,K) ×Modfin(g,K) → VBflat,

where VBflat denotes the cartesian fibration whose fiber over a manifold X is the category of flat

vector bundles on X. It says, in essence, that each (g,K)-bundle on X produces a family of local

systems on X, and these are natural under pullback of bundles. Similarly, each (g,K)-module

produces a functor from flat (g,K)-bundles to local systems over the site of all manifolds.

Remark 1.10. The construction is often termed Harish-Chandra localization (see [BK04] [JB95]),

but this terminology occasionally led to possible ambiguities due to other uses of of the word

“localization,” so we use “descent.”

We will also describe the characteristic map, which is a natural transformation

char : C∗Lie(g,K;−)⇒ Ω∗(−,desc(−)),

where C∗Lie(g,K;−) denotes the relative Lie algebra cochains functor (it is independent of the bun-

dle variable) and where Ω∗(−,desc(−)) denotes the de Rham complex of the flat bundle produced

by desc. This natural transformation encodes the secondary characteristic classes of these flat

bundles.
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1.3.1. Basic forms. There is a model for the associated bundle construction that is useful for our

purposes. Let V be a finite-dimensional K-representation. Denote by V the trivial vector bundle

on P with fiber V . Sections of this bundle ΓP (V ) have the structure of a K-representation by

A · (f ⊗ v) := (A · f)⊗ (A · v) , A ∈ K, f ∈ O(P ) , v ∈ V.

Every K-invariant section f : P → V induces a section s(f) : X → VX , where the value of s(f) at

x ∈ X is the K-equivalence class [(p, f(p)], with p ∈ π−1(x) ∼= K. That is, there is a natural map

s : ΓP (V )K → ΓX(VX)

and it is an isomorphism of O(X)-modules. A K-invariant section f of V → P also satisfies the

infinitesimal version of invariance:

(Y · f)⊗ v + f ⊗ Lie(ρ)(Y ) · v = 0

for any Y ∈ Lie(K).

There is a similiar statement for differential forms with values in the bundle VX . Let Ωk(P ;V ) =

Ωk(P ) ⊗ V denote the space of k-forms on P with values in the trivial bundle V . Given α ∈
Ω1(X;VX), its pull-back along the projection π : P → X is annihilated by any vertical vector field

on P . In general, if α ∈ Ωk(X;VX), then iY (π∗α) = 0 for all Y ∈ Lie(K).

Definition 1.11. A k-form α ∈ Ωk(P ;V ) is called basic if

(i) it is K-invariant: LY α+ ρ(Y ) · α = 0 for all Y ∈ Lie(K) and

(ii) it vanishes on vertical vector fields: iY α = 0 for all Y ∈ Lie(K).

Denote the subspace of basic k-forms by Ωk(P ;V )bas. Just as with sections, there is a natural

isomorphism

s : Ωk(P ;V )bas
∼=−→ Ωk(X;VX)

between basic k-forms and k-forms on X with values in the associated bundle. In fact, Ω#(P ;V )bas
forms a graded subalgebra of Ω#(P ;V ) and the isomorphism s extends to an isomorphism of graded

algebras Ω#(P ;V )bas ∼= Ω#(X;VX).

It is manifest that this construction of basic forms is natural in maps of (g,K)-bundles: basic

forms pull back to basic forms along maps of bundles.

1.3.2. Fix a (g,K)-bundle P → X with connection one-form ω ∈ Ω1(P ; g). Fix a (g,K)-module

V with action maps ρK and ρg. The subalgebra of basic forms

Ω#(P ;V )bas ⊂ Ω#(P ;V )

only uses the data of the K-representation. The g-module structure induces an operator

ρg(ω) : Ωk(P ;V )→ Ωk+1(P ;V )

for each k. Let ∇P,V denote the operator

∇P,V := ddR,P + ρg(ω) : Ωk(P ;V )→ Ωk+1(P ;V )

for each k.

A direct calculation verifies the following.

Lemma 1.12. The operator ∇P,V is a differential on the subalgebra of basic forms. Under the

isomorphism s : Ω#(P ;V ) ∼= Ω#(X;VX), the cochain complex (Ω#(P ;V ),∇V ) is a dg module over

Ω∗(X).
11



Definition 1.13. The associated flat vector bundle to the flat (g,K)-bundle P → X and the

finite-dimensional (g,K)-representation V is

desc((P → X), V ) := (P ×X V,∇P,V ),

namely the associated vector bundle on X and its flat connection. Its de Rham complex is

desc((P → X), V ) :=
(
Ω∗(P ;V )bas,∇P,V

)
,

whose zeroeth cohomology is the horizontal sections of the local system.

As the construction of the flat connection ∇P,V intertwines naturally with maps of (g,K)-

bundles, we obtain the following functors.

Definition 1.14. The (g,K)-descent functor is the functor

desc : Locop
(g,K) ×Mod(g,K) → VBflat

sending (P → X,V ) to (VX ,∇P,V ). There is a closely related functor

desc : Locop
(g,K) ×Mod(g,K) → ModΩ∗

sending (P → X,V ) to the de Rham complex of desc((P → X,V )).

To every flat vector bundle we can associate a local system by taking the horizontal sections.

We denote by Desc the composition of the functor desc with taking horizontal sections. Explicitly,

Desc is the zeroeth cohomology of the de Rham complex of the flat vector bundle given by descent.

In other words, it is the zeroth cohomology of the complex
(
Ω∗(P ;V )bas,∇P,V

)
.

In the case of a holomorphic (g,K)-bundle with flat connection (P → X,ω), the (0, 1)-component

of the connection ∇P,V agrees with the ∂ operator

(∇P,V )0,1 = ∂P : Ω0(P ;V )bas → Ω0,1(P ;V )bas.

Hence the horizontal sections are also holomorphic.

Example 1.15. A special role is played by the (g,K)-bundles over a point. In this case, the only

K-bundle is trivial, and the composite functor

Mod(g,K) → ModdgC
V 7→ C∗Lie(g,K;V )

agrees with relative cochains computing the relative Lie algebra cohomology of V .

Example 1.16. Suppose K is a Lie group and let k be its Lie algebra. Then (k,K) is a HC-pair

and we have an equivalence of categories

Mod(k,K)
∼= RepfinK .

Let P → X be a principal K-bundle and ω ∈ Ω1(P ; k) a flat connection (in the traditional sense).

Then the functor

desc((P, ω),−) : Mod(k,K) → ModΩ∗X

is equivalent to the functor RepfinK → ModΩ∗X
that sends a K-representation V to the de Rham

complex of the associated bundle VX = P ×K V equipped with its induced flat connection, i.e.,

V 7→ Ω∗(X;VX).
12



Remark 1.17. We have described these constructions for finite-dimensional representations, but

they make sense with an infinite-dimensional representation V provided one knows how smooth

manifolds map into V . Given that data, one knows how to write down functions (or differential

forms) on P with values in V . In many examples, the vector space V comes equipped with that

information. For instance, every locally convex topological vector space has it, as do bornological

or convenient vector spaces. A systematic discussion of these issues can be found in [KM97], and

an overview with close ties to the examples used here can be found in Appendix B of [CG].

1.4. The characteristic map. Recall that on a principal K-bundle P → X with connection

one-form ω ∈ Ω1(P,Lie(K)), the one-form provides a linear map ω∗ : Lie(K)∗ → Ω1(P ). If

the connection is flat (i.e., satisfies the Maurer-Cartan equation), then ω∗ extends to a map of

commutative dg algebras

ω∗ : C∗Lie(Lie(K))→ Ω∗(P ),

which provides some kind of characteristic classes for the flat K-bundle P .

We now adapt this construction to the Harish-Chandra setting. In this case, the connection

one-form ω lives in Ω1(P, g) and as it is flat, it provides a map of commutative dg algebras

ω∗ : C∗Lie(g)→ Ω∗(P ).This map admits an important refinement: since ω is K-invariant, it induces

a map

ω∗ : C∗Lie(g,K)→ Ω∗(P )bas.

This construction extends to associated bundles, so that for V a (g,K)-module, there is a map

charP,V : C∗Lie(g,K;V )→ Ω∗(desc((P, ω), V )),

which provides some kind of characteristic classes for flat (g,K)-bundles.

As these constructions manifestly intertwine with pullbacks of bundles, we have the following.

Definition 1.18. The characteristic map is the natural transformation

char : C∗Lie(g,K;−)⇒ Ω∗(−,desc(−,−))

between the relative Lie algebra cohomology of a (g,K)-module and the de Rham complex of its

associated local system along a flat (g,K)-bundle .

2. Formal vector bundles and Gelfand-Kazhdan descent

In this section we review the theory of Gelfand-Kazhdan formal geometry and its use in natural

constructions in differential geometry, organized in a manner somewhat different from the standard

approaches. We emphasize the role of the frame bundle and jet bundles. We conclude with a

treatment of the Atiyah class, which may be our only novel addition (although unsurprising) to

the formalism.

We remark that from hereon we will work with complex manifolds and holomorphic vector

bundles.

2.1. A Harish-Chandra pair for the formal disk. Let Ôn denote the algebra of formal power

series

CJt1, . . . , tnK,

which we view as “functions on the formal n-disk D̂n.” It is filtered by powers of the maximal

ideal mn = (t1, . . . , tn), and it is the limit of the sequence of artinian algebras

· · · → Ôn/(t1, . . . , tn)k → · · · Ôn/(t1, . . . , tn)2 → Ôn/(t1, . . . , tn) ∼= C.
13



One can use the associated adic topology to interpret many of our constructions, but we will not

emphasize that perspective here.

We use Wn to denote the Lie algebra of derivations of Ôn, which consists of first-order differential

operators with formal power series coefficients:

Wn =

{
n∑
i=1

fi
∂

∂ti
: fi ∈ Ôn

}
.

The group GLn also acts naturally on Ôn: for M ∈ GLn and f ∈ Ôn,

(M · f)(t) = f(Mt),

where on the right side we view t as an element of Cn and let M act linearly. In other words, we

interpret GLn as acting “by diffeomorphisms” on D̂n and then use the induced pullback action on

functions on D̂n. The actions of both Wn and GLn intertwine with multiplication of power series,

since “the pullback of a product of functions equals the product of the pullbacks.”

2.1.1. Formal automorphisms. Let Autn be the group of filtration-preserving automorphisms of

the algebra Ôn, which we will see is a pro-algebraic group. Explicitly, such an automorphism φ is a

map of algebras that preserves the maximal ideal, so φ is specified by where it sends the generators

t1, . . . , tn of the algebra. In other words, each φ ∈ Autn consists of an n-tuple (φ1, . . . , φn) such

that each φi is in the maximal ideal generated by (t1, . . . , tn) and such that there exists an n-tuple

(ψ1, . . . , ψn) where the composite

ψj(φ1(t), . . . , φn(t)) = tj

for every j (and likewise with ψ and φ reversed). This second condition can be replaced by verifying

that the Jacobian matrix

Jac(φ) = (∂φi/∂tj) ∈ Matn(Ôn)

is invertible over Ôn, by a version of the inverse function theorem.

Note that this group is far from being finite-dimensional, so it does not fit immediately into

the setting of HC-pairs described above. It is, however, a pro-Lie group in the following way. As

each φ ∈ Autn preserves the filtration on Ôn, it induces an automorphism of each partial quotient

Ôn/mkn. Let Autn,k denote the image of Autn in Aut(Ôn/mkn); this group Autn,k is clearly a

quotient of Autn. Note, for instance, that Autn,1 = GLn. Explicitly, an element φ of Autn,k is

the collection of n-tuples (φ1, . . . , φn) such that each φi is an element of mn/m
k
n and such that the

Jacobian matrix Jac(φ) is invertible in Ôn/mkn. The group Autn,k is manifestly a finite dimensional

Lie group, as the quotient algebra is a finite-dimensional vector space.

The group of automorphisms Autn is the pro-Lie group associated with the natural sequence of

Lie groups

· · · → Autn,k → Autn,k−1 → · · · → Autn,1 = GLn.

Let Aut+
n denote the kernel of the map Autn → GLn so that we have a short exact sequence

1→ Aut+
n → Autn → GLn → 1.

In other words, for an element φ of Aut+
n , each component φi is of the form ti +O(t2). The group

Aut+
n is pro-nilpotent, hence contractible.

The Lie algebra of Autn is not the Lie algebra of formal vector fields Wn. A direct calculation

shows that the Lie algebra of Autn is the Lie algebra W0
n ⊂Wn of formal vector fields with zero

constant coefficient (i.e., that vanish at the origin of D̂n).
14



Observe that the group GLn acts on the Lie algebra Wn by the obvious linear “changes of

frame.” The Lie algebra Lie(GLn) = gln sits inside Wn as the linear vector fields∑
i,j

aji ti
∂

∂tj
: aij ∈ C

 .

We record these compatibilities in the following statement.

Lemma 2.1. The pair (Wn,GLn) form a Harish-Chandra pair.

Proof. The only thing to check is that the differential of the action of GLn corresponds with the

adjoint action of gln ⊂Wn on formal vector fields. This is by construction. �

2.2. The coordinate bundle. In this section we review the central object in the Gelfand-

Kazhdan picture of formal geometry: the coordinate bundle.

2.2.1. Given a complex manifold, its coordinate space Xcoor is the (infinite-dimensional) space

parametrizing jets of holomorphic coordinates of X. (It is a pro-complex manifold, as we’ll see.)

Explicitly, a point in Xcoor consists of a point x ∈ X together with an ∞-jet class of a local

biholomorphism φ : U ⊂ Cn → X sending a neighborhood U of the origin to a neighborhood of x

such that φ(0) = x.

There is a canonical projection map πcoor : Xcoor → X by remembering only the underlying

point in X. The group Autn acts on Xcoor by “change of coordinates,” i.e., by precomposing a

local biholomorphism φ with an automorphism of the disk around the origin in Cn. This action

identifies πcoor as a principal bundle for the pro-Lie group Autn.

One way to formalize these ideas is to realize Xcoor as a limit of finite-dimensional complex

manifolds. Let Xcoor
k be the space consisting of points (x, [φ]k), where φ is a local biholomorphism

as above and [−]k denotes taking its k-jet equivalence class. Let πcoork : Xcoor
k → X be the

projection. By construction, the finite-dimensional Lie group Autn,k acts on the fibers of the

projection freely and transitively so that πcoork is a principal Autn,k-bundle. The bundle Xcoor → X

is the limit of the sequence of principal bundles on X

· · · // Xcoor
k

//

πcoork

,,

Xcoor
k−1

πcoork−1

++

// · · · // Xcoor
2

πcoor2

$$

// Xcoor
1

πcoor1

��

X.

In particular, note that the GLn = Autn,1-bundle πcoor1 : Xcoor
1 → X is the frame bundle

πfr : FrX → X,

i.e., the principal bundle associated to the tangent bundle of X.

2.2.2. The Grothendieck connection. We can also realize the Lie algebra Wn as an inverse limit.

Recall the filtration on Wn by powers of the maximal ideal mn of Ôn. Let Wn,k denote the quotient

Wn/m
k+1
n Wn. For instance, Wn,1 = affn = Cn n gln, the Lie algebra of affine transformations of

Cn. We have Wn = limk→∞Wn,k.

The Lie algebra of Autn,k is

W0
n,k := mn ·Wn/m

k+1
n W0

n.
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That is, the Lie algebra of vector fields vanishing at zero modulo the k + 1 power of the maximal

ideal. Thus, the principal Autn,k-bundle Xcoor
k → X induces an exact sequence of tangent spaces

W0
n,k → T(x,[ϕ]k)X

coor → TxX;

by using ϕ, we obtain a canonical isomorphism of tangent spaces Cn ∼= T0Cn ∼= TxX. Combining

these observations, we obtain an isomorphism

Wn,k
∼= T(x,[ϕ]k)X

coor
k .

In the limit k →∞ we obtain an isomorphism Wn
∼= T(x,[ϕ]∞)X

coor.

Proposition 2.2 (Section 5 of [NT95a], Section 3 of [CF01]). There exists a canonical action of

Wn on Xcoor by holomorphic vector fields, i.e., there is a Lie algebra homomorphism

θ : Wn → X hol(Xcoor).

Moreover, this action induces the isomorphism Wn
∼= T(x,[φ]∞)X

coor at each point.

Here, X (Xcoor) is understood as the inverse limit of the finite-dimensional Lie algebras X (Xcoor
k ).

The inverse of the map θ provides a connection one-form

ωcoor ∈ Ω1
hol(X

coor; Wn),

which we call the universal Grothendieck connection on X. As θ is a Lie algebra homomorphism,

ωcoor satisfies the Maurer-Cartan equation

(1) ∂ωcoor +
1

2
[ωcoor, ωcoor] = 0.

Note that the proposition ensures that this connection is universal on all complex manifolds of

dimension n and indeed pulls back along local biholomorphisms.

Remark 2.3. Both the pair (Wn,Aut) and the bundle Xcoor → X together with ωcoor do not fit

in our model for general Harish-Chandra descent above. They are, however, objects in a larger

category of pro-Harish-Chandra pairs and pro-Harish-Chandra bundles, respectively. We do not

develop this theory here, but it is inherent in the work of [BK04]. Indeed, by working with well-

behaved representations for the pair (Wn,Aut), Gelfand, Kazhdan, and others use this universal

construction to produce many of the natural constructions in differential geometry. As we remarked

earlier, it is a kind of refinement of tensor calculus.

2.2.3. A Harish-Chandra structure on the frame bundle. Although the existence of the coordinate

bundle Xcoor is necessary in the remainder of this paper, it is convenient for us to use it in a rather

indirect way. Rather, we will work with the frame bundle FrX → X equipped with the structure of

a module for the Harish-Chandra pair (Wn,GLn). The Wn-valued connection on FrX is induced

from the Grothendieck connection above.

Definition 2.4. Let Exp(X) denote the quotient Xcoor/GLn. A holomorphic section of Exp(X)

over X is called a formal exponential.

Remark 2.5. The space Exp(X) can be equipped with the structure of a principal Aut+
n -bundle

over X. This structure on Exp(X) depends on a choice of a section of the short exact sequence

1→ Aut+
n → Autn → GLn → 1.

It is natural to use the splitting determined by the choice of coordinates on the formal disk.
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Note that Aut+
n is contractible, and so sections always exist. A formal exponential is useful

because it equips the frame bundle with a (Wn,GLn)-module structure, as follows.

Proposition 2.6. A formal exponential σ pulls back to a GLn-equivariant map σ̃ : FrX → Xcoor,

and hence equips (Frx, σ
∗ωcoor) with the structure of a principal (Wn,GLn)-bundle with flat con-

nection. Moreover, any two choices of formal exponential determine (Wn,GLn)-structures on X

that are gauge-equivalent.

For a full proof, see [NT95a], [NT95b], or [Kho07] but the basic idea is easy to explain.

Sketch of proof. The first assertion is tautological, since the data of a section is equivalent to

such an equivariant map, but we explicate the underlying geometry. A map ρ : FrX → Xcoor

assigns to each pair (x,y) ∈ FrX , with x ∈ X and y : Cn
∼=−→ TxX a linear frame, an ∞-jet of a

biholomorphism φ : Cn → X such that φ(0) = x and Dφ(0) = y. Being GLn-equivariant ensures

that these biholomorphisms are related by linear changes of coordinates on Cn. In other words,

a GLn-equivariant map σ̃ describes how each frame on TxX exponentiates to a formal coordinate

system around x, and so the associated section σ assigns a formal exponential map σ(x) : TxX → X

to each point x in X. (Here we see the origin of the name “formal exponential.”)

The second assertion would be immediate if Xcoor were a complex manifold, since the flat bundle

structure would pull back, so all issues are about carefully working with pro-manifolds.

The final assertion is also straightforward: the space of sections is contractible since Aut+
n is

contractible, so one can produce an explicit gauge equivalence. �

Remark 2.7. In [Wilb] Willwacher provides a description of the space Exp(X) of all formal expo-

nentials. He shows that it is isomorphic to the space of pairs (∇0,Φ) where ∇0 is a torsion-free

connection on X for TX and Φ is a section of the bundle

FrX ×GLn W3
n

where W3
n ⊂ Wn is the subspace of formal vector fields whose coefficients are at least cubic. In

particular, every torsion-free affine connection determines a formal exponential. The familiar case

above that produces a formal coordinate from a connection corresponds to choosing the zero vector

field.

Definition 2.8. A Gelfand-Kazhdan structure on the frame bundle FrX → X of a complex man-

ifold X of dimension n is a formal exponential σ, which makes FrX into a flat (Wn,GLn)-bundle

with connection one-form ωσ, the pullback of ωcoor along the GLn-equivariant lift σ̃ : FrX → Xcoor.

Example 2.9. Consider the case of an open subset U ⊂ Cn. There are thus natural holomorphic

coordinates {z1, . . . , zn} on U . These coordinates provides a natural choice of a formal exponential.

Moreover, with respect to the isomorphism

Ω1
hol(FrU ; Wn)GLn ∼= Ω1

hol(U ; Wn),

we find that the connection 1-form has the form

ωcoor =

n∑
i=1

dzi ⊗
∂

∂ti
,

where the {ti} are the coordinates on the formal disk D̂n.

A Gelfand-Kazhdan structure allows us to apply a version of Harish-Chandra descent, which

will be a central tool in our work.
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Although we developed Harish-Chandra descent on all flat (g,K)-bundles, it is natural here

to restrict our attention to manifolds of the same dimension, as the notions of coordinate and

affine bundle are dimension-dependent. Hence we replace the underlying category of all complex

manifolds by a more restrictive setting.

Definition 2.10. Let Holn denote the category whose objects are complex manifolds of dimension

n and whose morphisms are local biholomorphisms. In other words, a map f : X → Y in Holn is

a map of complex manifolds such that each point x ∈ X admits a neighborhood U on which f |U is

biholomorphic with f(U).

There is a natural inclusion functor i : Holn → CplxMan (not fully faithful) and the frame

bundle Fr defines a section of the fibered category i∗VB, since the frame bundle pulls back along

local biholomorphisms. For similar reasons, the coordinate bundle is a pro-object in i∗VB.

Definition 2.11. Let GKn denote the category fibered over Holn whose objects are a Gelfand-

Kazhdan structure — that is, a pair (X,σ) of a complex n-manifold and a formal exponential —

and whose morphisms are simply local biholomorphisms between the underlying manifolds.

Note that the projection functor from GKn to Holn is an equivalence of categories, since the

space of formal exponentials is affine.

2.3. The category of formal vector bundles. For most of our purposes, it is convenient and

sufficient to work with a small category of (Wn,GLn)-modules that is manifestly well-behaved

and whose localizations appear throughout geometry in other guises, notably as ∞-jet bundles

of vector bundles on complex manifolds. (Although it would undoubtedly be useful, we will not

develop here the general theory of modules for the Harish-Chandra pair (Wn,GLn), which would

involve subtleties of pro-Lie algebras and their representations.)

We first start by describing the category of (Wn,GLn)-modules that correspond to modules over

the structure sheaf of a manifold. Note that Ôn is the quintessential example of a commutative

algebra object in the symmetric monoidal category of (Wn,GLn)-modules, for any natural version

of such a category. We consider modules that have actions of both the pair and the algebra Ôn
with obvious compatibility restrictions.

Definition 2.12. A formal Ôn-module is a vector space V equipped with

(i) the structure of a (Wn,GLn)-module;

(ii) the structure of a Ôn-module;

such that

(1) for all X ∈Wn, f ∈ Ôn and v ∈ V we have X(f · v) = X(f) · v + f · (X · v);

(2) for all A ∈ GLn we have A(f · v) = (A · f) · (A · v), where A acts on f by a linear change

of frame.

A morphism of formal Ôn-modules is a Ôn-linear map of (Wn,GLn)-modules f : V → V ′. We

denote this category by ModOn(Wn,GLn).

Just as the category of D-modules is symmetric monoidal via tensor over O, we have the

following result.

Lemma 2.13. The category ModOn(Wn,GLn) is symmetric monoidal with respect to tensor over Ôn.

Proof. The category of Ôn-modules is clearly symmetric monoidal by tensoring over Ôn. We

simply need to verify that the Harish-Chandra module structures extend in a natural way, but this

is clear. �
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We will often restrict ourselves to considering Harish-Chandra modules as above that are free

as underlying Ôn-modules. Indeed, let

VBn ⊂ ModOn(Wn,GLn)

be the full subcategory spanned by objects that are free and finitely generated as underlying Ôn-

modules. Upon descent these will correspond to ordinary vector bundles and so we refer to this

category as formal vector bundles.

The category of formal Ôn-modules has a natural symmetric monoidal structure by tensor

product over Ô. The Harish-Chandra action is extended by

X · (s⊗ t) = (Xs)⊗ t+ s⊗ (Xt).

This should not look surprising; it is the same formula for tensoring D-modules over O.

The internal hom HomÔ(V,W) also provides a vector bundle on the formal disk, where the

Harish-Chandra action is extended by

(X · φ)(v) = X · (φ(v))− φ(X · v).

Observe that for any D-module M , we have an isomorphism

HomD(Ô,M) ∼= HomWn
(C,M)

since a map of D̂-modules out of Ô is determined by where it sends the constant function 1. Hence

we find that there is a quasi-isomorphism

RHomD(Ô,V) ' C∗Lie(Wn;V),

or more accurately a zig-zag of quasi-isomorphisms. Here C∗Lie(Wn;V) is the continuous cohomol-

ogy of Wn with coefficients in V. This is known as the Gelfand-Fuks cohomology of V and is what

we use for the remainder of the paper.

This relationship extends to the GLn-equivariant setting as well, giving us the following result.

Lemma 2.14. There is a quasi-isomorphism

C∗Lie(Wn,GLn;V) ' RHomD(Ô,V)GLn−eq,

where the superscript GLn − eq denotes the GLn-equivariant maps.

Remark 2.15. One amusing way to understand this category is as Harish-Chandra descent to the

formal n-disk itself. Consider the frame bundle F̂r = D̂n × GLn → D̂n of the formal n-disk

itself, which possesses a natural flat connection via the Maurer-Cartan form ωMC on GLn. Let

ρ : GLn → GL(V ) be a finite-dimensional representation. Then the subcomplex of Ω∗(F̂r) ⊗ V
given by the basic forms is isomorphic to(

Ω∗(D̂n)⊗ V,ddR + ρ(ωMC)
)
.

This equips the associated bundle F̂r×GLn V with a flat connection and hence makes its sheaf of

sections a D-module on the formal disk.

Many of the important Ôn-modules we will consider simply come from linear tensor repre-

sentations of GLn. Given a finite-dimensional GLn-representation V , we construct a Ôn-module

V ∈ VBn as follows.

Consider the decreasing filtration of Wn by vanishing order of jets

· · · ⊂ m2
n ·Wn ⊂ m1

n ·Wn ⊂Wn.
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The induced map m1
n ·Wn → m1

n ·Wn/m
2
n ·Wn

∼= gln allows us to restrict V to a m1
n ·Wn-

module. We then coinduce this module along the inclusion m1 ·Wn ⊂ Wn to get a Wn-module

V = Homm1
n·Wn

(Wn, V ). There is an induced action of GLn on V. Indeed, as a GLn-representation

one has V ∼= Ôn⊗C V . Moreover, this action is compatible with the Wn-module structure, so that

V is actually a (Wn,GLn)-module. Thus, the construction provides a functor from RepGLn to

VBn.

Definition 2.16. We denote by Tensn the image of finite-dimensional GLn-representations in

VBn along this functor. We call it the category of formal tensor fields.

As mentioned Ôn is an example, associated to the trivial one-dimensional GLn representation.

Another key example is T̂n, the vector fields on the formal disk, which is associated to the defining

GLn representation Cn; it is simply the adjoint representation of Wn. Other examples include Ω̂1
n,

the 1-forms on the formal disk; it is the correct version of the coadjoint representation, and more

generally the space of k-forms on the formal disk Ω̂kn.

The category Tensn can be interpreted in two other ways, as we will see in subsequent work.

(1) They are the∞-jet bundles of tensor bundles: for a finite-dimensional GLn-representation,

construct its associated vector bundle along the frame bundle and take its ∞-jets.

(2) They are the flat vector bundles of finite-rank on the formal n-disk that are equivariant

with respect to automorphisms of the disk. In other words, they are GLn-equivariant

D-modules whose underlying Ô-module is finite-rank and free.

It should be no surprise that given a Gelfand-Kazhdan structure on the frame bundle of a non-

formal n-manifold X, a formal tensor field descends to the ∞-jet bundle of the corresponding

tensor bundle on X. The flat connection on this descent bundle is, of course, the Grothendieck

connection on this ∞-jet bundle. (For some discussion, see section 1.3, pages 12-14, of [Fuk86].)

Note that the subcategories

Tensn ↪→ VBn ↪→ ModOn(Wn,GLn)

inherit the symmetric monoidal structure constructed above.

2.4. Gelfand-Kazhdan descent. We will focus on defining descent for the category VBn of

formal vector bundles.

Fix an n-dimensional manifold X. The main result of this section is that the associated bundle

construction along the frame bundle FrX ,

FrX ×GLn − : Rep(GLn)fin → VB(X)

V 7→ FrX ×GLn V
,

which builds a tensor bundle from a GLn representation, arises from Harish-Chandra descent for

(Wn,GLn). This result allows us to equip tensor bundles with interesting structures (e.g., a vertex

algebra structure) by working (Wn,GLn)-equivariantly on the formal n-disk. In other words, it

reduces the problem of making a universal construction on all n-manifolds to the problem of making

an equivariant construction on the formal n-disk, since the descent procedure automates extension

from the formal to the global.

Note that every formal vector bundle V ∈ VB(Wn,GLn) is naturally filtered via a filtration

inherited from Ôn. Explicitly, we see that V is the limit of the sequence of finite-dimensional

vector spaces

· · · → Ôn/mkn ⊗ V → · · · → Ôn/mn ⊗ V ∼= V
20



where V is the underlying GLn-representation. Each quotient Ôn/mkn⊗V is a module over Autn,k,

and hence determines a vector bundle on X by the associated bundle construction along Xcoor
k .

In this way, V produces a natural sequence of vector bundles on X and thus a pro-vector bundle

on X.

Given a formal exponential σ on X, we obtain a GLn-equivariant map from FrX to Xcoor
k for

every k, by composing the projection map Xcoor → Xcoor
k with the GLn-equivariant map from

FrX to Xcoor.

Definition 2.17. Gelfand-Kazhdan descent is the functor

descGK : GKop
n ×VB(Wn,GLn) → Pro(VB)flat

sending (FrX , σ) — a frame bundle with formal exponential — and a formal vector bundle V to

the pro-vector bundle FrX ×GLn V with flat connection induced by the Grothendieck connection.

This functor is, in essence, Harish-Chandra descent, but in a slightly exotic context. It has

several nice properties.

Lemma 2.18. For any choice of Gelfand-Kazhdan structure (FrX , σ), the descent functor descGK((FrX , σ),−)

is lax symmetric monoidal.

Proof. For every V,W in VB(Wn,GLn), we have natural maps

(Ω∗(FrX)⊗V)basic⊗(Ω∗(FrX)⊗W)basic → (Ω∗(FrX)⊗(V⊗W))basic → (Ω∗(FrX)⊗(V⊗ÔnW))basic

and the composition provides the natural transformation producing the lax symmetric monoidal

structure. �

In particular, we observe that the de Rham complex of descGK((FrX , σ), Ôn) is a commutative

algebra object in Ω∗(X)-modules. As every object of VB(Wn,GLn) is an Ôn-module and the mor-

phisms are Ôn-linear, we find that descent actually factors through the category of descGK((FrX , σ), Ôn)-

modules. In sum, we have the following.

Lemma 2.19. The descent functor descGK((FrX , σ),−) factors as a composite

VBn
d̃escGK((FrX ,σ),−)−−−−−−−−−−−−→ ModdescGK((FrX ,σ),Ôn)

forget−−−−→ VBflat(X)

and the functor d̃escGK((FrX , σ),−) is symmetric monoidal.

As before, we let DescGK denote the associated local system obtained from descGK by taking

horizontal sections. This functor is well-known: it recovers the tensor bundles on X.

If E → X is a holomorphic vector bundle on X we denote by J∞hol(E) the holomorphic ∞-jet

bundle of E. If E0 is the fiber of E over a point x ∈ X, then the fiber of this pro-vector bundle

over x can be identified with

J∞hol(E)|x ∼= E0 × CJt1, . . . , tnK.

This pro-vector bundle has a canonical flat connection.

Proposition 2.20. For V ∈ VBn corresponding to the GLn-representation V , there is a natural

isomorphism of flat pro-vector bundles

descGK((Fr(X), ωσ),V) ∼= J∞hol(FrX ×GLn V )

In other words, the functor of descent along the frame bundle is naturally isomorphic to the functor

of taking ∞-jets of the associated bundle construction.
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As a corollary, we see that the associated sheaf of flat sections is

DescGK(ωσ,V) ∼= Γhol(FrX ×GLn V )

where Γhol(−) denotes the space of holomorphic sections.

In other words, Gelfand-Kazhdan descent produces every tensor bundle. For example, for the

defining representation V = Cn of GLn, we have V = T̂n, i.e., the vector fields on the formal

disk viewed as the adjoint representation of Wn. Under Gelfand-Kazhdan descent, it produces the

tangent bundle T on Holn.

2.5. Formal characteristic classes.

2.5.1. Recollection. In [Ati57], Atiyah examined the obstruction — which now bears his name — to

equipping a holomorphic vector bundle with a holomorphic connection from several perspectives.

To start, as he does, we take a very structural approach. He begins by constructing the following

sequence of vector bundles (see Theorem 1).

Definition 2.21. Let G be a complex Lie group. Let E → X be a holomorphic vector bundle on

a complex manifold and E its sheaf of sections. The Atiyah sequence of E is the exact sequence

holomorphic vector bundles given by

0→ E ⊗ T ∗X → J1(E)→ E → 0,

where J1(E) the bundle of first-order jets of E The Atiyah class is the element At(E) ∈ H1(X,Ω1
X⊗

EndOX (E)) associated to the extension above.

Remark 2.22. Taking linear duals we see tha above short exact sequence is equivalent to one of

the form

0→ End(E)→ A(E)→ TX → 0

where A(E) is the so-called Atiyah bundle associated to E.

We should remark that the sheaf A(E) of holomorphic sections of the Atiyah bundle A(E) is a

Lie algebra by borrowing the Lie bracket on vector fields. By inspection, the Atiyah sequence of

sheaves (by taking sections) is a sequence of Lie algebras; in fact, A(E) is a central example of a

Lie algebroid, as the quotient map to vector fields TX on X is an anchor map.

Atiyah also examined how this sequence relates to the Chern theory of connections.

Proposition 2.23. A holomorphic connection on E is a splitting of the Atiyah sequence (as

holomorphic vector bundles).

Atiyah’s first main result in the paper is the following.

Proposition 2.24 (Theorem 2, [Ati57]). A connection exists on E if and only if the Atiyah class

At(E) vanishes.

He observes immediately after this statement that the construction is functorial in maps of

bundles. Later, he finds a direct connection between the Atiyah class and the curvature of a

smooth connection. A smooth connections always exists (i.e., the sequence splits as smooth vector

bundles, not necessarily holomorphically), and one is free to choose a connection such that the local

1-form only has Dolbeault type (1, 0), i.e., is an element in Ω1,0(X; End(E)). In that case, the (1, 1)-

component Θ1,1 of the curvature Θ is a 1-cocycle in the Dolbeault complex (Ω1,∗(X; End(E)), ∂)

for End(E) and its cohomology class [Θ1,1] is the Atiyah class At(E). In consequence, Atiyah

deduces the following.
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Proposition 2.25. For X a compact Kähler manifold, the kth Chern class ck(E) of E is given by

the cohomology class of (2πi)−kSk(At(E)), where Sk is the kth elementary symmetric polynomial,

and hence only depends on the Atiyah class.

This assertion follows from the degeneracy of the Hodge-to-de Rham spectral sequence. More

generally, the term (2πi)−kSk(At(E)) agrees with the image of the kth Chern class in the Hodge

cohomology Hk(X; Ωkhol).

The functoriality of the Atiyah class means that it makes sense not just on a fixed complex

manifold, but also on the larger sites Holn and GKn. We thus immediately obtain from Atiyah

the following notion.

Definition 2.26. For each V ∈ VB(Holn), the Atiyah class At(V ) is the equivalence class of the

extension of the tangent bundle T by End(V ) given by the Atiyah sequence.

Moreover, we have the following.

Lemma 2.27. The cohomology class of (2πi)−kSk(At(V )) provides a section of the sheaf Hk(X; Ωkhol).

On any compact Kähler manifold, it agrees with ck(V ).

2.5.2. The formal Atiyah class. We now wish to show that Gelfand-Kazhdan descent sends an

exact sequence in VB(Wn,GLn) to an exact sequence in VB(GKn) (and hence in VB(Holn)). It

will then remain to verify that for each tensor bundle on Holn, there is an exact sequence over the

formal n-disk that descends to the Atiyah sequence for that tensor bundle.

We will use the notation descGK(V) to denote the functor descGK(−,V) : GKop
n → Pro(VB)flat,

since we want to focus on the sheaf on GKn (or Holn) defined by each formal vector bundle V.

Taking flat sections we get an O-module DescGK(V) which is locally free of finite rank and so

determines an object in VB(GKn).

Lemma 2.28. If

A → B → C

is an exact sequence in VB(Wn,GLn), then

DescGK(A)→ DescGK(B)→ DescGK(C)

is exact in VB(GKn).

Proof. A sequence of vector bundles is exact if and only if the associated sequence of O-modules is

exact (i.e., the sheaves of sections of the vector bundles). But a sequence of sheaves is exact if and

only if it is exact stalkwise. Observe that there is only one point at which to compute a stalk in the

site Holn, since every point x ∈ X has a small neighborhood isomorphic to a small neighborhood

of 0 ∈ Cn. As we are working in an analytic setting, the stalk of a O-module at a point x injects

into the ∞-jet at x. Hence, it suffices to verifying the exactness of the sequence of ∞-jets. Hence,

we consider the ∞-jet at 0 ∈ Cn of the sequence descGK(A)→ descGK(B)→ descGK(C). But this

sequence is simply A→ B → C, which is exact by hypothesis. �

Corollary 2.29. There is a canonical map from Ext1
(Wn,GLn)(B,A) to Ext1

GKn(DescGK(B),DescGK(A)).

In particular, once we produce the (Wn,GLn)-Atiyah sequence for a formal tensor field V, we

will have a very local model for the Atiyah class living in C∗Lie(Wn,GLn; Ω̂1
n ⊗Ôn EndÔn(V)).
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2.5.3. The formal Atiyah sequence. Let V be a formal vector bundle. We will now construct the

“formal” Atiyah sequence associated to V. First, we need to define the (Wn,GLn)-module of first

order jets of V. Let’s begin by recalling the construction of jets in ordinary geometry.

If X is a manifold, we have the diagonal embedding ∆ : X ↪→ X × X. Correspondingly,

there is the ideal sheaf I∆ on X ×X of functions vanishing along the diagonal. Let X(k) be the

ringed space (X,OX×X/Ik∆) describing the kth order neighborhood of the diagonal in X×X. Let

∆(k) : X(k) → X×X denote the natural map of ringed spaces. The projections π1, π2 : X×X → X

compose with ∆(k) to define maps π
(k)
1 , π

(k)
2 : X(k) → X. Given an OX -module V, “push-and-pull”

along these projections,

JkX(V) = (π
(k)
1 )∗(π

(k)
2 )∗V,

defines the OX -module of kth order jets of V.

There is a natural adaptation in the formal case. The diagonal map corresponds to an algebra

map ∆∗ : Ô2n → Ôn. Fix coordinatizations Ôn = CJt1, . . . , tnK and Ô2n = CJt′1, . . . , t′n, t′′1 , . . . , t′′nK.
Then the map is given by ∆∗(t′i) = ∆∗(t′′i ) = ti.

Let În = ker(∆∗) ⊂ Ô2n be the ideal given by the kernel of ∆∗. For each k there is a quotient

map

∆(k)∗ : Ô2n → Ô2n/Îk+1
n ,

The projection maps have the form

π
(k)∗
1 , π

(k)∗
2 : Ôn → Ô2n/Îk+1

n ,

which in coordinates are π∗1(ti) = t′i and π∗2(ti) = t′′i .

Definition 2.30. Let V be a formal vector bundle on D̂n. Consider the Ô2n/Îk+1
n -module V ⊗Ôn(

Ô2n/Îk+1
n

)
, where the tensor product uses the Ôn-module structure on the quotient Ô2n/Îk+1

n

coming from the map π
(k)∗
2 . We define the kth order formal jets of V, denoted Jk(V), as the

restriction of this Ô2n/Îk+1
n -module to a Ôn-module using the map π

(k)∗
1 : Ôn → Ô2n/Îk+1

n .

Lemma 2.31. For any V ∈ VBn the kth order formal jets Jk(V) is an element of VBn.

Proof. For V in VBn there is an induced action of (Wn,GLn) on the tensor product V ⊗Ôn
Ô2n/Îk+1

n . For fixed k we see that Ô2n/Îk+1
n is finite rank as a Ôn module. Thus it is immediate

that this module satisfies the conditions of a formal vector bundle. �

As a C-linear vector space we have J1(V) = V⊕(V⊗Ôn Ω̂1
n). For f ∈ Ôn and (v, β) ∈ V⊕(V⊗Ω̂1

n),

the Ôn-module structure is given by

f · (v, β) = (fv, (fβ + v ⊗ df)).

(This formula is the formal version of Atiyah’s description in Section 4 of [Ati57], where he uses

the notation D.) The following is proved in exact analogy as in the non-formal case which can also

be found in Section 4 of [Ati57], for instance.

Proposition 2.32. For any V ∈ VB(Wn,GLn), the Ôn-module J1(V) has a compatible action of

the pair (Wn,GLn) and hence determines an object in VB(Wn,GLn). Moreover, it sits in a short

exact sequence of formal vector bundles

(2) V ⊗ Ω̂1
n → J1(V)→ V.
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Finally, the Gelfand-Kazhdan descent of this short exact sequence is isomorphic to the Atiyah

sequence

DescGK(V)⊗ Ω1
hol → J1DescGK(V)→ DescGK(V).

In particular, J1descGK(V) = descGK(J1V).

We henceforth call the sequence (2) the formal Atiyah sequence for V.

Remark 2.33. Note that J1(V) is an element of the category VBn but it is not a formal tensor

field. That is, it does not come from a linear representation of GLn via coinduction.

Remark 2.34. A choice of a formal coordinate defines a splitting of the first-order jet sequence as

Ôn-modules. If we write V = Ôn ⊗C V, then one defines

j1 : V → J1V , f ⊗C v 7→ (f ⊗C v, (1⊗C v)⊗O df).

It is a map of Ôn-modules, and it splits the obvious projection J1(V) → V. We stress, however,

that it is not a splitting of Wn-modules. We will soon see that this is reflected by the existence of

a certain characteristic class in Gelfand-Fuks cohomology.

Note the following corollary, which follows from the identification

Ext1(V ⊗Ôn Ω̂1
n,V) ∼= C1

Lie(Wn,GLn; Ω̂1
n ⊗Ôn EndÔn(V))

and from the observation that an exact sequence in VB(D̂n) maps to an exact sequence in

VB(GKn).

Corollary 2.35. There is a cocycle AtGF(V) ∈ C1
Lie(Wn,GLn; Ω̂1

n ⊗Ôn EndÔn(V)) representing

the Atiyah class At(descGK(V)).

We call this cocycle the Gelfand-Fuks-Atiyah class of V since it descends to the ordinary Atiyah

class for desc(V) as a sheaf of O-modules.

Definition 2.36. The Gelfand-Fuks-Chern character is the formal sum chGF(V) =
∑
k≥0 chGF

k (V),

where the kth component

chGF
k (V) :=

1

(−2πi)kk!
Tr(AtGF(V)k)

lives in CkLie(Wn,GLn; Ω̂kn).

It is a direct calculation to see that chGF
k (V) is closed for the differential on formal differential

forms, i.e., it lifts to an element in CkLie(Wn,GLn; Ω̂kn,cl).

2.5.4. An explicit formula. In this section we provide an explicit description of the Gelfand-Fuks-

Atiyah class

AtGF(V) ∈ C1
Lie(Wn,GLn; Ω̂1

n ⊗Ôn EndÔ(V)).

of a formal vector bundle V.

By definition, any formal vector bundle has the form V = Ôn ⊗ V , with V a finite-dimensional

vector space. We view V as the “constant sections” in V by the inclusion i : v 7→ 1⊗ v. This map

then determines a connection on V: we define a C-linear map ∇ : V → Ω̂1
n ⊗Ôn V by saying that

for any f ∈ Ôn and v ∈ V ,

∇(fv) = ddR(f)v,

where ddR : Ôn → Ω̂1
n denote the de Rham differential on functions. This connection appeared

earlier when we defined the splitting of the jet sequence j1 = 1⊕∇.
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The connection ∇ determines an element in C1
Lie(Wn; Ω̂1

n ⊗Ô EndÔ(V)), as follows. Let

ρV : Wn ⊗ V → V

denote the action of formal vector fields and consider the composition

Wn ⊗ V
id⊗i−−−→Wn ⊗ V

ρV−−→ V ∇−→ Ω̂1
n ⊗Ô V.

Since V spans V over Ôn, this composite map determines a C-linear map

αV,∇ : Wn → Ω̂1
n ⊗Ô EndÔ(V)

by

αV,∇(X)(fv) = f∇(ρV(X)(i(v))),

with f ∈ Ôn and v ∈ V .

Proposition 2.37. Let V be a formal vector bundle. Then αV,∇ is a representative for the Gelfand-

Fuks-Atiyah class AtGF(V).

Proof. We begin by recalling some general facts about the Gelfand-Fuks-Atiyah class as an ex-

tension class of an exact sequence of modules. Viewing Ôn as functions on the formal n-disk,

we can ask about the jets of such functions. A choice of formal coordinates corresponds to an

identification Ôn ∼= C[[t1, . . . , tn]], and that choice provides a trivialization of the jet bundles by

providing a preferred frame. This frame identifies, for instance, J1 with Ôn ⊕ Ω̂1
n, and the1-jet of

a formal function f can be understood as (f, ddRf).

For a formal vector bundle V = Ôn⊗ V , something similar happens after choosing coordinates.

We have J1(V) ∼= V ⊕ Ω̂1
n ⊗Ôn V and the 1-jet of an element of V can be written as

j1 : V → J1(V)

fv 7→ (fv, ddR(f)v).

where f ∈ Ôn and v ∈ V . The projection onto the second summand is precisely the connection ∇
on V determined by V = Ôn ⊗ V , the defining decomposition.

The Gelfand-Fuks-Atiyah class is the failure for this map ∇ to be a map of Wn-modules. Indeed,

∇ determines a map of graded vector spaces

1⊗∇ : C#
Lie(Wn;V)→ C#

Lie(Wn; Ω̂1
n ⊗Ô V).

Let dV denote the differential on C∗Lie(Wn;V) and dΩ1⊗V denote the differential on C∗Lie(Wn; Ω̂1
n⊗Ω̂

V). The failure for 1⊗∇ is precisely the difference

(3) (1⊗∇) ◦ dV − dΩ1⊗V ◦ (1⊗∇).

This difference is C#
Lie(Wn) linear and can hence be thought of as a cocycle of degree one in

C∗Lie(Wn; Ω̂1 ⊗Ô EndÔ(V)). This is the representative for the Atiyah class.

We proceed to compute this difference. The differential dV splits as dWn
⊗ 1V + d′ where dWn

is the differential on the complex C∗Lie(Wn) and d′ encodes the action of Wn on V. Likewise, the

differential dΩ1⊗V splits as dWn
⊗ 1Ω1⊗V + dΩ1 ⊗ 1V + 1Ω1 ⊗ d′ where dΩ1 is the differential on the

complex C∗Lie(Wn; Ω̂1
n).

The de Rham differential clearly commutes with the action of vector fields so that (1⊗ ddR) ◦
(dO ⊗ 1) = (dWn

+ dΩ1) ◦ (1⊗ ddR) so that the the difference in (3) reduces to

(1⊗∇) ◦ d′ − (1Ω1 ⊗ d′) ◦ (1⊗∇).
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By definition d′ is the piece of the Chevalley-Eilenberg differential that encodes the action of Wn

on V, so if we evaluate on an element of the form 1 ∈ v ∈ C0
Lie(Wn;V ) ⊂ C0

Lie(Wn;V) the only

term that survives is the GF 1-cocycle

X 7→ ∇d′(1⊗ v)(X) = ∇(ρV(X)(v)).

as desired. �

Corollary 2.38. On the formal vector bundle T̂n encoding formal vector fields, fix the Ôn-basis

by {∂j} and the Ôn-dual basis of one-forms by {dtj}. The explicit representative for the Atiyah

class is given by the Gelfand-Fuks 1-cocycle

f i∂i 7→ −ddR(∂jf
i)(dtj ⊗ ∂i)

taking values in Ω̂1
n ⊗Ôn EndÔ(T̂n).

Proof. We must compute the action of vector fields on Ôn-basis elements of T̂n. We fix formal

coordinates {tj} and let {∂j} be the associated constant formal vector fields. Then the structure

map is given by the Lie derivative ρT̂ (f i∂i, ∂j) = −∂jf i. The formula for the cocycle follows from

the Proposition. �

We can use this result to explicitly compute the cocycles representing the Gelfand-Kazhdan

Chern characters. For instance, we have the following formulas that will be useful in later sections.

Corollary 2.39. The second component chGF
2 (T̂n) of the universal Chern character is the cocycle

Tr(AtGF(T̂n)∧2) : (f i∂i, g
j∂j) 7→ −ddR(∂jf

i) ∧ ddR(∂ig
j)

in C2
Lie(Wn,GLn; Ω̂2

n). As the de Rham differential ddR : Ω̂1
n → Ω̂2

n is Wn-equivariant, there is an

element α in C2
Lie(Wn,GLn; Ω̂1

n) such that

chGF
2 (T̂n) = ddRα

where

α : (f i∂i, g
j∂j) 7→ −∂jf i ∧ ddR(∂ig

j).

Moreover, as ch2 is closed for the differential ∂, it lifts to a cocycle in C2
Lie(Wn,GLn; Ω̂2

n,cl).

2.5.5. Extended pair. The 2-cocycle chGF
2 (T̂n) determines an extension Lie algebras of Wn by the

abelian Lie algebra Ω̂2
n,cl

0→ Ω̂2
n,cl → W̃n →Wn → 0.

We have already discussed the pair (Wn,GLn). We will need that the above extension of Lie

algebras fits in to a Harish-Chandra pair as well. The action of GLn extends to an action on W̃n

where we declare the action of GLn on closed two-forms to be the natural one via linear formal

automorphisms.

Lemma 2.40. The pair (W̃n,GLn) form a Harish-Chandra pair and fits into an extension of pairs

0→ Ω̂2
n,cl → (W̃n,GLn)→ (Wn,GLn)→ 0

which is determined by the cocycle chGF
2 (T̂n).

One might be worried as to why there is only a non-trivial extension of the Lie algebra in the

pair. The choice of a coordinate determines an embedding of linear automorphisms GLn into

formal automorphisms Autn. The extension of formal automorphisms Autn defined by the group

two-cocycle chGF
2 (T̂n) is trivial when restricted to GLn so that it does not get extended.
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3. Harish-Chandra structure on CDOs

In this section, we first recall the definition of chiral differential operators on affine space Cn; this

object always exists and there is no obstruction to defining it. Then we formulate a construction

of chiral differential operators on more general complex manifolds based on the theory of Gelfand-

Kazhdan descent developed in the previous section. The key element of this formulation is the

Harish-Chandra module structure for formal vector fields and automorphisms, much of which has

been studied in the literature on vertex algebras. The two main results we extract is Theorem 3.15

which shows how formal automorphisms act, and Theorem 3.12 which shows how formal vector

fields act. We find these actions to be compatible and deduce the structure of a module

3.1. Recollections on vertex algebras.

3.1.1. Recollections. We briefly recall the definition of a vertex algebra and some other notions

associated to vertex algebras. Our main references are [FBZ04] and [Kac98].

Definition 3.1. A vertex algebra is the following data:

(i) a vector space V over C (the state space);

(ii) a nonzero vector |0〉 ∈ V (the vacuum vector);

(iii) a linear map T : V → V (the translation operator);

(iv) a linear map Y (−; z) : V → End(V )Jz±K (the vertex operator);

subject to the following conditions:

(1) For v ∈ V , let

Y (v; z) =
∑
n∈Z

v(n)z
−n−1

in End(V )Jz±K. (We call the endomorphisms v(n) the Fourier modes of Y (v; z).) Then

for each w ∈ V there exists some N ∈ Z such that v(j)w = 0 for all j > N .

(2) Y (|0〉 ; z) = idV and Y (v; z) |0〉 ∈ v + zV JzK for all v ∈ V .

(3) For every v, [T, Y (v; z)] = ∂zY (v; z), and T |0〉 = 0.

(4) For any pair v, v′ ∈ V , there exists N ∈ Z≥0 such that (z − w)N [Y (v; z), Y (v′;w)] = 0.

Remark 3.2. Alternatively, one can formulate the definition of a vertex algebra in terms of the

Fourier modes v(n). Indeed, our definition above provides a family of bilinear operations

(−)(n)(−) : V × V → V

(v, w) 7→ v(n)w

These operations satisfy algebraic conditions coming from conditions (1)-(4) above. For instance,

see [Kac98].

We will be interested in, and take advantange of, vertex algebras with the additional structure

of a Z≥0-grading. This grading is not cohomological in nature and does not follow the Koszul sign

rule. We call it the conformal dimension grading.

Definition 3.3. A vertex algebra as above is Z≥0-graded if the underlying state space V is a

Z≥0-graded vector space V =
⊕

N∈Z≥0
V (N) such that

(1) the vacuum |0〉 has dimension zero,

(2) the translation operator T is a dimension 1 map, and

(3) for v ∈ V (N) the dimension of the endomorphism v(m) is −m+N − 1.

Condition (3) ensures that if v ∈ V (N) and w ∈ V (M), then v(m)w ∈ V−m+N+M−1.
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3.1.2. Actions on vertex algebras. We now discuss what it means for a Harish-Chandra pair to act

on a vertex algebra.

It is clear how to define an action of a Lie group on a vertex algebra V . Indeed, if K is a Lie

group then by an action of K on V is a group homomorphism

ρK : K → AutVA(V )

where AutVA(V ) are the vertex algebra automorphisms. That is, maps of vertex algebras V → V

whose underlying C-linear map is invertible.

To define the action of a Lie algebra on V we first recall what a vertex algebra derivation is. It

is the data of a linear map D : V → V such that for all v ∈ V one has

Y (Dv; z) = [D,Y (v; z)].

The set of all derivations forms a Lie algebra which we denote DerVA(V ). An action of a Lie

algebra g on V is the data of a homomorphism

ρg : g→ DerVA(V ).

It also makes sense to talk about vertex algebras that have actions by apair (g,K). Indeed, a

(g,K)-action on a vertex algebra V is a (g,K)-action is given by actions of g and K as above such

that we have the obvious compatibility.

The underlying vector space of a vertex algebra is almost always infinite dimensional, however,

and so does not immediately fit into our definition of a module of a Harish-Chandra pair from

Section 1. We sidestep this issue by focusing on vertex algebras are graded by conformal dimension

where the conformal dimension N space V (N) is finite dimensional for each N (in our case, finite

rank over Ôn) so that we have a well-behaved category of modules. From here on, we will assume

the following definition of an action on a vertex algebra.

Definition 3.4. An action of a Harish-Chandra pair (g,K) on a Z≥0-graded vertex algebra V =⊕
N V

(N) is a collection of (g,K)-actions (ρ
(N)
g , ρ

(N)
K ) on the underlying fixed conformal dimension

spaces V (N) such that:

(1) for each x ∈ g the induced map ⊕Nρ(N)
g (x) is a vertex algebra derivation for V , and

(2) for each A ∈ K the induced map ⊕Nρ(N)
K (A) is a vertex algebra automorphism for V .

3.2. The βγ-vertex algebra. One of the main objects that we will focus on is the vertex algebra

of chiral differential operators on Cn. In the physics literature [Wit07], [Nek], [Pol98] it is typically

called the n-dimensional βγ vertex algebra.

Definition 3.5. Let CDOn denote the vertex algebra of chiral differential operators for Cn. The

underlying vector space is

C[bjl , c
j
m]1≤j≤n,l<0,m≤0,

the translation operator T is

bjm 7→ −mb
j
m−1,

cjm 7→ −(m− 1)cjm−1,

and the vertex operator is

Y (bj−1, z) =
∑
m<0

bjmz
−1−m +

∑
m≥0

∂

∂cj−m
z−1−m
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and

Y (cj0, z) =
∑
m≤0

cjmz
−m −

∑
m>0

∂

∂bj−m
z−m.

These determine a vertex algebra by a reconstruction theorem (see, e.g., Theorem 2.3.11 of [FBZ04]).

This vertex algebra CDOn is a Z≥0-graded. We specify this by saying that cj0 has conformal

dimension 0 and bj−1 has conformal dimension 1. Denote by CDO(N)
n the conformal dimension N

subspace.

Remark 3.6. The generators of this vertex algebra are given a variety of symbols:

(1) in [MSV99], they use ajm for what we call bjm and bjm for our cjm;

(2) in Chapter 11 Section 3.6 of [FBZ04], they use aj−m for what we call bjm and a∗j−m for our

cjm.

3.2.1. Completion. Consider the conformal dimension zero piece of a Z≥0-graded vertex algebra

V (0) ⊂ V . The (−1)-Fourier mode preserves this subspace and hence has the form of a bilinear

operation

(−)(−1)(−) : V (0) × V (0) → V (0).

The vertex algebra axioms guarantee that this endows V (0) with the structure of a commutative

algebra.

The underlying vector space of CDOn is identified with C[bil, c
j
m] where l < 0, m ≤ 0, and i, j =

1, . . . , d. One identifies the commutative algebra On as the conformal dimension zero subspace

CDO(0)
n ⊂ CDOn, which consists of polynomials in the variables c10, . . . , c

n
0 . That is, we have a

multiplicative isomorphism

τ : On = C[t1, . . . , tn] → CDO0
n

ti 7→ ci0.

In other words, for any polynomial f , we substitute ci0 for ti in the polynomial f . We will express

this, somewhat abusively, as τ(f) = f(c).

Note that “multiplicative” makes sense here: we have just seen that the conformal dimension

zero subspace of any Z≥0-graded vertex algebra has the structure of a commutative algebra. In

this way, CDOn is a module for the commutative algebra On.

We use this module structure to complete along powers of {t1, . . . , tn}. That is, we base change

CDOn to a module for Ôn:

ĈDOn := Ôn ⊗On CDOn.

In Theorem 3.1 of [MSV99] it is shown that this module obtains a vertex algebra structure by

extending that on CDOn. The critical step is showing that the vertex operator

Y (−, z) : ĈDOn → End(ĈDOn)Jz, z−1K

is well defined. Every power series f ∈ Ôn is a limit of polynomials {fk} ⊂ On. According to the

inclusion (3.2.1), every fk ∈ On determines a field

fk(z) := fk(c10(z), . . . , cn0 (z)) ∈ End(CDOn)Jz, z−1K.

The result of [MSV99] is that the limit of {fk(z)} determines a field

f(z) := f(c10(z), . . . , cn0 (z)) ∈ End(ĈDOn)Jz, z−1K.

Note that ĈDOn is still a Z-graded vertex algebra, inherited from the conformal dimension Z-

grading on CDOn. Indeed, for each N ∈ Z we have ĈDO
(N)

n = Ôn ⊗On CDO(N)
n .
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3.2.2. The primary complication in gluing chiral differential operators CDOn to a sheaf on a

general manifold is that the group of automorphisms of the disk do not act as automorphisms

of the vertex algebra. This problem appears for the formal disk as well. The group of formal

automorphisms Autn do not act on ĈDOn, as we will see explicitly at the level of formal vector

fields, in way preserving the vertex operator.

If we restrict ourselves to linear automorphisms of the disk, however, we find that there is no

such problem. Indeed we can explicitly describe the action of the Lie group GLn by vertex algebra

automorphisms on CDOn and ĈDOn as follows. Denote by bm the n-tuple (b1m, . . . , b
n
m) considered

as a vector in Cn and cm as the vector (c1m, . . . , c
n
m). Given A ∈ GLn, the action of A is specified

by

A · c0 = Ac0(4)

A · b−1 = (AT )−1b−1(5)

where on the right-hand side we understand matrix multiplication. Clearly this action preserves

the Z≥0-grading.

3.3. The classical limit. While the βγ vertex algebra does not carry an action of formal au-

tomorphisms or formal vector fields, its “classical limit” does. For this reason, descending the

classical vertex algebra is much simpler and the formalism of Gelfand-Kazhdan descent from Sec-

tion 2 directly applies. (For an alternative approach to this see [Mal08]) First, we discuss what we

mean by the classical limit of CDOn.

For each fixed conformal dimension N ∈ Z, there is a filtration on the subspace CDO(N)
n that

we now describe. First we set up some notation.

Let L = ((i1, l1), . . . , (ip, lp)) ∈ ({1, . . . , n} × Z<0)
p
, M = ((j1,m1), . . . ,mq)) ∈ ({1, . . . , n} × Z≤0)

q

be multi-indices of length p and q respectively. Define

bL := bi1l1 · · · b
ip
lp

cM := cj1m1
· · · cjqmq .

Then as a vector space, the dimension N subspace CDO(N)
n is generated by monomials of the form

cMbL where

|L|+ |M | = (l1 + · · · lp) + (m1 + · · ·mq) = −N.

Define the subspace F kCDO(N)
n as the C-linear span of all elements of the form cMbL such that

p ≤ k where p is the length of the multi-index L as above. This construction also provides a

filtration on ĈDO
(N)

n .

Proposition 3.7. The associated graded

Gr CDOn :=
⊕
N∈Z

Gr(CDO(N)
n ) =

⊕
N

(⊕
k

F kCDO(N)
n /F k−1CDO(N)

n

)

has the structure of a Z≥0-graded Poisson vertex algebra, as does Gr ĈDOn.

Roughly, a vertex algebra can be thought of as an integer family of products. A Poisson vertex

algebra is essentially a commutative vertex algebra together with an integer family of brackets that

act on the underlying commutative vertex algebra by derivations. For the precise definition of a

Poisson vertex algebra see Chapter 16 Section 2 of [FBZ04]. The fact that Gr CDOn is a Poisson

vertex algebra follows from the well-known fact.
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Proposition 3.8 (Chapter 16 of [FBZ04] ). If V is a filtered vertex algebra such that Gr V is a

commutative vertex algebra, then Gr V carries a canonical structure of a Poisson vertex algebra.

Remark 3.9. The associated graded Gr CDOn can be thought of as a classical limit of the vertex

algebra CDOn. We can introduce a deformation parameter ~ by modifying the definition of the

vertex operator to

Y (bj−1, z) =
∑
n<0

bjnz
−1−n + ~

∑
n≥0

∂

∂cj−n
z−1−n

and

Y (cj0, z) =
∑
n≤0

cjnz
−n − ~

∑
n>0

∂

∂bj−n
z−n.

These formulas define a vertex algebra CDOn,~ over the ring C~ = C[~] whose specialization ~ = 1

agrees with CDOn. Moreover, when we specialize ~ = 0 we get the Poisson vertex algebra above.

It is called the “classical” βγ vertex algebra.

For each conformal dimension N , we can thus identify the associated graded Gr(CDO(N)
n ) with

a direct sum of symmetric powers of tensor modules on Cn. Under this identification, the Lie

algebra of polynomial vector fields

Wpoly
n = C[t1, . . . , tn]{∂1, . . . , ∂n}

acts via Lie derivative on Gr CDOn. Expressing the Lie algebra of formal vector fields as Wn =

Ôn ⊗On Wpoly
n , we find that Wn acts on the vertex algebra Gr ĈDOn via derivations.

Proposition 3.10. The construction in the preceding paragraph defines the structure of a (Wn,GLn)-

module on the Z≥0-graded vertex algebra Gr ĈDOn preserving the family of brackets definining the

Poisson vertex algebra structure. Moreover, this action is compatible with the Ôn-module structure.

Proof. The associated graded can be written as

Gr ĈDOn
∼=
⊗̂
0<k

ŜymÔn(T̂ ∗n ) ⊗̂
⊗̂
0≤l

ŜymÔn(T̂n).

The action by Wn and GLn is by Lie derivative and changes of linear frame on the respective

tensor bundles appearing in the large decomposition above. �

3.3.1. Conformal structure. The vertex algebra CDOn, and its completion ĈDOn, has the ad-

ditional structure of a conformal vertex algebra of central charge equal to twice the dimension

2n. This means that ĈDOn receives a map from the Virasoro vertex algebra, Virc=2n, of cen-

tral charge c = 2n. The Virasoro vertex algebra is the Z≥0-graded with underlying vector space

Virc = C[Lk, C] where k ≤ −2 and generating field given by

Y (L−2, z) =
∑
k∈Z

Lkz
−k−2.

where the conformal dimension of L−2 is 2. A conformal vector for ĈDOn is defined by

L−2 :=

n∑
i=1

bi−1Tc
i
0 =

n∑
i=1

bi−1c
i
−1 ∈ ĈDO

(2)

n .

Remark 3.11. Suppose V is a conformal vertex algebra and L0 ∈ V is the zero Fourier mode of

the Virasoro field. Then for every v ∈ V one has L0v = N(v)v for some N(v) ∈ Z. If N(v) ∈ Z≥0

for all v we see that L0 determines the structure of a Z≥0 vertex algebra on V where V (N) equals

the N -eigenspace of the L0 operator. This motivates the use of the term “conformal dimension”

for a Z≥0-graded vertex algebra.
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3.4. Harish-Chandra structure on CDOn. As opposed to the classical limit the vertex algebra

ĈDOn is not a module for the pair (Wn,GLn). The main result of this section is to show that

there is an extension of this Harish-Chandra pair that does act on the vertex algebra. This is

largely based on the work of [MSV99] and [GMS00], as well as [GMS04], and we summarize their

results below.

3.4.1. Extension of vector fields. On the Lie algebra side, the extension of Lie algebras that acts on

ĈDOn is precisely the extension W̃n of formal vector fields by Ω̂2
n,cl defined by the Gelfand-Fucks

second component of the Chern character defined in Section 2. We now recall the construction in

[MSV99] that describes how this extension acts. We can state the main result as follows.

Theorem 3.12. [Section 5.1 of [MSV99]] There is map of Lie algebras

ρ : W̃n ↪→ DerVA(ĈDOn)

of the extended Lie algebra W̃n into derivations of vertex algebra of chiral differential operators on

the formal n-disk. In particular, ĈDOn is a W̃n-module.

First, we describe how one embeds the vector space of formal vector fields inside of chiral differ-

ential operators on D̂n. We have already described how to map a formal power series f(t1, . . . , tn)

to an element f(c10, . . . , c
n
0 ) ∈ ĈDO

(0)

n . This puts the structure of an Ôn-module on ĈDO
(N)

n for

each N . Note that as Ôn-modules we have a splitting Wn = Ôn ⊗ C{∂1, . . . , ∂n}. We define

τW : Wn → ĈDO
(1)

n ,

f(t)∂j 7→ τ(f)bj−1 = f(c)bj−1.

In other words, we substitute ci0 for ti in the power series f and replace ∂j by bj−1.

The subspace of vectors of conformal dimension one ĈDO
(1)

n acts on the vertex algebra through

left multiplication by its zero Fourier mode

(−)(0)(−) : CDO(1)
n × CDOn → CDOn

In fact, for a fixed a ∈ ĈDO
(1)

n the endomorphism a(0) is a derivation of the vertex algebra. The

composite map of taking the zero mode after τW thus produces a linear map

ρW : Wn → DerVA(ĈDOn),

f(t)∂j 7→ (τ(f)bj−1)(0) = (f(c)bj−1)(0).

Moreover, for any a ∈ ĈDO
(1)

n , the derivation a(0) : ĈDOn → ĈDOn preserves the Z-grading and

so defines a map a(0) : ĈDO
(N)

n → ĈDO
(N)

n for each N ∈ Z. A quick calculation verifies that this

map is not a map of Lie algebras. This issue is remedied this by introducing an extension of Lie

algebras, as we will see shortly.

3.4.2. We introduce the space of 1-forms Ω̂1
n on the formal disk. Considered as an abelian Lie

algebra this acts on the vertex algebra ĈDOn as we now describe.

The de Rham differential ddR : Ôn → Ω̂1
n has an interpretation in the vertex algebra ĈDOn as

the translation operator T defining the vertex algebra structure. Indeed, we define

τΩ1 : Ω̂1
n → ĈDO

(1)

n ,

f(t)dtj 7→ τ(f)T (cj0) = f(c)T (cj0).
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As Ω̂1
n is abelian, the map τΩ1 automatically determines a Lie algebra representation of Ω1

n on

CDOn via the Lie algebra homomorphism

ρΩ1 : Ω̂1
n → DerVA(ĈDOn),

ω 7→ τΩ1(ω)(0).

It is clear that the action by an exact one-form is zero, so ρΩ1 factors as

Ω̂1
n → Ω̂1

n/dÔn ∼= Ω̂2
n,cl

ρ
Ω2
cl−−−→ DerVA(ĈDOn),

where we have identified Ω̂1
n/dÔn ∼= Ω̂2

n,cl via the de Rham differential. The map ρΩ2
cl

is the desired

action by closed two-forms.

We can explicitly describe the action by a closed two-form f(t1, . . . , tn)dtj1dtj2 by

ρΩ2
cl

(f(t1, . . . , tn)dtj1dtj2) =
(
f(ci0)T (cj10 )T (cj20 )

)
(1)
.

3.4.3. Consider the linear subspace

Wn := Im(ρW)⊕ Im(πΩ2
cl

) ⊂ DerVA(ĈDOn).

A direct calculation shows that Wn is actually a sub-Lie algebra of the vertex algebra derivations.

It is immediate that Im(ρΩ2
cl

) is an ideal in Wn and the quotient is isomorphic to Wn. Thus, Wn

sits in a short exact sequence

0→ Ω̂2
n,cl →Wn →Wn → 0.

The 2-cocycle determining this extension is

αMSV (f i∂i, g
j∂j) = −ddR(∂jf

i) ∧ ddR(∂ig
j).

This cocycle is precisely the cocycle chGF
2 (T̂n) determining the extension W̃n, so that we have

W̃n
∼= Wn.

Remark 3.13. In [MSV99] the connection to the Gelfand-Fuks Chern character is not present,

though our cocycle agrees on the nose with the vertex algebra calculation.

We have thus constructed a map of Lie algebras

ρ̃W = (ρW, ρΩ2
cl

) : W̃n
∼= Wn → DerVA(ĈDOn),

as desired.

3.4.4. We have already described the action of GLn on ĈDOn in (4) and (5). Combining the

results highlighted in the section above we obtain the following. This action is compatible with

the action of Wn just constructed. In conclusion, we can summarize the above as follows.

Proposition 3.14. The pair (W̃n,GLn) acts on the Z≥0-graded vertex algebra ĈDOn. Moreover,

this action is compatible with the Ôn-module structure.

3.5. Formal automorphisms. The above construction of the action of the pair (W̃n,GLn) on

the vertex algebra of CDOs will be sufficient for our purposes. In this section we review the

main result of [GMS00] which constructs an action of an extension of all formal automorphsims

Ãutn → Autn on CDOs. This action is compatible with our construction above.
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Theorem 3.15. Let AutV A(ĈDOn) denote the group of automorphisms of the vertex algebra

ĈDOn. There is a subgroup

Ãutn ↪→ AutVA(ĈDOn)

that fits in a short exact sequence of groups

(6) 0→ Ω̂2
n,cl → Ãutn → Autn → 1.

In [GMS00], this subgroup Ãutn ⊂ AutVA(ĈDOn) is characterized as the “natural” vertex

algebra automorphisms. We will outline their argument and attempt to explain the sense of

“natural” here.

First, as ĈDOn is Z-graded by conformal dimension, it is reasonable to restrict to dimension-

preserving automorphisms, which will be determined by where they send the generators. As

discussed above, the generators are in dimensions 0 and 1: the dimension 0 component can be

identified with Ôn — functions on the formal n-disk — and the dimension 1 component with

Ω̂1 ⊕ T̂ — one-forms and vector fields on the formal n-disk. We view the dimension 1 component

as 2-step filtered, with Ω̂1 as the submodule.

Before worrying about the vertex algebra structure, let us consider dimension-preserving maps

of the space of generators. This group is Aut(Ôn)×Aut(Ω̂1 ⊕ T̂ ). Following [GMS00], we restrict

our attention to an important subgroup. On the dimension 0 component, they only consider the

subgroup Autn. Note that every element of Autn acts on the dimension 1 component, since they are

tensor fields, so there is a natural map Autn → Aut(Ω̂1⊕T̂ ). On the dimension 1 component, they

restrict to automorphisms whose action respects the filtration and whose associated graded action

on Gr ĈDOn is simply the action induced by the underlying automorphism on the dimension

0 component. In other words, such an automorphism φ is “triangular”: it consists of a term

φ0 ∈ Autn and of an Ôn-linear map φ1 : T̂ → Ω̂1, and

φ(f, ω,X) = (φ0 · f, φ0 · ω + φ1(X), φ0 ·X) ∈ Ôn ⊕ Ω̂1 ⊕ T̂ .

Let us use AutGMS
n to denote this group considered in [GMS00]. The underlying set is isomorphic

to the product

Autn ×Matn(Ôn),

by using the natural isomorphism

Ω̂1
n⊗̂ÔnΩ̂1

n
∼= Matn(Ôn).

But this group AutGMS
n has an interesting group structure because of how Autn acts on the

dimension 1 component. In fact, it has the structure of a semi-direct product Autn npb (Ω̂1
n)⊗2,

where the pull-back action is as above.

By definition, the group Ãutn is the subgroup of AutGMS
n consisting of vertex algebra automor-

phisms. In other words, we pick out the dimension-preserving automorphisms of generators that

intertwine with the vertex operator and so on.

In [GMS00] it is shown that the composition

Ãutn → AutGMS
n → Autn
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is surjective and that its kernel is isomorphic to closed 2-forms. That is, one has a map of extensions

Ω̂2
n,cl

//

��

Ãutn //

��

Autn

��

Ω̂1
n ⊗ Ω̂1

n
// AutGMS

n
// Autn.

This identifies the relevant short exact sequence (6).

3.5.1. An explicit formula for the cocycle. In this section we describe an explicit group 2-cocycle

α̃GMS ∈ C2
Grp(Autn; Ω̂2

n,cl).

describing the extension (6). First, we elaborate on what we mean by a group 2-cocycle.

We use the van Est model for smooth group cohomology and denote the cochains by C∗Grp.

(See Chapter 3 of [Fuk86] for more discussion.) Given a Lie group G and M a representation,

let CkGrp(G;M) denote the space of smooth functions C∞(Gk,M). (Typically we have in mind a

finite-dimensional representation, but it is well-defined for any vector space M such that smooth

maps C∞(Gk,M) is defined.) The differential dGrp is defined by

(dGrpα)(g1, . . . , gk+1) = α(g2, . . . , gk+1)+

k∑
i=1

(−1)iα(g1, . . . , gigi+1, . . . , gk+1)+(−1)k+1α(g1, . . . , gk).

When M is itself a cochain complex with differential dM , we naturally obtain a double complex.

Let C∗Grp(G;M) denote the associated total complex, combining the differential dGrp and dM .

Note that a 2-cocycle α of C∗Grp(G;M) determines an extension

0→M → G̃α → G→ 0

where the group structure on G̃α is defined by

(g1,m1) · (g2,m2) = (g1g2,m1 + g1m2 + α(g1, g2)),

in the standard way.

We now proceed to write down a formula for the cocycle associated to the extension (6). Much

of the argumentation below is implicit in Section 6 of [GMS04] (in the context of the closely related

Čech approach to CDOs) and also in [GMS00], and we refer the reader to these sources for more

details.

Let Ω̂≥2
n denote a truncation of the de Rham complex: it is the total complex of the double

complex

Ω̂2
n

ddR−−→ Ω̂3
n

ddR−−→ · · · ddR−−→ Ω̂nn.

There is a natural action of Autn on this complex, as Cartan’s formula for the action of vector

fields on differential forms intertwines with the de Rham differential.

First, we write down a 2-cocycle αGMS ∈ C∗Grp(Autn; Ω̂≥2
n ). Following [GMS00], we give an

explicit formula via a pair of linear maps (α2, α3), where

α2 : Autn ×Autn → Ω̂2
n

(f1, f2) 7→ tr
(
g−1

1 ddRg1(ddRg2g
−1
2 )
)

and
α3 : Autn → Ω̂3

n

f 7→ 1
3 tr

(
(g−1ddRg)3

)
.
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This cochain is of degree 2 and has no terms of type Ωk for k ≥ 4. Here g1, g2, g are the Jacobians

of f1, f2, f , respectively. One immediately checks that this is a cocycle. That is,

ddRα2(f1, f2) = (dGrpα3)(f1, f2),

ddRα3(f1) = 0,

(dGrpα2)(f1, f2, f3) = 0,

for all f1, f2, f3 ∈ Autn. The last two equations are immediate by computation. The first equation

follows from the relation

(7) α3(f2 ◦ f1) = α3(f1) + f∗1α3(f2)− ddRα2(f1, f2),

which is an instance of the Polyakov-Wiegmann identity. The Jacobian of the composition f2 ◦ f1

is given by Jac(f2 ◦ f1) = f∗1 (g2)g1 as matrix-valued formal power series. Thus, for instance, we

have

ddR (Jac(f2 ◦ f1)) = f∗1 (ddRg2)g1 + f∗1 g2ddRg1.

Let g = Jac(f2 ◦ f1) so that α3(f2 ◦ f1) = 1
3Tr

(
(g−1ddRg)3

)
. Plugging in the formula for the

Jacobian we compute

1

3

(
g−1ddRg

)3
=

1

3

(
g−1

1 f∗1 (g−1
2 ddRg2)g1

)3
+

1

3

(
g−1

1 ddRg1

)3
+ {cross terms}.

Taking the trace of both sides we see that the first two terms return the first two terms of Equation

(7). In a similar way, a direct (albeit tedious) calculation shows that the cross terms agree with

ddRα(f1, f2).

By the formal Poincaré lemma we know that the inclusion Ω̂2
n,cl ↪→ Ω̂≥2

n is a quasi-isomorphism.

Moreover, this quasi-isomorphism is clearly Autn-equivariant so that we have a resulting quasi-

isomorphism of complexes

C∗Grp(Autn; Ω̂2
n,cl)→ C∗Grp(Autn; Ω̂≥2

n ).

A lift α̃GMS ∈ C2
Lie(Autn; Ω̂2

n,cl) of the cocycle αGMS = (α2, α3) under this quasi-isomorphism is

a representative for the group extension (6).

We can obtain an explicit formula as follows. Since ddRα3(f) = 0 for all f , the formal Poincaré

lemma assures the existence of a linear map µ : Autn → Ω̂2
n such that ddRµ = α3. We define the

2-cocycle

α̃GMS(f1, f2) = α2(f1, f2) + µ(f1) + f∗1µ(f2)− µ(f2 ◦ f1).

Via the Polyakov-Wiegmann identity (7), this element is closed and determines a 2-cocycle in

C2
Grp(Autn; Ω̂2

n,cl).

3.5.2. We discuss how the construction of Ãutn and its action on ĈDOn from Proposition 3.15 is

compatible with the action of (W̃n,GLn) on ĈDOn that we constructed in Proposition 3.14. First,

we see that the group cocycle αGMS is compatible with the cocycle ch2(T̂n) defining W̃n.

Given any Lie group and G-representation M , the derivative at the identity of G (and its

products Gk) determines a cochain map

D1 : C∗Grp(G;M)→ C∗Lie(g;M),

where we view M as a g = Lie(G)-module on the right hand side. Explicitly, given a k-cochain α

of G we define

(D1α)(x1, . . . , xk) =
d

dt
(α(x1(t), . . . , xk(t))|t=0

where xi(t) is the flow on G determined by xi ∈ g.
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The Lie algebra of formal automorphisms of the n-disk is identified with the subalgebra W0
n ⊂

Wn consisting of formal vector fields that vanish at the origin. Thus, there is a map of vector

spaces

(8) D1 : C2
Grp(Autn; Ω̂2

n,cl)→ C2
Lie(W0

n; Ω̂2
n,cl)

induced by taking the tangent space at the identity.

Proposition 3.16. The image of α̃GMS under the map (8) is equal to the restriction of chGF
2 (T̂n)

to formal vector fields that vanish at the origin.

This proposition shows that (W̃n, Ãutn) is a Harish-Chandra pair extending the pair (Wn,Autn).

Combined with Theorem 3.15 of [GMS00] we see that (W̃n, Ãutn) acts on the vertex algebra ĈDOn.

This action is compatible with the action of the pair (W̃n,GLn) we have constructed from Propo-

sition 3.14 in the following way.

There is a natural map p : Ãutn → GLn that takes a formal automorphism together with a closed

two-form and maps it to the linear piece of the 1-jet of the automorphism. This is clearly equivariant

for the action of vector fields so that we have an induced map of pairs p : (W̃n, Ãutn)→ (W̃n,GLn).

The choice of a formal coordinate determines a splitting s : GLn → Autn and hence a map of pairs

s : (W̃n,GLn)→ (W̃n, Ãutn). The action of (W̃n,GLn) on ĈDOn constructed in Proposition 3.14

is the restriction along the map s of the action by (W̃n, Ãutn) constructed in [GMS00].

3.6. The conformal structure for the equivariant vertex algebra. We have already seen

that the βγ vertex algebra is conformal so that there is a map of vertex algebras ΦVir : Virc=n →
ĈDOn. This map is not equivariant for the action of the extended Lie algebra W̃n (where we

equip Virc=n with a trivial W̃n action). We will see that the failure for this map to be a map of

W̃n-modules is measured by a certain Gelfand-Kazhdan characteristic class.

The map of vertex algebras ΦVir is completely determined by where it sends the Virasoro

generator, which we called L−2 ∈ ĈDO
(2)

n . Since Virc=n has the trivial W̃n module structure, we

see we see that ΦVir is map of W̃n-modules if and only if X̃ · L−2 is zero for all X̃ in W̃n. An

immediate calculation shows that closed two-forms act on L−2 by zero, thus it suffices to look at

X · L−2 for X ∈Wn.

Given any element a ∈ ĈDO
(2)

n we obtain a linear map given by the second Fourier mode

a(2) : ĈDO
(1)

n → ĈDO
(0)

n .

For X ∈ Wn, the element X · L−2 ∈ ĈDO
(2)

n thus determines a map (X · L−2)(2) : ĈDO
(1)

n →

ĈDO
(0)

n .

Finally, recall that we have described a map of Wn-modules τΩ1 : Ω̂1
n → ĈDO

(1)

n . It’s cokernel

is identified with T̂n. That is, there is a short exact sequence of Wn-modules

0→ Ω̂1
n → ĈDO

(1)

n → T̂n → 0.

Proposition 3.17. For each X ∈Wn the linear map (X ·L−2)(2) : ĈDO
(1)

n → Ôn factors through

the quotient T̂n

ĈDO
(1)

n

��

// Ôn

T̂n

α(X)

<<

.
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and hence determines an Ôn-linear map α(X) : T̂n → Ôn as in the diagram. Moreover, the

assignment X 7→ α(X) defines a cocycle in C1
Lie(Wn; Ω̂1

n) and is cohomologous to the Gelfand-

Fuks-Chern class cGF
1 (T̂n) ∈ C1

Lie(Wn; Ω̂1
n).

Proof. The fact that (X · L−2)(2) factors through T̂n follows from the following short calculation.

Lemma 3.18. For any c ∈ ĈDO
(0)

n we have (L−2)(2)(Tc). Similarly, for X ∈ Wn one has

(X · L−2)(2)(Tc) = 0.

Proof. Set L = L−2. Since T is a derivation we have T (L(2)c) = L(2)(Ta) + (TL)(2)a. Thus

L(2)(Tc) = T (L(2)c) − (TL)(2)c. For conformal dimension reasons we have L(2)c = 0, thus

L(2)(Tc) = −(TL)(2)c = 2L(1)c, again since T is a derivation. The element L is a Virasoro

vector, thus L(1) = T , so that L(1)c = Tc = 0, since c is of degree zero. Similarly, for X ∈Wn, we

have (X · L)(2)(Tc) = L(2)(X · Tc) = L(2)(TX · c)) as X is a derivation of the vertex algebra. �

We thus obtain a linear map α : Wn → Ω̂1
n. We verify that this is equal to cGF

1 (T̂n). The

formula for this Chern class is given by

cGF
1 (T̂n)(X) = ddR(∂ifi)

where X = fi∂i ∈Wn. We utilize the following Borcherds identity for how Fourier modes compose

(a(l)b)(m)c =
∑
j

(−1)j

(
l

j

)(
a(l−j)b(m+j)c− (−1)lb(l+m−j)a(j)c

)
.

First, we simplify X · L−2 = (fi(c)b
i
−1)(0)(b

k
−1Tc

k
0). Since x(0)(Tc

k
0) = 0 for any x, we see

X · L−2 =
(

(fi(c)b
j
−1)(0)(b

k
−1)
)
Tck0 .

By the Borcherd’s formula this simplifies to (−(bk−1)(0)(fi(c))b
j
−1)Tck0 = −(∂kfi)(c)Tc

k
0b
i
−1. We

compute the value of (X ·L−2)(2) on the generators bj−1. There is only one term in the Borcherd’s

expansion and it is of the form

(X · L−2)(2)(b
j
−1) =

(
bi−1

)
(1)

(
(∂kfi(c)Tc

k
0)(0)b

j
−1

)
= −(bi−1)(1)

(
(bj−1)(0)(∂kfi(c))Tc

k
0

)
= −δki∂j∂kfi.

Thus α(X) = cGF
1 (T̂n)(X) and the proof is complete. �

3.7. The character of a graded vertex algebra. In this section we define and compute the

“local character” of the vertex algebra ĈDOn. It will globalize, under Gelfand-Kazhdan descent,

to the character of the sheaf of chiral differential operators on a complex manifold X.

Definition 3.19. Let V be a Z≥0-graded vertex algebra. The graded character of V is the following

q-expansion

(9) χ(V ) :=
∑
N

qN
(

dimV (N)
)
∈ C[[q]].

Remark 3.20. When V is a conformal vertex algebra there is a slight variant of the graded character

which involves the central charge c of V . If L0 is the zero mode of the Virasoro vector in the

conformal vertex algebra the character is defined by char(V ) := TrV q
L0−c/24. The relationship to

the graded character we defined in Equation (9) is given by q−c/24χ(V ) = char(V ) ∈ q−c/24C[[q]].
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The reason for this extra factor of q is that χ(V ) has much nicer modular properties. For more

about this modularity, and motivation for the the definition of the character, see [Zhu96].

We wish to define the graded character of a vertex algebra with an action of a Harish-Chandra

pair (g,K). Suppose g acts on a Z≥0-graded vertex algebra V (by grading preserving derivations).

Then, each weight space V (N) is a module for g. The character of the vertex algebra will be a

q-expansion of equivariant characters of the individual spaces of fixed conformal dimension V (N).

Thus, it suffices to define what we mean by the character of a (g,K)-module (in vector spaces).

For simplicity we work just with the Lie algebra g. The generalization to a module for the

pair (g,K) is a small extension of this. For any g-module W , with action ρ : g → End(W ), its

Chern character is given by chg(W ) = Tr (exp(ρ(X))) ∈ Sym(g∨). Since the trace is conjugation

invariant the character determines an element in the Hochschild homology of the algebra C∗Lie(g):

chg(W ) ∈ HH0 (C∗Lie(g)) ∼= Sym(g∨)g.

There is a way to express this character at the cochain level. For this, it is useful to have an

interpretation of the character in terms of Lie algebra cohomology, which will coincide with the

Gelfand-Fuks-Chern characters in the case of (g,K) = (Wn,GLn).

Let Hoch∗(−) denote the complex of Hochschild chains, computing Hochschild homology. The

Hochschild-Rosenberg-Kostant theorem for the commutative ring R posits a quasi-isomorphism of

cochain complexes

Hoch∗ (R) ' Ω−∗R

where Ω−∗R is the regraded de Rham complex of the commutative ring R. In the case that R =

C∗Lie(g) this quasi-isomorphism takes the form

Hoch∗ (C∗Lie(g)) ' C∗Lie

(
g;⊕k≥0Symk(g∨)[k]

)
.

The definition of the Atiyah class of a g-module W can be found in [GG14]. This class is an

element Atg(W ) ∈ Ω1
Bg ⊗ End(W ) gives a Chern-Weil description in Lie algebra cohomology of

the Chern character above:

chg(W ) = Tr

(
exp

(
1

2πi
Atg(W )

))
.

We will encounter the Atiyah class later, in Part II. Other characteristic classes also admit a

description in terms of this Atiyah class. For instance, the Todd class of the g-module W is

defined to be the determinant of a certain formal series involving the Atiyah class:

Tdg(W ) = det

(
1− e−At(W )

At(W )

)
.

The Euler class of the g-module W is defined to be

χg(W ) := Tdg(g[1]) · chg(W ) ∈ C∗Lie

(
g;⊕k≥0Symk(g∨)[k]

)
.

If W is a module for the Harish-Chandra pair (g,K) the same construction defines the Euler class

in relative Lie algebra cochains χ(g,K)(W ) ∈ C∗Lie

(
g,K;⊕k≥0Symk(g∨)[k]

)
.

We now return to the case of a vertex algebra.

Definition 3.21. Suppose a pair (g,K) acts on a Z≥0-graded vertex algebra V . We define the

(g,K)-equivariant graded character of V to be the following q-expansion

char(g,K)(V ) :=
∑
N≥0

qNχ(g,K)(V (N)) ∈ C∗Lie

(
g,K;⊕k≥0Symk(g∨)[k]

)
[[q]].

40



3.7.1. We compute the character for the main example, the (W̃n,GLn) equivariant vertex algebra

ĈDOn. The equivariant graded character of ĈDOn as a module for (W̃n,GLn) is an element

χ(Wn,GLn)(ĈDOn) ∈ C∗Lie(W̃n,GLn; Ω̂−∗n ). Here, Ω̂−∗n is the regraded de Rham complex on the

formal disk ⊕k≥0Ω̂kn[k]. The following lemma allows us to recognize this as the image of an element

in C∗Lie(Wn,GLn; Ω̂−∗n ).

Let p : g̃ → g be a homomorphism of Lie algebras, and let k be its kernel. We will say that a

g̃-module V is off-diagonal for p if there is a filtration

0 = F−1V ⊂ F 0V ⊂ F 1V ⊂ · · · ⊂ FNV = V

such that for all i, k · V i ⊂ V j for some j < i. We observe the following elementary fact about

traces of such modules.

Lemma 3.22. Suppose p : g̃→ g and k are as above. Suppose V is an off-diagonal module for p.

Then, for all x ∈ g̃ one has tr(exp(x)) = tr(exp(p(x))).

Proof. Choose a filtration for V as above and a filtered basis for the module V . In terms of matrices

we see that the definition implies that k indeed acts off-diagonally, hence does not contribute to

the trace. �

Now, consider the map of Lie algebras p : W̃n → Wn and the W̃n-module ĈDOn. The kernel

of p is Ω̂2
n,cl. The underlying vector space of ĈDOn is spanned by products of elements cim, b

j
l . We

define the filtered subspace F qĈDOn to be the subspace spanned by elements of the form

ci1m1
· · · cikmkb

j1
l1
· · · bjqlq .

It is clear, from the definition of the action of closed two-forms on the CDOs that Ω̂2
n,cl ·F qĈDOn ⊂

F q−1ĈDOn. Hence, the W̃n-module ĈDOn is off-diagonal with respect to the morphism p : W̃n →
Wn and we have the following corollary.

Corollary 3.23. The (W̃n,GLn)-equivariant graded character of the vertex algebra ĈDOn is the

image of an element

χ(Wn,GLn)(ĈDOn) ∈ C∗Lie(Wn,GLn; Ω̂−∗n )

along the pull-back C∗Lie(Wn,GLn; Ω̂−∗n )→ C∗Lie(W̃n,GLn; Ω̂−∗n ).

For the pair (g,K) = (Wn,GLn) the Chern character in the previous section coincides with

the Gelfand-Fuks-Chern character chGF(W ) for any formal vector bundle W . We let TdGF :=

Td(Wn,GLn).

Proposition 3.24. The (Wn,GLn)-equivariant graded character of ĈDOn is given by

χ(Wn,GLn)(ĈDOn) = TdGF · ch

⊗
l≥1

Symql(Ω̂
1
n ⊕ T̂n)


as an cocycle in C∗Lie

(
Wn,GLn; Ω̂−∗n

)
[[q]].

Proof. The conformal dimension zero subspace of ĈDOn is identified with Ôn and the conformal

dimension one subspace is identified with Ω̂1
n⊕T̂n (all as W̃n-modules). The full associated graded

of CDOs is given by

Gr ĈDOn
∼=
⊗̂
0<k

ŜymÔn(Ω̂1
n) ⊗̂

⊗̂
0≤l

ŜymÔn(T̂n).
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Putting this all together we find

char(W̃n,GLn)(ĈDOn) =
∑
N≥0

qNchGF

(
ĈDO

(N)

n

)

= chGF

⊗
N≥1

SymqN (T̂n ⊕ Ω̂1
n)

 .

�

4. Extended Gelfand-Kazhdan descent

Our construction of descent in Section 2 uses the Harish-Chandra pair (Wn,GLn). We have

seen, however, that this pair is not appropriate if we wish to describe descent for the vertex

algebra of chiral differential operators. In this section we develop the theory of descent for the pair

(W̃n,GLn), which does act on the vertex algebra, as we saw in the preceding section.

4.1. The extended bundle. The central object in the construction of Gelfand-Kazhdan descent

is the coordinated bundle Xcoor. This space is a principal bundle for the group of formal automor-

phisms. Using a Gelfand-Kazhdan structure, we obtain from Xcoor a Wn-valued flat connection

on the frame bundle FrX . In this section, we construct and classify lifts of the bundle Xcoor to

an “extended” coordinate bundle X̃coor on which the extension W̃n acts transitively. Together

with the choice of an extended Gelfand-Kazhdan structure (defined in Section 4.1.5), this extended

bundle will give us the data of a holomorphic (W̃n,GLn)-bundle with flat connection on the frame

bundle of X.

4.1.1. The data of a flat W̃n-valued connection on FrX is a 1-form

ω̃ ∈ Ω1,0(FrX ; W̃n)

satisfying the Maurer-Cartan equation

ddRω̃ +
1

2
[ω̃, ω̃] = 0

where [−,−] is the Lie bracket for W̃n extended to the de Rham complex. A crucial issue here is

that such a structure on the frame bundle does not always exist.

We have already seen that the Gelfand-Fuks-Chern character chGF(T̂n) maps to the ordinary

Chern character of a complex n-manifold under the characteristic map

charσ :
⊕
k

Hk(Wn,GLn; Ω̂kn,cl)→
⊕
k

Hk(X; ΩkX,cl)

associated to a Gelfand-Kazhdan structure (X,σ). Assuming we have an extension X̃coor, the

image of ω̃ under the quotient map Ω1(FrX ; W̃n) → Ω1(FrX ; Wn) is the connection one-form

ωσ defined by the Gelfand-Kazhdan structure. Thus, the restriction of the second component of

the Chern character chGF
2 (T̂n) to an element in C2

Lie(W̃n; Ω̂2
n,cl) still maps to the ordinary Chern

character ch2(TX) using the characteristic map for the flat connection ω̃.

The point here is that in C2
Lie(W̃n; Ω̂2

n,cl), the element ch2(T̂n) is cohomologically trivial. That is,

there is an element αn such that dLieαn = ch2(T̂n) where dLie is the differential on C∗Lie(W̃n; Ω̂2
n,cl).

By naturality of descent, we see that the image of αn under the characteristic map is a trivialization

for ch2(TX). We conclude that lifts exists only if the second component of the Chern character of

the manifold is trivial. Moreover, we wish to classify such lifts.
42



Theorem 4.1. Fix a Gelfand-Kazhdan structure σ on X. Then there is a bijection between

lifts of the (Wn,GLn)-bundle (FrX , ωσ) to a (W̃n,GLn)-bundle and trivializations of ch2(TX) ∈
H2(X; Ω2

cl,X). Moreover, if ch2(TX) = 0, such lifts are a torsor for H1(X; Ω2
cl,X).

Our proof is based on the Dolbeault model for the Chern character, and throughout this section

we will work with Dolbeault representatives for the Atiyah class. This approach is well studied

and an overview can be found in [Ati57] and [Kap99], but we will briefly review the requisite

background.

Fix a complex Kähler manifold X and a holomorphic vector bundle E. Also, let ∇ be a smooth

connection of type (1, 0) on X for a holomorphic vector bundle E. That is, an operator

∇ : E → Ω1,0(X)⊗ E .

Let ∇′ = ∇+ ∂, then ∇′ is an ordinary connection for E. The curvature of ∇′ splits as

F∇′ = F 2,0
∇′ + F 1,1

∇′ ∈ Ω2,0(X; End(E))⊕ Ω1,1(X; End(E)).

According to the Dolbeault isomorphism Hp,q

∂
(X;E) ∼= Hq(X; ΩpX ⊗E ), one has the following fact

about the (1, 1)-component of the curvature.

Proposition 4.2. (Proposition 4 in [Ati57]) The (1, 1)-form F 1,1
∇′ is ∂-closed and is indepen-

dent, in Dolbeault cohomology, of the choice of ∇. Moreover, the cohomology class [F
(1,1)
∇′ ]∂ ∈

H1,1(X; End(E)) is a Dolbeault representative for the Atiyah class At(E) ∈ H1(X; Ω1,hol
X ⊗O

End(E )).

As a corollary, we see that Tr
(

(F
(1,1)
∇′ )k

)
is closed for both ∂ and ∂. Moreover, this (k, k)-form

is a Dolbeault representative for the kth component of the Chern character chk(E). In particular,

trivializations for ch2(TX), as in the theorem, are equivalent to ∂-trivializations of the element

Tr
(

(F
(1,1)
∇′ )2

)
∈ Ω2,2(X).

4.1.2. Warm-up: Chern-Simons forms on Cn. Let us consider an open subset U ⊂ Cn and a

hermitian vector bundle E on U . We fix a trivialization E = U × E0 with E0 equipped with a

hermitian inner product.

In this situation, there is a unique connection on E that preserves the hermitian inner product

compatible with the complex structure. With respect to the trivialization, it takes the form

ddR +A

where A ∈ Ω1,0(U ; End(E0)). (This connection is usually called the Chern connection.) The

curvature of the connection is of type (1, 1), and it has the form

FA = F
(1,1)
A = ∂A

and lives in Ω1,1(U ; End(E0)).

Consider the (k, k)-form Θ
(k)
A := Tr(F kA). This form is a local representative for the kth Chern

character. For the following calculations, it is convenient to introduce the following complex.

Define Ω≥2,∗(U) to be the complex

Ω2,∗
∂

(U)
∂−→ Ω3,∗

∂
(U)

∂−→ · · ·

where Ωp,∗
∂

(U) is the Dolbeault complex of (p, ∗)-forms with differential ∂. In this complex the

degree of a form of type (k, l) is k + l − 2. Equivalently, Ω≥2,∗ is the total complex of the double

complex (Ω≥2,∗, ∂, ∂).
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There is an obvious embedding

Ω2,hol
cl (U) ↪→ Ω≥2,∗(U)

where Ω2,hol
cl (U) is concentrated in degree zero. This is a quasi-isomorphism by using Poincaré

lemma for the operators ∂ and ∂ for the open set U together with the obvious spectral sequence.

(Note that the left hand side is concentrated in cohomological degree zero)

A direct calculation shows that Θ
(k)
A is both ∂ and ∂-closed. In fact, we will use a preferred one

given by the Chern-Simons functional. In the case k = 2 It is defined as the 3-form

CS(A) := Tr

(
A ∧ ∂A+

1

3
A ∧A ∧A

)
Note that CS(A) is an element in Ω≥2,∗(U) of cohomological degree one. By construction dCS(A) =

Θ
(2)
A , where d is the total differential on the complex.

We are interested in how the Chern-Simons form interacts with other trivializations of Θ
(2)
A . Let

us fix another trivialization α ∈ Ω≥2,∗(U) of Θ
(2)
A such that dα = Θ

(2)
A . Notice that the element

α−CS(A) is a closed element of degree one in the complex Ω≥2,∗(U). Thus, there exists an element

β ∈ Ω≥2,∗(U) of cohomological degree zero, i.e., a (2, 0)-form such that

dβ = α− CS(A).

The ambiguity in choosing such a β is precisely the cohomology of the complex which we already

determined to be Ω2,hol
cl (U). That is, if ω is a closed holomorphic two-form then β + ω satisfies

d(β + ω) = dβ = α− CS(A).

More precisely, given a trivialization α the space of all such β is a torsor for Ω2,hol
cl (U).

Before we proceed to the formal situation, and the construction of the extended coordinated

bundle, we need to understand how all of the trivializations above change as we make a gauge

transformation.

Suppose that our holomorphic vector bundle E is TU , the holomorphic tangent bundle. Given

a biholomorphism f : U → U , we obtain a gauge transformation of A via

A 7→ f ·A := g−1Ag + g−1∂g,

where g = Jac(f) is the Jacobian of f .

Lemma 4.3. There is a (2, 0)-form ρ depending on f and A such that

CS(A)− CS(f ·A) = dρ.

Proof. For the existence of such a ρ, it suffices to show that the difference CS(A) − CS(f · A) is

closed. Indeed, under a gauge transformation the Chern-Simons functional becomes

CS(f ·A) = CS(A) + dTr(g−1∂g ∧A) +
1

3
Tr
(
(g−1∂g)3

)
.

Now Tr((g−1∂g)3) is both ∂ and ∂ closed, so the result follows. �

Remark 4.4. The 2-form ρ is only unique up to a holomorphic closed 2-form. We will need to fix

one in the next section when we define the extended bundle.
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4.1.3. Formal coordinates. There is a completely formal version of the above trivializations, and

we will use it to construct the bundle Xcoor
α extending the ordinary coordinate bundle.

Let ϕ be a formal holomorphic coordinate around a point x ∈ X. In the construction of the

coordinate bundle, we viewed a formal holomorphic coordinate as a map ϕ : D̂n → X where D̂n

is the holomorphic formal disk. In this section we view this coordinate as a “holomorphic” map

ϕ : D̂n
C → X where D̂n

C denotes the complex formal disk in the sense that its ring of functions is

O(D̂n
C) = CJt1, . . . , tn, t1, . . . , tnK.

Similarly to the non-formal case, we denote the full de Rham complex by

Ω̂∗,∗n :=
(
CJt1, . . . , tn, t1, . . . , tnK⊗ C[dti,dtj ],ddR

)
where dti, dtj are placed in cohomological degree one. In this section, to stress holomorphic

dependence, we denote by Ω̂k,holn,cl the space of holomorphic closed k-forms on D̂n, i.e., ∂-closed

k-forms depending only on the formal variables {ti}.

Notation 4.5. In this section we will denote the full de Rham differential by

ddR : Ω̂∗,∗n → Ω̂∗,∗n

and write ddR = ∂ + ∂ where ∂, ∂ are the formal Dolbeault operators.

We define the truncated de Rham complex Ω̂≥2,∗
n to be

Ω̂2,∗ ∂−→ Ω̂3,∗ ∂−→ · · · .

Its differential will be denoted by d. Note that we still have a quasi-isomorphism at the formal

level

Ω̂2,hol
n,cl

'−→ Ω̂≥2,∗
n

by the formal Poincaré lemma.

Fix a Kähler manifold X and equip the holomorphic tangent bundle with the associated Chern

connection ∇. Let us also fix a global trivialization α of the second component of the Chern

character of TX .

Pulling back to the formal disk via the coordinate ϕ : D̂n
C → X, we can write the connection in

the form ddR +Aϕ, where Aϕ ∈ Ω̂1,0
n ⊗End(Cn) is the formal connection one-form. Just as above,

the degree two element

Θ̂
(2)
Aϕ

= Tr((∂Aϕ)2) ∈ Ω̂≥2,∗
n

is a representing form for Θ
(2)
∇ on the formal disk. Note that this element is both ∂ and ∂-closed.

Let ĈS(A) ∈ Ω̂≥2,∗
n be the corresponding Chern-Simons form on the formal disk.

For each formal coordinate ϕ, the trivialization α of Θ
(2)
X determines a formal trivialization

α̂ϕ ∈ Ω̂≥2,∗
n satisfying dα̂ϕ = Θ̂

(2)
Aϕ

. Just as above, the difference α̂ϕ − ĈS(Aϕ) is d-closed and

hence there exists a βϕ ∈ Ω̂2,0
n such that dβ = α̂ϕ − ĈS(Aϕ).

Definition 4.6. The extended coordinate bundle Xcoor
α is the set of pairs

(ϕ, βϕ)

where ϕ : D̂n
C → X is a formal coordinate and βϕ ∈ Ω̂2,0

n satisfies

dβϕ = α̂ϕ − ĈS(Aϕ)

in the cochain complex Ω̂≥2,∗
n .
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4.1.4. Defining the bundle. We have just defined the set corresponding to the extended bundle.

We now show that it is a principal bundle on X for the group Ãutn lifting the coordinate bundle

Xcoor.

Before we define the action of Ãutn we make the following observations. Given a formal coor-

dinate ϕ and an automorphism f ∈ Autn we obtain a new formal coordiante f∗ϕ = ϕ ◦ f . If Aϕ
is the connection one-form corresponding to ϕ then Af∗ϕ is given by the gauge transformation

Af∗ϕ = g−1Aϕg + g−1∂g.

where g = Jac(f) ∈ GLn(Ôn) is the Jacobian. Just as in the proof of Lemma 4.3 we have

ĈS(Aϕ)− ĈS(Af∗ϕ) = dTr(g−1∂g ∧A) +
1

3
Tr
(
(g−1∂g)3

)
.

The 3-form χ̂WZW (f) := 1
3Tr

(
(g−1∂g)3

)
is ∂-closed, and hence we may choose a non-unique

cobounding two-form. Explicitly, the choice of a formal coordinate determines a homotopy

h : Ω̂k,holn → Ω̂k−1,hol
n

and we define µ̂f := h(χ̂WZW (f)). Note that µf does not depend on the coordinate ϕ. Finally, let

ρ̂f,ϕ := Tr(g−1∂g ∧Aϕ) + µf ,

which lies in Ω̂2,0
n .

Recall that the group Ãutn consist of pairs (f, ω) with f ∈ Autn an automorphism of the

holomorphic formal disk and with ω ∈ Ω̂2
n,cl. For a pair (ϕ, βϕ) as in the definition above, define

(10) f · (ϕ, βϕ) := (f∗ϕ, f∗βϕ + ρ̂f,ϕ).

and

(11) ω · (ϕ, βϕ) := (ϕ, βϕ + ω).

Here f∗ϕ = ϕ ◦ f is precomposition with the automorphism f , i.e., change of coordinates, and

f∗βϕ is the pull-back of forms.

Proposition 4.7. Equations (10) and (11) define an action of Ãutn on Xcoor
α . Moreover, it

induces the structure of a Ãutn-principal bundle πcoorα : Xcoor
α → X lifting the Autn-principal

bundle πcoor : Xcoor → X.

Remark 4.8. Note that the choice of ρ̂f,ϕ is only unique up to a closed holomorphic 2-form on the

formal disk. That is, for each η ∈ Ω̂2
n,cl we get a different action of Ãutn defined by

f · (ϕ, βϕ) := (f∗ϕ, f∗βϕ + ρ̂f,ϕ + η).

This action is equivalent to the original action. Indeed, denote X̃coor
α with this new action deter-

mined by η by X̃coor
α,η . For any two closed 2-forms η, η′ we define

Φη,η′ : X̃coor
α,η → X̃coor

α,η′

(ϕ, βϕ) 7→ (ϕ, βϕ + η − η′)
.

Then Φη,η′ is a map of Ãutn-spaces. In fact, it is an isomorphism with inverse given by Φη′,η.

Hence we have an isomorphism of principal Ãutn-bundles.
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The proof of the proposition is a direct calculation. First, we show that the map is well defined

at the level of sets. That is, for any f we must show that f · (ϕ, βϕ) ∈ X̃coor
α . We have

d(f∗βϕ + ρ̂f,Aϕ) = f∗dβϕ + dρ̂f,Aϕ

= f∗(ϕ∗α− ĈS(Aϕ)) + (f∗ĈS(Aϕ)− ĈS(f∗Aϕ))

= f∗ϕ∗α− ĈS(f∗Aϕ).

Thus f∗βϕ + ρ̂f,ϕ trivializes the difference of the Chern-Simons functional associated to f∗Aϕ and

the original trivialization as desired.

It remains to see that we have an action by Ãutn. It suffices, in fact, to show that for any

f1, f2 ∈ Autn ⊂ Ãutn,

(12) f1 · (f2 · (ϕ, βϕ)) = (f2 ◦ f1) · (f2 · (ϕ, βϕ)) + (ϕ, βϕ + αGMS(f, g)),

where α̃GMS is the defining cocycle for the extension (6) defined in Section 3.5.1.

Expanding the left-hand side, we have(
f∗1 f

∗
2ϕ, f

∗
1 f
∗
2βϕ + f∗1 ρ̂f2,ϕ + ρ̂f1,f∗2ϕ

)
.

The last term ρ̂f1,f∗2ϕ
has the following meaning. Choose any (macroscopic) automorphism f̃2 :

Cn → Cn whose ∞-jet class is f2, and look at the element ρ̂f1,f̃∗2ϕ
. Since ρ̂f,ψ only depends on the

power series expansion of ψ, this element is well defined and does not depend on the lift f̃2.

Now the right-hand side of (12) is(
(f2 ◦ f1)∗ϕ, (f2 ◦ f1)∗βϕ + ρf2◦f1,Aϕ + α̃GMS(f1, f2)

)
.

Thus, to verify we have an action and finish the proof of Proposition 4.7, it suffices to prove the

following.

Lemma 4.9. The cocycle α̃GMS satisfies

(13) α̃GMS(f1, f2) = ρ̂f1,f∗2ϕ
+ f∗1 ρ̂f2,Aϕ − ρ̂f2◦f1,Aϕ .

for any f, g in Autn.

Proof. We recall the formula for the GMS 2-cocycle from Section 3.5.1. In the notation from that

section it reads

α̃GMS(f1, f2) = α2(f1, f2) + µf1
+ f∗1µf2

− µf2◦f1
.

(We use ∂ this time and not ddR to stress that it is the holomorphic differential.) We expand the

right-hand side of Equation (13):

tr(g−1
1 ∂g2Af∗2ϕ) + f∗1 tr(g−1

2 ∂g2Aϕ)− tr((f∗1 g2g1)−1∂(f∗1 g2g1)Aϕ) + µf1
+ f∗1µf2

− µf2◦f1
.

We have used the fact that the Jacobian of f2 ◦ f1 is given by the product f∗1 g2g1. Finally, to

complete the proof we notice that the first three terms in the above formula simplify to α2(f1, f2) =

tr
(
g−1

1 ∂g1 ∧ f∗1 (∂g2g
−1
2 )
)

and so we are done. �

4.1.5. Proof of Theorem 4.1. In this section we prove the theorem. We will use the data of

an extended coordinate bundle to construct a Gelfand-Kazhdan structure for the frame bundle

FrX → X, with a connection one-form valued in the extension W̃n.

Clearly, the action of Ãutn on the set of pairs (ϕ, βϕ) lifts the action of Autn on formal coordi-

nates ϕ : D̂n → X. This observation, together with the compatibility of the cocycle α̃GMS and the

Gelfand-Fuks-Atiyah cocycle chGF
2 (T̂n) defining the extension W̃n →Wn, allows us to summarize

the construction of previous section as follows.
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Proposition 4.10. For each trivialization α of Θ
(2)
X there exists a transitive action of W̃n on

X̃coor
α that lifts the action of Wn on Xcoor. That is, there is a map of Lie algebras

θ̃α : W̃n → X (X̃coor
α )

such that for each (x, ϕ, βϕ) ∈ X̃coor
α , the induced map θ̃(x) : W̃n → T(x,ϕ,βϕ)X̃

coor
α is an isomor-

phism and the diagram

W̃n

��

θ̃α(x)
// T(x,ϕ,βϕ)X̃

coor
α

��

Wn

θ(x)
// T(x,ϕ)X

coor.

commutes.

The inverse of θ̃α defines a connection one-form ω̃α ∈ Ω1(X̃coor
α ; W̃n). Now, X̃coor

α is an Ω̂2
cl,n-

torsor over Xcoor and so there exists a Autn-equivariant section σΩ2 : Xcoor → X̃coor
α . Note that

this section is not unique, but its choice will not matter in the end (much as in the case of an

ordinary Gelfand-Kazhdan structure). Given such a section we have an induced map

Ω1(X̃coor
α ; W̃n)

σ∗
Ω2−−→ Ω1(Xcoor; W̃n)

p−→ Ω1(Xcoor; Wn),

where p : W̃n → Wn is the projection. Under this composition, the 1-form ω̃coorα maps to the

Grothendieck connection 1-form ωcoor ∈ Ω1(Xcoor; Wn).

Now, we would like to apply the theory of Gelfand-Kazhdan descent to this situation. Recall

that in the case of the pair (Wn,GLn), a Gelfand-Kazhdan structure amounted to choosing a

formal exponential. That is, a GLn-equivariant splitting σ : FrX → Xcoor of the projection

πcoor : Xcoor → FrX .

Fixing a section σΩ2 of the Ω2
n,cl-torsor over Xcoor as above, we can compose with the canonical

section σΩ2 : Xcoor → X̃coor
α of X̃coor

α over Xcoor to get the section σΩ2 ◦σ. This composite defines

the connection one-form

ω̃ασ,σΩ2
= (σΩ2 ◦ σ)∗ωcoor = σ∗σ∗Ω2ωcoor

living in Ω1(FrX ; W̃n).

Definition 4.11. An extended Gelfand-Kazhdan structure on X is a triple (α, σ, σΩ2) where

(i) α is a trivialization for the second component of the Chern character of X;

(ii) σ is a Gelfand-Kazhdan structure on X; and

(iii) σΩ2 is an Autn-equivariant splitting of X̃coor
α → Xcoor .

The construction in the above paragraph shows that the data of an extended Gelfand-Kazhdan

structure on X determines a holomorphic (W̃n,GLn)-bundle on FrX → X with flat connection

one-form given by ω̃ασ,σΩ2
.

The same argument as in the non-extended case (see Section 2.6) gives the following.

Lemma 4.12. Fix a Gelfand-Kazhdan structure σ. Let σ1
Ω2 and σ1

Ω2 be two splittings of X̃coor
α →

Xcoor. Then the induced connection one-forms ωα
σ,σ1

Ω2
and ωα

σ,σ2
Ω2

are gauge equivalent.

To finish the proof of Theorem 4.1, we must go the other way: given a lift (FrX , ω̃) of the

(Wn,GLn)-bundle (FrX , ωσ), we must produce a trivialization. This construction is outlined above

in Section 4.1.1. It is a direct calculation to show that these two constructions are inverse to each

other.

Before we define extended descent, we discuss the class of modules that we wish to consider.
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4.2. Extended modules. We have defined the category of “vector bundles” on the formal disk

VBn. These Harish-Chandra modules were especially well behaved from the point of view of

Gelfand-Kazhdan descent. In this section we consider an analogue of this category of modules

for the pair (W̃n,GLn). These modules will be objects that descend along the extended bun-

dle (FrX , ω̃
α
σ ).

Since W̃n is an extension of Lie algebras, it has a two-step filtration

F 1W̃n = W̃n ⊃ F 0W̃n = Ω̂2
cl.

The associated graded of this filtration is the Lie algebra Wn ⊕ Ω̂2
cl.

Let Modfil
(W̃n,GLn)

denote the category of filtered modules for the pair (W̃n,GLn), using the

filtration above. Given any such module V, we can consider its associated graded Gr V. This

associated graded forgets down to a graded module for the Lie algebra Wn. Since V also has a

compatible GLn-action, the associated graded has the structure of a graded (Wn,GLn)-module.

There is thus a functor

Gr : Modfil
(W̃n,GLn)

→ Mod
Z/2
(Wn,GLn)

given by taking the associated graded for the two-step filtration. Here, Mod
Z/2
(Wn,GLn) is the category

of Z/2-graded vector spaces together with a grading-preserving action of the pair (Wn,GLn).

Similarly, there is a full sub-category VBZ/2
n ⊂ Mod

Z/2
(Wn,GLn) consisting of those (Wn,GLn)-

modules that are also elements in VBn by forgetting the grading.

Definition 4.13. The category ṼBn of filtered (W̃n,GLn)-vector bundles is the pull-back

ṼBn //

��

VBZ/2
n

��

Modfil
(W̃n,GLn)

// Mod
Z/2
(Wn,GLn)

of categories.

Explicitly, an object of ṼBn is a Z/2-graded Ôn-module that is free and finite rank together

with a compatible action of (W̃n,GLn) that respects the two-step filtration of W̃n.

4.3. Extended descent. We are now in a place to define the extended Gelfand-Kazhdan descent

functor for modules as in the previous section.

Define the category H̃oln to have objects consisting of pairs (X,α), where X is a complex

manifold of dimension n and α is a trivialization of its second component of the Chern character

ch2(TX). Morphisms are defined to be local biholomorphisms that pull-back trivializations. For

instance, if (X,αX) and (Y, αY ) are objects and f : X → Y is a local biholmorphism, we require

f∗αY = αX . We let G̃Kn denote the category fibered over H̃oln whose objects over (X,α) are

extended Gelfand-Kazhdan structures (X,α, σ, σΩ2).

Definition 4.14. The extended Gelfand-Kazhdan descent is the functor

d̃escGK : G̃K
op

n × ṼBn → Pro(VB(X)flat)

sending an extended Gelfand-Kazhdan structure (X,α, σ, σΩ2) and an extended module V ∈ ṼBn
to the pro-vector bundle FrX ×GLn V with flat connection induced from ωα,σ,σ2

Ω
.
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Let d̃escGK(X,σ, σΩ2 , α;V) denote the corresponding Ω∗(X)-module. Since different choices of

sections σ and σΩ2 determine gauge equivalent connections the resulting sheaf of flat sections is

independent of such choices and we will denote the sheaf by DescGK(X,α;V).

5. Descent for vertex algebras

In this section we discuss Gelfand-Kazhdan descent for vertex algebras. Namely, we show how

the structure of a vertex algebra that has a compatible action of a pair (g,K) descends to a sheaf

of vertex algebras on complex manifolds via the functors we have already constructed. Of course,

the most important cases will be the pairs (Wn,GLn) and its extension (W̃n,GLn).

For another approach for constructing sheaves of vertex algebras on manifolds, see [Mal08],

although the case of extended descent is not covered there.

For a Čech style approach to constructing the sheaf of vertex algebras given by CDOs see

[GMS04].

5.1. General descent. We will define descent for vertex algebras in a similar way as in the general

setting of Harish-Chandra descent. For this to make sense, we need to first say what we mean by

a vertex algebra in the differentially graded setting.

Definition 5.1. A dg vertex algebra is a Z-graded vertex algebra V together with a vertex algebra

derivation d : V → V of degree 1 such that

(i) d2 = 0 and

(ii) the structure maps Y (−; z) : V → End(V )Jz±K have cohomological degree zero.

Moreover, if V has the additional structure of a Z≥0-graded vertex algebra (by what we call the

dimension grading), a dg Z≥0-graded vertex algebra is a dg vertex algebra such that d preserves

the dimension grading.

Suppose we have a Harish-Chandra pair (g,K) together with a torsor P → X for the pair.

If V is a vertex algebra such that K acts on it via vertex algebra automorphisms then clearly

invariants for this group action will be a sub vertex algebra. Likewise, if g acts on V via vertex

algebra derivations then the induced connection ∇P,V = ddR + ρg(ω) also acts by vertex algebra

derivations on Ω∗(P ) ⊗ V . If we choose actions that are compatible (as well as Z≥0 graded) we

obtain the following.

Proposition 5.2. If (g,K) acts on the vertex algebra then desc((P, ω, V )) has the structure of

a dg vertex algebra in Ω∗(X)-modules. If (g,K) acts on the Z≥0-graded vertex algebra V , then

desc((P, ω), V ) has the structure of a dg Z≥0-graded vertex algebra in dg Ω∗(X)-modules.

This result implies that the sheaf of flat sections Desc((P, ω), V ) has the structure of a sheaf of

Z≥0-graded vertex algebras.

5.2. Formal vertex algebras. We now develop what we mean by vertex algebras in the category

of formal vector bundles. The vertex algebras we are interested in are not finite dimensional, so are

ill-behaved in the context of doing ordinary Harish-Chandra descent. The graded pieces, however,

are finite dimensional over Ôn, so we are in a similar context of Gelfand-Kazhdan descent as in

Section 2.

Recall, that the category of formal vector bundles (or formal vector bundles on the formal n-

disk) VBn consists of Ôn-modules together with a compatible structure of a (Wn,GLn)-module.

The category of formal vertex algebras we consider is a modest generalization of the category of

formal vector bundles VBn.
50



Definition 5.3. A Gelfand-Kazhdan vertex algebra is a Z≥0-graded vertex algebra V together with

an action of (Wn,GLn) as in Definition 3.4 such that for each N ≥ 0 one has a GLn-equivariant

identification

(14) V(N) = Ôn ⊗C V
(N)

where V (N) is a finite dimensional GLn-representation. A morphism of Gelfand-Kazhdan vertex

algebras is a (Wn,GLn)-equivariant morphism of Z≥0-graded vertex algebras. This forms a category

that we denote Vertn.

Thus, a Gelfand-Kazhdan vertex algebra is a vertex algebra in the category of Harish-Chandra

modules Mod(Wn,GLn) together with some finiteness property.

Lemma 5.4. The vertex algebra Gr ĈDOn has the structure of a formal vertex algebra.

Proof. We have already seen that Gr ĈDOn has an action of the pair (Wn,GLn). Moreover, from

the explicit formula Gr ĈDOn = ⊗̂0<kŜymÔn(Ω̂1
n)⊗̂⊗̂0≤lŜymÔn(T̂n) shows that the spaces of fixed

conformal dimension are finite sum of tensor products of the (Wn,GLn) modules Ω̂1
n and T̂n. Thus,

we can write each space of conformal dimension N in the presentation of Equation (14). �

Definition 5.5. An extended Gelfand-Kazhdan vertex algebra is a Z≥0-graded vertex algebra

together with an action of (W̃n,GLn) as in Definition 3.4 such that for each N ≥ 0 one has a

GLn-equivariant identification

(15) V(N) = Ôn ⊗C V
(N)

where V (N) is a finite dimensional GLn-representation. A morphism of a Gelfand-Kazhdan vertex

algebra is a (W̃n,GLn)-equivariant morphisms of Z≥0-graded vertex algebras. We denote this

category by Ṽertn.

The category Vertn is a full subcategory of vertex algebras in Mod
Z/2
(W̃n,GLn)

consisting of those

objects that satisfy the finiteness constraint above.

Lemma 5.6. The vertex algebra ĈDOn is an extended Gelfand-Kazhdan vertex algebra.

Proof. We have already seen that ĈDOn has the structure of a (W̃n,GLn)-module. The same

argument as in Lemma 5.4 shows that the spaces of fixed conformal dimension can be expressed

as in Equation (15). �

Remark 5.7. Note that we do not require that a Gelfand-Kazhdan vertex algebra V be an Ôn-

module. Indeed, for the case of formal chiral differential operators, the C-linear maps Ôn ×
ĈDO

(N)

n → ĈDO
(N)

n induced by the (−1) bracket does not endow ĈDOn with the structure of an

Ôn-module. The issue is that this action is not associative. That is, a(−1)(b(−1)v) 6= (a(−1)b)(−1)v

for a, b ∈ Ôn and v ∈ ĈDO
(N)

n . Moreover, while we have a decomposition ĈDO
(N)

n = Ôn⊗C V
(N)
n ,

for some finite dimensional vector space V
(N)
n , the obvious structure of an Ôn-module by left

multiplication is not compatible with the vertex algebra operations.

5.3. Descending Gelfand-Kazhdan vertex algebras. We show how Section 5.1 carries over to

Gelfand-Kazhdan descent for the categories of equivariant vertex algebras defined in the previous

section. We will perform both an extended and non extended version of descent.

For a Gelfand-Kazhdan vertex algebra V we define the sheaf DescGK(V) of vertex algebras on

the category GKn, and hence on the category Holn. For now, let’s fix a Gelfand-Kazhdan structure

σ on X. It will be evident that all constructions are still functorial in this parameter.
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For each N ≥ 0 we have a decomposition V(N) = Ôn ⊗C V
(N) and hence a filtration on V(N)

coming from the vanishing order of jets. Thus, applying the same construction as in 2 we obtain

the pro vector bundle FrX ×GLn V(N). Since the action of (Wn,GLn) preserves the Z≥0 grading

it is a this pro vector bundle is equipped with a flat connection and hence we can define the

Ω∗(X)-module

desc(σ,V(N)) =
((

Ω∗(FrX)⊗ V(N)
)
bas

,ddR + ωσ

)
.

We now sum over all dimension spaces to obtain the Ω∗(X)-module

desc(σ,V) :=
⊕
N≥0

desc(σ,V(N))

Lemma 5.8. For any Gelfand-Kazhdan vertex algebra V and Gelfand-Kazhdan structure (X,σ),

the Ω∗(X)-module desc(σ,V) has the structure of a Z≥0-graded dg vertex algebra over Ω∗(X).

Thus, we obtain a sheaf of Z≥0-graded vertex algebras Desc(σ,V) by taking flat sections. It is

clear the construction is natural in the choice of a GK structure so that we obtain a sheaf Desc(V)

of vertex algebras on the category Holn.

5.3.1. Classical limit of the sheaf of CDOs. In the example of the Gelfand-Kazhdan vertex algebra

Gr ĈDOn we denote the descent object by

Gr CDOX := Desc((X,σ); Gr ĈDOn).

This is a sheaf of vertex algebras defined on any complex manifold. As we remarked above,

functoriality of the construction implies that we have a sheaf of vertex algebra Gr CDO defined

on the category Holn.

Moreover, as the action of the pair (Wn,GLn) preserves the Poisson structure. This shows that

Gr CDO is actually a sheaf of Poisson vertex algebras.

5.3.2. Extended descent for vertex algebras. The construction for extended formal vertex algebras

is similar, this time we use the bundle of extended coordinates constructed in Section 4.

Let us fix an extended Gelfand-Kazhdan structure (X,α, σ, σΩ2), that we simply denote by σ̃,

and an extended Gelfand-Kazhdan vertex algebra V.

By construction, each dimension space V(N) = Ôn ⊗C V
(N) has an action of (W̃n,GLn) and

hence we can form the pro vector bundle FrX ×GLn V(N) that is equipped with a flat connection.

The de Rham complex is the Ω∗(X)-module

d̃esc(σ̃,V(N)) =
((

Ω∗(FrX)⊗ V(N)
)
bas

,ddR + ω̃ασ,σΩ2

)
.

Again, by summing over spaces of fixed conformal dimension we obtain the Ω∗(X)-module

d̃esc(σ̃,V) =
⊕
N≥0

d̃esc(σ̃,V(N)).

The same proof as above carries over with minor modifications to show.

Lemma 5.9. For any extended Gelfand-Kazhdan structure σ̃ and extended Gelfand-Kazhdan vertex

algebra V the Ω∗(X)-module desc(σ̃,V) is a Z≥0-graded dg vertex algebra over Ω∗(X).

We obtain a sheaf of Z≥0-graded vertex algebras by taking flat sections that we denote D̃esc(σ̃,V).

Again, the construction is natural in the extended Gelfand-Kazhdan structure so we obtain a sheaf

of Z≥0-graded vertex algebras D̃esc(V) on the category H̃oln.
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5.3.3. The sheaf of CDOs. We are finally able to to define the central object of study in this work.

Definition 5.10. Let X be a complex manifold together with a trivialization α of ch2(TX). The

sheaf of chiral differential operators on X is the sheaf of vertex algebras

CDOX,α := D̃escGK(X,α; ĈDOn).

Remark 5.11. The descent functor d̃escGK depends on the choice of an extended Gelfand-Kazhdan

structure and not just a trivialization of ch2. But, as we have already mentioned, the sheaf of flat

sections does not depend on such a choice so we omit it from the notation.

This definition of chiral differential operators via Gelfand-Kazhdan formal geometry is similar

in spirit to the formulation of the chiral de Rham complex in [MSV99]. There, one defines the

sheaf in a similar way as above though with the non-extended pair (Wn,GLn) (this pair indeed

acts on the affine chiral de Rham vertex algebra). We hope that the above constructions reflect

systematically how one can handle descent for objects that require extending the usual action of

formal automorphisms and derivations on the formal disk.

The compatibility of the Gelfand-Fuks-Chern class ch2(T̂n) and the group cocycle αGMS shows

how our definition of chiral differential operators is related to the original definition given in

[GMS00].

5.3.4. The conformal structure. We address the conformal structure for the sheaf of chiral differ-

ential operators. We have already notes that the vertex algebra ĈDOn has the structure of a

conformal vertex algebra of charge c = 2n. This conformal structure, however, is not compatible

with the action of W̃n on CDO’s on the formal disk. Indeed, Proposition 3.17 implies that the

obstruction for these structures to be compatible is the first Gelfand-Fuks-Chern class cGF
1 (T̂n).

The conformal vector L−2 ∈ ĈDO
(2)

n is preserved, however, by the action of GLn. Thus, the

map of vertex algebras Φ : Virc=2n → ĈDOn, encoding the conformal structure, determines a map

of graded Ω#
X -modules

Φ : Ω#(X)⊗Virc=2n →
(

Ω#(FrX)⊗ ĈDOn

)
bas

.

Now, the action of W̃n on Virc=2n is trivial. So, when we equip the left-hand side with the

differential ddR + ω̃σ,σΩ2 coming from a fixed extended Gelfand-Kazhdan structure we obtain the

constant Ω∗X -module Ω∗X ⊗ Virc=n. Thus, the sheaf obtained via descent Desc(X; Virc=2n) =

Virc=2n is just the constant sheaf.

The right hand side also has a natural differential ddR + ω̃σ,σΩ2 coming from a fixed extended

Gelfand-Kazhdan structure making it a Ω∗X -module. The calculation of Proposition 3.17 implies

that the failure for Φ to be a map of Ω∗X -modules is the image of the cocycle cGF
1 (T̂n) under the

characteristic map of the Gelfand-Kazhdan structure. This is precisely the usual first Chern class

c1(TX). We have arrived at the following.

Proposition 5.12. Let α be a trivialization of ch2(TX) and suppose that c1(TX) = 0 ∈ H1(X; Ω1
X).

Then there exists a map of sheaves of vertex algebras on X

Φ : Virc=2n → CDOX,α.

In other words, in the case that c1(TX) = 0 the sheaf of chiral differential operators has a global

Virasoro vector.
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5.3.5. The Witten genus. It is well-known [BL00, Che12] that the character of the sheaf of chiral

differential operators is equals, up to a factor, the Witten genus of the complex manifold. In this

section, we remark on how to recover this fact using the construction of chiral differential operators

via Gelfand-Kazhdan descent.

Recall, in Section 3.7 we have defined the formal graded character of a vertex algebra. For

V = ⊕N≥0V(N) a Gelfand-Kazhdan vertex algebra, it is the element

χ(Wn,GLn)(V) =
∑
N≥0

qN
(

TdGF · chGF(V(N))
)
∈ CLie(Wn; Ω̂−∗n )[[q]].

Given any sheaf of Z≥0-graded vertex algebras VX on a manifold X, one defines the character as

follows. Note that the sheaf cohomology H∗(X;VX) has the structure of a graded vertex algebra

(that is, a differential graded vertex algebra with zero differential). In particular, it is a Z/2-

graded vertex algebra, with even part equal to Hev(X;VX) and odd part equal to Hodd(X;VX).

The character of VX is the super character of H∗(X;VX). That is,

χ(VX) :=
∑
N≥0

qN
(

dim(Hev(X;V(N)
X ))− dim(Hodd(X;V(N)

X ))
)
.

Lemma 5.13. Fix a Gelfand-Kazhdan structure (X,σ) and let V be a Gelfand-Kazhdan vertex

algebra one has

χ (Desc(X;V)) =

∫
X

charσ

(
χ(Wn,GLn)(V)

)
∈ C[[q]]

where charσ : H∗Lie(Wn,GLn; Ω̂−∗n )→ H∗(Ω−∗X ) is the characteristic map associated to the Gelfand-

Kazhdan structure extended q-linearly.

Proof. As a consequence of Grothendieck-Riemann-Roch for sheaves on X, we have

χ (Desc(X;V)) =

∫
X

∑
N≥0

qNTdX · ch(desc(X;V(N))).

The integrand on the right-hand side is precisely the image of the class χ(Wn,GLn)(V) under the

characteristic map associated to the Gelfand-Kazhdan structure. �

Similarly, if V is an extended Gelfand-Kazhdan vertex algebra and σ̃ = (X,α, σ, σΩ2) is an

extended Gelfand-Kazhdan structure then one has

χ
(
D̃esc(X;V)

)
=

∫
X

c̃harσ̃

(
χ(W̃n,GLn)(V)

)
∈ C[[q]]

where c̃har(−) is the extended characteristic map H∗Lie(W̃n,GLn; Ω̂−∗n ) → H∗(Ω−∗X ) extended q-

linearly.

As a corollary, we recover the appearance of the Witten genus as the character of chiral differ-

ential operators on X. Recall, the Witten class of a manifold X with ch2(TX) = 0, is defined (see

[Wit87, Wit88]) as the following q-series valued in differential forms

Wit(X, q) = ÂX · ch

⊗
l≥1

Symql(Ω
1
X ⊕ TX)

∏
k≥1

(1− qk)

2n

∈ Ω−∗X [[q]]

where ÂX is the A-hat class of the tangent bundle of X. The Witten genus is obtained as the

integral
∫
X

Wit(X, q) and is the q-expansion of a modular form. As an immediate consequence

of our calculation in Proposition 3.24, we obtain the well-known relation of the character and the

Witten genus.
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Proposition 5.14. Let α be a trivialization of ch2(TX). The graded character of CDOX,α satisfies

χ(CDOX,α) =

∏
k≥1

(1− qk)

−2n ∫
X

ec1(TX)/2Wit(X, q).

Proof. We have identified, in Corollary 3.23, the (W̃n,GLn)-equivariant graded character of ĈDOn

with the image of the class

TdGF · chGF

⊗
l≥1

Symql(Ω̂
1
n ⊕ T̂n)

 ∈ C∗Lie(Wn,GLn; Ω̂−∗n )[[q]]

under the map C∗Lie(Wn,GLn; Ω̂−∗n )[[q]]→ C∗Lie(W̃n,GLn; Ω̂−∗n )[[q]]. The image of this class under

the characteristic map of the extended Gelfand-Kazhdan structure is TdX ·ch
(⊗

l≥1 Symql(Ω
1
X ⊕ TX)

)
.

Thus, by Lemma 5.13 we see that the graded character of CDOX,α is

χ(CDOX,α) =

∫
X

TdX · ch

⊗
l≥1

Symql(Ω
1
X ⊕ TX)

 .

Finally, note that TdX = ec1(TX)/2ÂX . �

Remark 5.15. We have already pointed out that in the case that c1(TX) = 0 the sheaf CDOX,α is

a sheaf of conformal vertex algebras. Recall that the honest character of a vertex algebra is related

to the graded character via char(V ) = q−c/24χ(V ), where c is the central charge. Thus, in this

case we have the following expression for the character of chiral differential operators:

char(CDOX,α) = η(q)−2n

∫
X

Wit(X, q)

where η(q) = q1/24
∏
k≥1(1− qk) is the Dedekind η-function.

Part II: The curved βγ system and its factorization algebra

6. Overview

The curved βγ system is an elegant nonlinear σ-model, attractive for both mathematical and

physical reasons. The source is a Riemann surface S and the target is any complex manifold X.

The fields are γ : S → X a smooth function and β ∈ Ω1,0(S, γ∗TX) a (1, 0)-form on S with values

in the pullback along γ of the holomorphic tangent bundle of X. The action functional is∫
S

〈β ∧ ∂γ〉,

where the brackets indicate that one uses the fiberwise evaluation pairing between the tangent

bundle TX and the cotangent bundle T ∗X . The equations of motion for this action are then

∂γ = 0 = ∂β.

In other words, a solution is a holomorphic map from S to T ∗X. Here we will develop the

perturbative aspects of the curved βγ system in the BV formalism.

The quantization of the classical βγ system is a chiral conformal field theory whose chiral algebra

is the CDOs of X, as explained by Witten [Wit07] and Nekrasov [Nek]. To be more precise, they

explain that the “perturbative” sector of the theory — i.e., working around the constant solutions

— admits a quantization for S = C only if ch2(TX) vanishes and that each choice of trivialization
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produces a quantization. (To extend to arbitrary Riemann surfaces, one needs c1(TX) = 0 as well.)

They also interpret this theory as the half-twisted form of a (0, 2)-supersymmetric σ-model.

Our goal in this part is to describe and quantize the curved βγ system using the renormalization

and BV machinery of [Cos11] in combination with Gelfand-Kazhdan descent. Applying the main

theorem of [CG], we then obtain a factorization algebra of quantum observables and extract from

it a vertex algebra, which is the CDOs. In other words, we develop mathematically the physical

arguments and results in [Wit07] and [Nek]. Along the way, we will see how aspects of those

physical arguments, such as the anomalies, appear in this BV formalism.

Remark 6.1. In [Cos10, Cos] Costello already used this machinery to quantize the curved βγ system,

but he uses a formalism of L∞ spaces rather than Gelfand-Kazhdan descent. This approach does

not lend itself as easily to direct comparison with CDOs, so far as we can tell, and so we pursued

another approach to encoding the target space, which is more explicitly analogous to techniques

used by Kontsevich, Cattaneo-Felder, and others. Strictly speaking, we do not rely upon Costello’s

results — notably the L∞ space formalism — and we show that our approach recovers his results

when the target spaces (e.g., complex manifolds) are treatable with Gelfand-Kazhdan descent. In

practice, though, we borrow and re-purpose several lemmas, and we clearly take our inspiration

from his work.

A key idea in our approach, which we learned from Costello’s work, is to encode the σ-model

as a gauge theory. This alternative presentation of the βγ system, with the formal n-disk D̂n as

the target, makes it amenable to Gelfand-Kazhdan descent. Our approach thus breaks into the

following steps:

(1) write the classical BV theory of the βγ system as a gauge theory with a natural action of

the Harish-Chandra pair (Wn,GLn),

(2) analyze the obstruction (aka anomaly) to quantizing this gauge theory equivariantly with

respect to the (Wn,GLn)-action,

(3) construct an Harish-Chandra extension of (Wn,GLn) via the obstruction and show that

there is an equivariant quantization for this extended pair, and

(4) describe the bundle of factorization algebras obtained by Gelfand-Kazhdan descent, for

this extended pair, applied to the factorization algebra of quantum observables with target

the formal n-disk.

The strong parallels with the CDO story, as articulated in Part I, should be apparent here: in both

cases, the classical situation works nicely with usual Gelfand-Kazhdan descent, but the quantum

situation requires an extended version. Indeed, the primary changes are that we replace vertex

algebras with factorization algebras and that we use the BV formalism to produce the quantization,

rather than a vertex algebra version of canonical quantization. Both changes require a heavy use of

homological machinery, and so it should be no surprise that we must allow homotopical actions of

the Harish-Chandra pair (Wn,GLn) on cochain complexes and thus develop a homotopical version

of Gelfand-Kazhdan descent.

Throughout this part, we work in the formalism developed in [Cos11, CG] and refer to them

liberally, not aiming to be self-contained here. Nonetheless, we recall essential ideas and notations

along the way and give detailed citations.

7. A brief overview of derived deformation theory and L∞ algebras

Throughout this part, we will use some homological constructions that are not wholly standard

knowledge and can seem rather sophisticated upon first acquaintance. The actual manipulations
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are straightforward and amount to exploiting several ways of writing maps between completed

symmetric algebras, these ways being equivalent but distinct in flavor. The reader familiar with

L∞ algebras, Maurer-Cartan elements, twisting cocycles, and so on, can safely skip this section.

For others, it will at least identify the tricks outside the complicated context in which we use them.

Our treatment is succinct and casual, and we cite [LV12, Hin01, Lur, CG] for detailed treatments.

There is one important idea, and not just manipulation, connected with these constructions:

every dg Lie algebra describes a “formal space” (in some sense a moduli space parametrizing

deformations of something), and conversely every formal space is described by some dg Lie algebra.

This idea is attributed to Deligne, Drinfeld, Quillen, Schlessinger-Stasheff, and others, and thanks

to Lurie [Lur] and Pridham [Pri10], it has a precise incarnation in derived algebraic geometry,

which provides a suitably sophisticated notion of “space.”

Here we only need the following dictionary between a formal moduli space X and its associated

dg Lie algebra gX:

• the dg algebra of functions O(X) on X corresponds to C∗Lie(gX), the Chevalley-Eilenberg

cochains,

• the dg coalgebra of distributions on X corresponds to CLie
∗ (gX), the Chevalley-Eilenberg

chains, and

• the dg Lie algebra of vector fields on X corresponds to C∗Lie(gX, gX[−1]).

For us, the Chevalley-Eilenberg chains CLie
∗ (g) has underlying graded vector space Sym(g[1]),

equipped with the standard coproduct where ∆(x) = x⊗1 + 1⊗x for x ∈ g[1], and the differential

dCLie
∗

is a degree one coderivation determined by

dCLie
∗

(xy) = (dgx)y ± x(dgy) + [x, y]

for any x, y ∈ g[1]. The Chevalley-Eilenberg cochains C∗Lie(g) is the linear dual, so the underlying

graded algebra is the completed symmetric algebra Ŝym(g∨[−1]). (One must be careful about duals

with infinite-dimensional vector spaces. In practice our examples will be tamed by a topology and

will mean the continuous linear dual.) The last identification, for vector fields, might seem strange

until one computes that the cochain complex of derivations of the algebra C∗Lie(gX) has underlying

graded Lie algebra Ŝym(g∨[−1])⊗g[1] with the bracket the usual Lie bracket for vector fields with

power series coefficients.

Let us introduce a toy example that plays an important role for us.

Definition 7.1. Let gn denote the dg Lie algebra Cn[−1], which consists of a copy of Cn in

cohomological degree 1 and hence has zero differential and zero bracket.

Under the dictionary we find

C∗Lie(gn) = Ŝym(g∗n[−1]) ∼= C[[t1, . . . , tn]] = Ôn,

so that gn should encode the formal n-disk D̂n. Under the dictionary, we also find an isomorphism

of vector fields,

C∗Lie(gn, gn[−1]) = Ŝym(g∗n[−1])⊗ Cn ∼=
n⊕
j=1

C[[t1, . . . , tn]]
∂

∂tj
= Wn,

which will be useful for us.

Given the dictionary, it is not unreasonable to imagine enlarging both sides a bit, by allowing

n-ary brackets (not just binary brackets) on the Lie side and by allowing arbitrary (co)derivations

on the (co)commutative (co)algebra side. On the Lie side, such objects are called L∞ algebras,

but we use the following definition, which has the dictionary built into it.
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Definition 7.2. An L∞ algebra g is a graded vector space V along with a degree 1 coderiva-

tion Q on the coaugmented cocommutative coalgebra Sym(V [1]) that preserves the coaugmenta-

tion and squares to zero. Its Chevalley-Eilenberg chains CL
∗ (g) is the dg cocommutative coalgebra

(Sym(V [1]), Q).

A coderivation Q is determined by how it maps to cogenerators, so in this case it is determined

by the “Taylor components”

Qn : Symn(V [1])→ V [1],

which encode the n-ary brackets

`gn : (ΛnV )[n− 1] ∼= Symn(V [1])[−1]
Qn[−1]−−−−−→ V

after shifting. A dg Lie algebra gives an L∞ algebra in which `n = 0 for n > 2. Thus, CL
∗ is a

direct generalization of CLie
∗ , recovering it on dg Lie algebras.

Definition 7.3. Let g and g′ be L∞ algebras. A map of L∞ algebras f : g g′ means a map of

coaugmented dg cocommutative algebras

f : CL
∗ (g)→ CL

∗ (g
′).

Note that every strict map of dg Lie algebra yields an L∞ map by applying the functor CLie
∗ .

We use to emphasize that f is not a cochain map from g to g′. This notion of L∞ map allows

for a succinct way of describing a map between dg Lie algebras up to coherent homotopy.

This notion also leads to a homotopy coherent version of a representation.

Definition 7.4. For M a dg vector space, an L∞ action of g on M means a map of L∞ algebras

ρ : g End(M), where End(M) denotes the dg vector space of graded endomorphisms of M with

the commutator bracket. We also say ρ makes M a L∞-representation or L∞-module for g.

We unravel this definition as follows. A map of L∞ algebras ρ : g End(M) is determined by

the composite

πSym1 ◦ ρ : Sym(g[1])→ End(M)[1] = Sym1(End(M)[1]),

as any coalgebra map is determined by how it maps to cogenerators. Thus, we obtain a sequence

of maps

ρn : Symn(g[1])⊗M →M

of degree 2 − n, which describe more concretely how g acts on elements of M . This version of

the data makes it manifest how to define the Chevalley-Eilenberg chains of M , CL
∗ (g,M), which

generalizes the Lie algebra homology of a representation of a Lie algebra and which thus encodes

the coinvariants of the representation M .

An L∞ algebra g also possesses a Chevalley-Eilenberg cochains C∗L(g), which is the dg completed

commutative algebra (Ŝym(V ∨[−1]), Q∨). When g is a dg Lie algebra, this definition C∗L(g) recovers

the usual cochains C∗Lie(g). (One must be careful about what one means by the graded linear

dual V ∨ if V is not finite-dimensional in each cohomological degree. In practice our infinite-

dimensional vector spaces are tamed by a topology.) For each representation M , we also have the

Chevalley-Eilenberg cochains of M , C∗L(g,M), which generalizes the Lie algebra cohomology of a

representation of a Lie algebra and which thus encodes the invariants of the representation M . We

will use Der(g) to denote the C∗L(g, g[1]), as it encodes the vector fields (or derivations) of g viewed

as a formal space.

It is often convenient to describe a map of L∞ algebras f : g g′ in two other ways:
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(1) a map of augmented dg commutative algebras f∗ : C∗L(g′)→ C∗L(g) or

(2) a Maurer-Cartan element αf in the L∞ algebra C∗L(g)⊗ g′.

Let us explain what we mean in the second case.

First, observe that the tensor product A⊗ g of a dg commutative algebra A and L∞ algebra g

obtains a natural L∞ structure where

`A⊗gn (a1 ⊗ x1, . . . , an ⊗ xn) = ±(a1 · · · an)⊗ `gn(x1, . . . , xn).

In other words, we use the commutative product of A to multiply the A-components and we

use the L∞ structure on g to bracket the g-components. This definition is just the extension to

L∞ algebras of the familiar construction with commutative algebras and Lie algebras (e.g., recall

why the sections of the adjoint bundle of a principal G-bundle form a Lie algebra). Second, a

Maurer-Cartan element of an L∞ algebra g is a degree one element α such that∑
n≥1

1

n!
`gn(α, · · · , α) = 0.

When g is a dg Lie algebra, this recovers the standard definition. (In principle, this infinite sum

is ill-defined, but we always work in situations where only a finite sum appears. Alternatively,

one needs to introduce some mechanism to make the infinite sum well-defined, such as with a

topology.) Finally, a map of L∞ algebras f is determined by the composite

πSym1 ◦ f : Sym(g[1])→ g′[1] = Sym1(g′[1]),

as any coalgebra map is determined by how it maps to cogenerators. This composite provides

an element αf ∈ Ŝym(g∨[−1]) ⊗ g′[1], and the condition that f intertwines the differentials is

equivalent to the Maurer-Cartan equation on αf .

8. The formal βγ system

We now turn to the case where the target is the formal n-disk D̂n, which was formulate as a

classical BV theory in the style of a gauge theory. This encoding allows a concise description of

how diffeomorphisms on the target act on the theory, and thence a description as a Wn-equivariant

classical BV theory.

8.1. The free βγ system as a BV theory. We briefly recall how to encode the free βγ system

— where the target X is the affine space An — as a BV theory, following [Gwi12, CG]. (Note that

the name is due to the traditional choice of letters to denote the fields.)

Definition 8.1. The rank n free βγ system on a Riemann surface S has fields

Ω0,∗(S,Cn)⊕ Ω1,∗(S,Cn),

concentrated in cohomological degrees 0 and 1. We denote by γ = (γ1, . . . , γn) a section of

Ω0,∗(S,Cn), and we denote by β = (β1, . . . , βn) a section of Ω1,∗(S,Cn). The shifted pairing

is “wedge and integrate”:

(16) 〈γ + β, γ′ + β′〉 =

n∑
i=1

∫
S

γi ∧ β′i + βi ∧ γ′i.

The action functional is

Sfree(γ, β) = 〈β, ∂γ〉 =

n∑
i=1

∫
S

βi ∧ ∂γi.
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The equations of motion are thus

∂γi = 0 = ∂βi

for i = 1, . . . , n.

We can think of a solution of the equations of motion as a holomorphic map S → T ∗Cn.

There is an action of the general linear group GLn on the space of fields of the free βγ system.

Explicitly, for a field of the form (f ⊗ v, g⊗ λ) ∈ Ω0,∗(S;Cn)⊗Ω1,∗(S;Cn) we define for A ∈ GLn

A · (f ⊗ v, g ⊗ λ) = (f ⊗Av, g ⊗ (A−1)Tλ).

That is, we view GLn acting on Ω0,∗(S;Cn) through the defining representation on Cn and on

Ω1,∗(S,Cn) through the coadjoint representation on Cn. By construction this action preserves

Sfree.

8.2. The formal βγ system. We now turn to the case where the target is the formal n-disk D̂n,

which is closely related to the free case we just described.

Let S denote a Riemann surface. The dg Lie algebra

gSn := Ω0,∗(S, gn)

plays a central role for us. It is abelian but has a nontrivial differential via ∂. The Maurer-Cartan

equation of this dg Lie algebra is ∂(γ) = 0, where γ : S → Cn is a smooth function; in other

words, a solution is simply a holomorphic map from S to Cn. Under the dictionary, this dg Lie

algebra gSn encodes “deformations of the constant map to 0 to nearby holomorphic functions.” Note

that this Maurer-Cartan equation is precisely the Euler-Lagrange equation for γ in the free βγ

system, and the deformations describe the formal neighborhood of the constant zero map among

all holomorphic functions.

To describe the β fields as well, we simply enlarge the dg Lie algebra to its “double”

DgSn = Ω0,∗(S, gn)⊕ Ω1,∗(S, g∨n [−2]).

Note that the shifts mean that in cohomological degree one, we have Ω0,0 ⊗ Cn ⊕ Ω1,0 ⊗ (Cn)∗,

and in cohomological degree two, we have Ω0,1⊗Cn⊕Ω1,1⊗ (Cn)∗. The Lie bracket is still trivial,

and the differential is ∂ in both complexes. If β denotes an element in Ω1,0 ⊗ (Cn)∗, then the

Maurer-Cartan equation is ∂(β) = 0, which is precisely the Euler-Lagrange equation in the βγ

system. Hence the dg Lie algebra DgSn encodes, in some sense, the free βγ system. To be more

precise, it encodes the βγ system with the formal n-disk D̂n as the target, since this dg Lie algebra

describes deformations of the constant map to the origin.

Remark 8.2. This holomorphic abelian gauge theory is simply a holomorphic version of BF theory,

where the Lie algebra is now in a shifted degree.

Note that under this correspondence, the BV bracket for the BV theory encoding the βγ system

corresponds to the linear pairing on DgSn arising from the evaluation pairing on gn. Explicitly, for

γ, γ′ ∈ Ω0,∗
c (S, gn) and β, β′ ∈ Ω1,∗

c (S, g∨n [−2]), consider the pairing

(17) 〈γ + β, γ′ + β′〉 =

∫
S

evgn(γ ∧ β′) + evgn(β ∧ γ′),

where ev denotes the evaluation pairing between gn and g∨n and where evgn(γ ∧ β′) denotes the

composite of taking the wedge product of the Dolbeault components and the evaluation pairing of

the Lie algebra components. This pairing is invariant under the Lie bracket and has cohomological
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degree −3. (This shift, in conjunction with the shift in Chevalley-Eilenberg cochains, ensures that

one obtains a shifted Poisson bracket of degree 1, as needed for a classical BV theory.)

Just as in the non-formal case the group GLn acts on DgSn .

Lemma 8.3. The group GLn acts on the dg Lie algebra DgSn in a way that preserves the pairing

〈−,−〉.

Proof. The action of GLn is induced by the defining reprentation on gn[1] = Cn and the coadjoint

action on g∨n [−2] = (Cn)∗. �

8.3. The Wn action on gSn and on DgSn. We have just seen that the formal βγ system is equi-

variant for the group GLn. There is a richer equivariance coming from non-linear automorphisms

of the formal disk that we now wish to describe.

First, consider the global curved βγ-system with source S and target X. Explicitly, the fields

consist of pairs of a map γ : S → X together with a section β ∈ Γ(KS ⊗ γ∗(T ∗X)). The action is,

as in the flat case,
∫
S
β ∧ ∂γ.

Biholomorphisms act on the γ fields in the obvious way: given a biholomorphism φ : X → X

we obtain a new field via composition φ ◦ γ : S → X. Now, a biholomorphism induces an action

of sections on any tensor bundle. In particular, on sections of T ∗X the biholomorphism φ acts by

the inverse Jacobian Jac(φ)−1. Thus, we have an action of the biholomorphism φ on the β fields

given by Jac(γ∗φ)−1. Thus, the action on the pair (γ, β) is given by

φ · (γ, β) = (φ ◦ γ, Jac(φ)−1β)

where Jac(φ)−1β is a section of (φ ◦ γ)∗T ∗X ⊗KS . Since φ is holomorphic we have

∂(γ ◦ φ) = Jac(φ) · ∂γ.

It follows that biholomorphisms are a symmetry of the classical theory.

The dg Lie algebras we introduced above describing the formal βγ system arise via a general

method for producing dg Lie algebras: given a dg Lie algebra g and a commutative dg algebra A,

the tensor product A⊗ g has a natural dg Lie algebra structure where the differential is

d(a⊗X) = (dAa)⊗X + (−1)aa⊗ dgX

and the bracket is

[a⊗X, a′ ⊗X ′] = (−1)Xa
′
(aa′)⊗ [X,X ′].

Above, we took A to be the Dolbeault complex Ω0,∗(S).

Now, if another Lie algebra h acts on g, there is a natural extension to an action of h on A⊗g by

simply leaving the A-term alone. We want to use an L∞ version of this procedure to equip gSn and

DgSn with an L∞ action of Wn, extending the L∞ action of Wn on gn. This L∞ action is something

familiar in physics, just expressed compactly via our dictionary. For a σ-model with target X, a

diffeomorphism of X acts on the space of maps into X. If the diffeomorphism preserves structure

relevant to the σ-model (e.g., a metric or complex structure), then the diffeomorphism acts on the

space of solutions to the Euler-Lagrange equations of the theory. This L∞ action encodes how

formal diffeomorphisms of the target formal disk D̂n act on the formal moduli space of solutions

to the equations of motion for the βγ system.

Let us provide an explicit description of this L∞ action in order to make the extension manifest.

Denote the generators of gn by {ξ1, . . . , ξn} and the dual generators of g∨n by {t1, . . . , tn}. Hence

we have

C∗Lie(gn) = Ŝym(g∨n [−1]) = C[[t1, . . . , tn]],
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as already mentioned. Moreover we have a natural map

(18) ρW : Wn → Der(C∗Lie(gn)), f(ti)∂j 7→ f(ti)ξj .

Expressed as an L∞ action of Wn on gn, it is given by a sequence of maps

`Wm : Wn ⊗ g⊗mn → gn

of cohomological degree 1 − m, where m ranges over all non-negative integers. These maps are

simply the “Taylor components” of ρW . For instance, the vector field X = tm1
1 · · · tmnn ∂j ∈ Wn

acts by zero for any m 6= m1 + · · ·+mn, and for m = m1 + · · ·+mn,

`Wm
(
X, (ξ⊗m1

1 ⊗ · · · ⊗ ξ⊗mnn )
)

= `Wm
(
(tm1

1 · · · tmnn ∂j)⊗ ξ⊗m1
1 ⊗ · · · ⊗ ξ⊗mnn

)
= ξj

and vanishes on any other basis element g⊗mn .

With these formulas in hand, we can equip A⊗gn with an L∞ action of Wn. Here the sequence

of maps is

`W,Am : Wn ⊗ (A⊗ gn)⊗m → A⊗ gn

with

`W,Am (X, (a1 ⊗ x1)⊗ · · · ⊗ (am ⊗ xm)) = ±(a1 · · · am)⊗ `Wm (X,x1 ⊗ · · · ⊗ xm),

where the sign is determined by Koszul’s rule. Equivalently, we can encode the L∞ action in a Lie

algebra map

ρW,A : Wn → C∗Lie(A⊗ gn, A⊗ gn[−1]),

which assembles the `Am maps into a “Taylor series.” If we set A to be Ω0,∗(S), then we obtain an

L∞ action of Wn on gSn . A lift of this action to an L∞ action of Wn on DgSn is uniquely determined

by the requirement that the action preserve the degree -3 pairing.

Diffeomorphisms of a manifold X naturally determine symplectomorphisms of the cotangent

bundle T ∗X, given simply by the associated map of vector bundles. Thus diffeomorphisms also

act naturally on the space of maps from S into T ∗X. We can use the L∞ language to provide

a concise description of this action of formal diffeomorphisms of the disk D̂n on the fields of the

formal βγ system.

The action of Wn on the Lie algebra gn induces an action of Wn on the dual space g∨n via the

evaluation pairing:

〈X · v, w〉gn = 〈v,X · w〉gn
for all v + w ∈ gn ⊕ g∨n . This action is linear in the sense that brackets

Wn ⊗ (g∨n)⊗m → g∨n

are zero for m > 1. We can extend this action to the dg vector space Ω1,∗(S, g∨n) and hence to

DgSn ; we denote this L∞-action by

DρW : Wn → Der(DgSn).

Since Wn preserves the dual pairing on gn and g∨n , it is immediate that it preserves the invariant

pairing of degree −3 on DgSn . We summarize these observations in the following.

Lemma 8.4. The classical BV theory of the formal βγ system is equivariant with respect to Wn:

the action of Wn on the fields preserves the shifted pairing on the fields and the action functional.

In other words, the L∞ action of Wn on DgSn determined by the canonical action of Wn on gn
preserves the shifted pairing and the differential.
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8.4. A Noether current and the obstruction-deformation complex. It thus should be no

surprise that we can also use a local functional to express this action of infinitesimal diffeomor-

phisms. The explicit formula is quite simple and is just the natural formula from physics written

in terms of formal power series. (See equation (19) below.) To formulate this result, we recall

now some useful notation. We will also see how we can obtain the usual Noether current for the

symmetry by vector fields from this local functional.

8.4.1. Recollections on local functionals. A systematic exposition of local functionals and defor-

mation complexes can be found in [Cos11], but here we provide a brief summary with our theory

as a running example.

Let E be a dg Lie (or L∞) algebra associated to a classical BV field theory on S. The underlying

graded vector space of E consists of the smooth sections of a certain graded vector bundle E on

S; we call such sections the fields of the field theory. The key example here is the dg Lie algebra

DgSn for the formal βγ system, whose fields are γ and β.

A Lagrangian density is a functional on E that takes values in smooth densities on S and depends

polynomially (or as a power series) on the fields and their derivatives. This dependence is local: if

L(γ) is a Lagrangian density evaluated on the field γ, its value at a point x ∈ S only depends on the

∞-jet (aka Taylor expansion) of γ at x. A Lagrangian density L then determines a local functional

on fields by integrating over S. More precisely, one obtains a functional on compactly-supported

fields, since integration is always well-defined so long as the domain is compact. As an example,

let E = DgC1 , the rank 1 formal βγ system on S = C. The Lagrangian density L(γ, β) = β ∧ ∂γ
has local functional given by the action functional.

Note that since total derivatives with compact support have trivial integral, two Lagrangian

densities that differ by total derivatives determine the same local functional. Thus, we define the

dg vector space of local functionals on the classical field theory E by

C∗loc(E) = DensS ⊗DS C∗Lie,red(J∞(E)).

Here DS denotes the ring of differential operators on S, DensS denotes the smooth densities on

S equipped with its natural right action by DS , and J∞E denotes the sheaf of ∞-jets of smooth

sections of the bundle E. Since E is a sheaf of Lie algebras, J∞(E) is a sheaf of Lie algebras in

DS-modules, and we are computing the Lie algebra cochains in the category of DS-modules. Such

cochains should be viewed as functions on the∞-jets of fields with values in functions on S. Hence,

this tensor product produces densities on S that are power series in the jets of fields. Moreover,

taking this tensor product over DS encodes the relation that total derivatives vanish. Note that

we’ve eliminated the constant functions on jets of sections.

This description of C∗loc(E) is quite abstract, but by restricting to compactly supported fields, we

can provide a more concrete description of the situation. A local functional is a sum of functionals

of the form ∫
x∈S

D1γ(x) ∧ · · · ∧Djγ(x) ∧Dj+1β(x) ∧ · · · ∧Dkβ(x) ∧ dµ,

where the Di are differential operators and where dµ is a smooth form. This functional is ho-

mogeneous of order k. (Such a functional can have any cohomological degree.) As we saw, a

prototypical example of a local functional is the action functional itself, which is quadratic and

degree zero.

Definition 8.5. Let Defn = C∗loc(DgSn) denote the cochain complex of local functionals on DgSn. El-

ements consist of formal sums I =
∑
k>0 Ik where each Ik is a local functional that is homogeneous

of order k. We call Defn the obstruction-deformation complex for the formal βγ system.
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The deformation complex is, in fact, a subcomplex of the Chevalley-Eilenberg continuous

cochains on the dg Lie algebra DgSn . (Essentially, we mean the cochains as a dg Lie algebra

in topological vector spaces, but see Section 11.2 for more thorough discussion of this point.)

A cochain in the deformation complex of homogeneous degree k is a distribution supported, by

definition, along the small diagonal X ↪→ Xk.

The complex Defn has a shifted Lie algebra structure arising from the BV bracket {−,−},
which is determined by the shifted pairing between the fields γ and β. (See Equation (17).) The

differential on Defn is precisely {Sfree,−}.

8.4.2. The action of vector fields. We now describe the action of formal vector fields on the classical

theory using local functionals. Verifying the lemma is a direct computation using the definitions.

Lemma 8.6. The map DρW : Wn → Der(DgSn) describing the L∞-action of Wn on the dg Lie

algebra DgSn has a lift

Defn[−1]

{−,−}
��

Wn DρW
//

IW
::

Der(DgSn)

with IW a local functional. Explicitly, given a formal vector field

X =

n∑
j=1

∑
m=(m1,...,mn)∈Nn

aj,mt
m1
1 · · · tmnn ∂j ,

the local functional

(19) IW
X (γ, β) =

n∑
j=1

∑
m∈Nn

aj,m

∫
S

γ∧m1
1 ∧ · · · ∧ γ∧mnn ∧ βj

satisfies {IW
X ,−} = DρW (X).

Remark 8.7. When restricted to linear vector fields, the action of Wn on βγ system with target

D̂n agrees with the action of GLn described in Lemma 8.3. In this sense, we have described an

action of the Harish-Chandra pair (Wn,GLn) on the classical βγ system. This theory can thus

be treated by Gelfand-Kazhdan formal geometry. We develop this reasoning more fully in Section

12.4. In particular, in the next section we will show that this theory descends to the classical

curved βγ system where the target is a complex manifold X; more precisely, we will identify this

theory with the theory defined by Costello in [Cos].

As explained in Section 7, we can identify this map IW with a Maurer-Cartan element C∗Lie(Wn,C
∗
loc(DgSn)).

Explicitly, this identification means that

(20) (dWn
⊗ 1 + 1⊗ ∂)IW +

1

2
{IW, IW} = 0.

In fact, given our formula for the local functional, it is natural to view IW as a function of X ∈Wn

and the fields γ and β. We thus have the following cochain complex, which plays a crucial role in

studying the formal βγ system as a Wn-equivariant BV theory.
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8.4.3. The relation to the formal Atiyah class. In this section we describe how the local functional

IW, which encodes the action of formal vector fields on the classical theory, is related to the

Gelfand-Fuks-Atiyah class from Section 2.

We have already discussed the action of Wn on the dg Lie algebra gn and its dual g∨n and

how this determines an action on the dg Lie algebra DgSn which is encoded by the Maurer-Cartan

element IW ∈ C∗Lie(Wn)⊗ C∗loc(DgSn)[−1].

Fix S = C and use the natural framing of the tangent bundle by ∂z to write Ω0,∗(S) = C∞(C)⊗
C[dz]. Similarly, Ω1,∗(C) = C∞(C)[dz]dz. Using this notation, we find a decomposition

(21) DgSn = C∞(C)⊗ ((gn ⊕ gn dz)⊕ (g∨n [−2]⊕ g∨n [−2] dz) dz)

as the tensor product of a commutative algebra C∞(C) and a graded Lie algebra. (The differential

on the dg Lie algebra does not respect this decomposition.)

It will be convenient to analyze IW in terms of this decomposition. To be more precise, we

consider the local functional IW
X for each formal vector field X of the form ai∂i, where the coefficient

ai ∈ Ôn is homogeneous. Observe that IW
X is itself a homogeneous local functional of the form

IW
X : Symk+1(DgSn)→ C.

Using the decomposition (21), we can write IW
X as IW,an

X IW,alg
X , a product of an analytic factor

times a algebraic factor with IW,an
X ∈ Symk+1(C∞(C)∨) and with

IW,alg
X ∈ C∗Lie ((gn ⊕ gn dz)⊕ (g∨n [−2]⊕ g∨n [−2] dz))

Moreover, IW is linear in the inputs gn dz and (g∨n [−2] ⊕ g∨n [−2] dz) dz (there must be precisely

one dz and dz for the integral (19) to be nonzero), and so we see that the algebraic factor is an

element in

IW,alg
X ∈ C∗Lie (gn; (gn dz)∨[−1]⊗ gn[1]) .

For the rest of this section, we suppress dz from the notation and identify the right-hand side with

Ôn ⊗ End(T0) where T0 = gn[1] = Cn is the space of constant vector fields.

The formal de Rham differential ddR : Ôn → Ω̂1
n determines a map

ddR ⊗ 1 : Ôn ⊗C End(T0)→ Ω̂1
n ⊗C End(T0).

which is reminiscent of equipping a vector bundle with a connection after specifying a global frame.

We have, as a corollary of Proposition 2.37, the following relationship of the functional IW,alg

to the Gelfand-Fuks-Atiyah class.

Corollary 8.8. For each X ∈Wn of homogenous degree k,

(ddR ⊗ 1)IW,alg
X = AtGF(T̂n)(X) ∈ Ω̂1

n ⊗Ô End(T̂n)

where AtGF(T̂n) is the Gelfand-Fuks-Atiyah class of the formal vector bundle T̂n.

Proof. We can think of X 7→ IW,alg
X as a linear map

IW,alg : Wn → Ôn ⊗C End(T0),

or equivalently as a linear map IW,alg : Wn ⊗ T0 → T̂n. This map is, in fact, the restriction of the

action ρT̂n of Wn on the formal tangent bundle T̂n to the space T0 = Cn, the space of constant

sections of T̂n. That is, ρT̂n |Wn⊗T0
= IW,alg. Proposition 2.37 then implies that (ddR ⊗ 1)IW,alg

is a representative for the Gelfand-Fuks-Atiyah class. �
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8.4.4. Equivariant deformation complex. We can now make the following deformation complex

that controls Wn-equivariant deformations of the classical theory.

Definition 8.9. The Wn-equivariant obstruction-deformation complex is the graded vector space

Ŝym(Wn
∨[−1])⊗C]loc(DgSn) equipped with the differential dWn + ∂ + {IW,−}, where dWn denotes

the differential from C∗Lie(Wn) and ∂ denotes the differential from C∗loc(DgSn). We use DefW
n to

denote this complex.

In other words, this complex is the tensor product C∗Lie(Wn) ⊗ C∗loc(DgSn) twisted by IW as

the twisting cochain. It encodes succinctly how the formal vector fields Wn act on the local

functionals of the field theory. Its role in the equivariant BV formalism is analogous to the role of

the non-equivariant obstruction-deformation complex in the BV formalism:

• first-order deformations of the formal βγ system as a Wn-equivariant classical BV theory

live in the zeroth cohomology and

• the obstruction to equivariant BV quantization modulo ~2 lives in the first cohomology.

Hence it behooves us to compute its cohomology. We will find a particularly nice answer after

further constraining the problem.

There are two further symmetries of this theory that we will exploit. First, there is a natural

scaling action of C× on the fibers of the cotangent bundle (as on any vector bundle) that scales

the β fields of the βγ system. The action functional has “weight one” with respect to this scaling

action. In our setting there is thus an action of C× on DgSn given by scaling the β fields. Second,

we restrict now to the Riemann surface is S = C and note that affine linear automorphisms

Aff(C) = C n C× preserve the action functional of the βγ system. We are only interested in the

subcomplex of DefWn consisting of local functionals with the same symmetries, namely weight one

under the scaling action and invariant under the Aff(C) action. Then we have the subcomplex

(Defn)C
××Aff(C) ⊂ Defn

and its equivariant version (DefW
n )C

××Aff(C) ⊂ DefW
n .

Proposition 8.10. There is a quasi-isomorphism of Wn-modules

J : Ω̂2
n,cl[1]

'−→ (Defn)C
××Aff(C).

Applying the functor C∗Lie(Wn;−), we obtain a quasi-isomorphism

(22) JW : C∗Lie(Wn, Ω̂
2
n,cl[1])

'−→ (DefW
n )C

××Aff(C).

The proof of this result is in Section 8.5.2, but first we will have to describe the map J in the

above proposition, which is the subject of the next section.

This quasi-isomorphism J is, in fact, (Wn,GLn)-equivariant. Let us note an important conse-

quence of this proposition.

Corollary 8.11. The Gelfand-Kazhdan descent along a complex manifold X of the (Wn,GLn)-

module (Defn)C
××Aff(C) returns a sheaf of dg vector spaces that is quasi-isomorphic to the sheaf Ω2

X,cl[1].

In particular we have the following description over a general manifold:

(1) the space of anomalies of the theory over X is H2(X,Ω2
X,cl),

(2) the space of deformations over X is H1(X,Ω2
X,cl) and

(3) the space of automorphisms over X is H0(X,Ω2
n,cl).

This description matches precisely with the study of deformations of the curved βγ system as

in [Wit07, Nek].
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8.5. Closed two-forms as local functionals. We have already seen how vector fields yield local

functionals of the formal βγ-system and thus give it the structure of an equivariant BV theory. In

this section we will show how closed two-forms yield local functionals of γ, i.e., only of the subspace

of fields Ω0,∗(S; gn[1]). That is, we define a linear map

J : Ω̂2
n,cl → C∗loc(gSn)

and use Jω to denote the image of ω. This map will exhibit the quasi-isomorphism of Proposition

8.10.

Remark 8.12. This map has the following geometric interpretation. On the formal disk, every

closed two-form ω is exact, so that ω = dθ for some θ ∈ Ω̂1
n. Use the field γ : S → D̂n to pull back

this one-form to the one-form γ∗θ on S. We interpret this one-form as a current; we can integrate

it around any closed one-cycle in S to get a function of γ. We denote this current by J̃θ, where

J̃θ(γ) = γ∗θ. By Stokes theorem, this current vanishes if θ is exact, so the local functional only

depends, in fact, on the corresponding closed two-form dθ. Hence we write Jdθ = J̃θ.

8.5.1. Defining J . Although pulling back forms is easy, we wish to rewrite this construction in

terms of gn and hence we need to describe pullback under Koszul duality. Thus, to define J , we

need to introduce a few constructions.

First, there is an assignment

(−)S : Ôn → HomC

(
Ω0,∗
S ⊗ gn,Ω

0,∗
S

)
that produces a linear map on gSn from a function on the formal n-disk, which we now describe.

Given an input f ∈ Ôn, let fk denote its homogeneous component of degree k. View fk as a linear

map fk : Symk(gn[1])→ C. We then define

fSk : Symk(Ω0,∗
S ⊗ gn) → Ω0,∗

S

(γ1 ⊗ ξ1) · · · (γk ⊗ ξk) 7→ (γ1 ∧ · · · ∧ γk)f(ξ1, · · · , ξk)

Extend to non-homogenous elements by linearity so that fS =
∑
k f

S
k .

Similarly, a one-form on the formal disk θ ∈ Ω̂1
n = C∗Lie(gn; g∨n [−1]) encodes a linear map

θ : Sym(gn[1])→ g∨n [−1]. Let θk : Symk(gn[1])→ g∨n [−1] be its homogenous component of degree

k. As above, there is a natural linear map

θSk : Symk(Ω0,∗
S ⊗ gn) → Ω0,∗

S ⊗ g∨n [−1]

(γ1 ⊗ ξ1) · · · (γk ⊗ ξk) 7→ (γ1 ∧ · · · ∧ γk)⊗ θk(ξ1, · · · , ξk)

Let θS =
∑
k θ

S
k , as above.

Each one-form θ thus determines a local function J̃θ ∈ C∗loc(gSn) by the formula

J̃θ(γ) =
∑
k

∫
S

〈
θSk
(
γ⊗k

)
, ∂γ

〉
gn
.

Explicitly, if θ = tm1
1 · · · tmnn dtj is monomial one-form, then we have

J̃θ(γ) =

∫
S

γm1
1 ∧ · · · ∧ γmnn ∧ ∂γj .

For shorthand notation, we will write J̃θ =
∫
S

〈
θS(γ), ∂γ

〉
gn

where the sum over homogenous

components is implicit.

We tie up the properties of the functional J̃ in the following proposition, proved below.

Proposition 8.13. The assignment θ 7→ J̃θ satisfies:
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(1) For all θ, the local functional J̃θ is closed inside Defn and lies in the subcomplex (Defn)C
××Aff(C).

(2) The assignment θ 7→ J̃θ is Wn-equivariant. That is, J̃LXθ = X · Jθ where X · (−) denotes

the action of vector fields on functionals and LX is the Lie derivative.

(3) The functional J̃θ is identically zero if θ is an exact one-form.

Thus, J̃ descends to a Wn-equivariant map

J : Ω̂2
n,cl[1]→ (Defn)C

××Aff(C)

that we denote ω 7→ Jω. Here Jω = J̃θ, where θ is any one-form satisfying dθ = ω.

8.5.2. Understanding J . The formula for the functional J̃θ is best understood as integration over

S after applying an operator J valued in densities. We continue to describe everything via the

homogeneous components θk of θ.

First, for each homogeneous degree k, consider the composition

Symk(Ω0,∗
S ⊗ gn[1])⊗ (Ω0,∗

S ⊗ g[1])
1⊗∂−−−→ Sym(Ω0,∗

S ⊗ gn[1])⊗ (Ω1,∗
S ⊗ g)

θSk⊗1−−−→ (Ω0,∗
S ⊗ g∨n [−1])⊗ (Ω1,∗

S ⊗ gn[1])
〈−,−〉g−−−−→ Ω1,∗.

Here, 〈−,−〉g is the evaluation pairing between gn[1] and g∨n [−1]. We then symmetrize the com-

posite to obtain the (k + 1)th homogenous component of Jθ:

(Jθ)k+1 : Symk+1(Ω0,∗
S ⊗ gn)→ Ω1,∗

S .

In this notation, we have J̃θ =
∫
S

Jθ.

Before proving the main result, we make the following simple observations about the functional

J.

Lemma 8.14. Suppose f ∈ Ôn and θ ∈ Ω̂1
n. Then

(1) Jfθ = fS ∧ Jθ and

(2) JddRf = ∂ ◦ fS.

Proof. For simplicity, suppose f is of homogenous degree k and θ of homogenous degree l. Then

fθ defines a linear map

Symk+l(gn[1]) → Symk(gn[1])⊗ Syml(gn[1]) → g∨n [−1]

ξ1, . . . , ξkξ
′
1, . . . , ξ

′
l 7→ (ξ1, . . . , ξk)⊗ (ξ′1, . . . , ξ

′
l) 7→ f(ξ1, . . . , ξk)θ(ξ′1, . . . , ξ

′
l)
.

Thus, (fθ)S = fSθS , from which (1) follows.

We now show (2). Consider the special case of a linear functional τ : gn[1]→ C, viewed as linear

element of Ôn. The one-form ddR(τ) corresponds to the very simple functional Sym0(gn[1]) →
g∨n [−1] sending 1 7→ τ . Thus, JddRτ = ∂(τS). To see (2) in general, we note that both the left and

right hand sides are derivations with respect to the product of functions. Indeed, if f, g ∈ C∗Lie(gn),

then ∂((fg)S)) = ∂(fSgS) = ∂(fS) ∧ gS + fS∂(gS). �

Proof of Proposition 8.13. Observe that the functional Jθ is described by applying a constant

coefficient holomorphic differential operator to the fields γ. Thus Jθ is clearly holomorphic and

invariant under affine linear transformations. It follows that J̃θ is holomorphic, that is ∂J̃θ = 0,

and hence it is closed in Defn. This proves (1). 8

The formula in (2) in Lemma 8.14 implies (3) since the integral of a ∂-exact form is zero. Hence

J̃ defines a map J : Ω̂2
n,cl → C∗loc(gSn). Explicitly, given a closed two-form ω with ddRθ = ω we

have Jω = J̃θ. This proves (3).
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Finally, we show (2). We have seen in our discussion of the Noether current that the action of

a formal vector field X on the deformation complex is through the BV bracket with IW
X . Thus, we

must show for all one-forms θ that J̃LXθ = {IW
X , J̃θ}. For simplicity, suppose X = ∂i, a constant

vector field. Then, if we choose a homogenous one-form θ = tm1
1 . . . tmnn dtj then

LXθ = mit
m1
1 · · · tmj−1

k · · · tmnn dtj .

Now, to compute {IX , θ̃}. The functional IX has a single βi input that pairs with a single γi input

from the functional J̃θ. There are mi + δij such γi inputs, the δij coming from the factor ∂γj in

the definition of J̃θ. So, we obtain

{IX , J̃θ}(γ) = mi

∫
S

γm1
1 ∧ · · · ∧ γmi−1

j ∧ · · · γmnn ∂γj + δij

∫
S

∂(γm1
1 ∧ · · · ∧ γmnn ).

The first term is J̃LXθ. Being the integral of a total derivative the second term vanishes, so we are

done. The case of a general formal vector field X is similar. Indeed, suppose X is homogenous of

the form X = tk1
1 · · · tknn ∂i. Then for θ as above we have

LXθ = mit
k1+m1
1 · · · tki+mi−1

i · · · tkn+mn
n dtj + δijt

m1
1 · · · tmnn d(tk1

1 · · · tknn ).

On the other hand, we compute directly

{IX , J̃θ} = mi

∫
S

γk1+m1
1 ∧ · · · ∧ γki+mi−1

i ∧ · · · ∧ γkn+mn
n ∂γj

− δij

∫
S

∂(γm1
1 ∧ · · · ∧ γmnn )γk1

1 ∧ · · · ∧ γknn .

The first line comes from pairing the βj input from the functional IW
X with the γmii input from J̃θ.

The next term comes from pairing the βi input with the ∂γj input from J̃θ (there is a sign from

integrating by parts). Integration by parts again returns J̃LXθ as desired. �

Proof of Proposition 8.10. We have just seen that J : Ω̂2
n,cl → Defn is Wn-equivariant. To com-

plete the proof it suffices to show that we have a Wn-equivariant equivalence (Defn)C
××Aff(C) '

Ω̂2
n,cl[1]. With gn as the choice of the L∞ algebra g, this equivalence appears as Proposition 15.1.1

in [Cos], whose proof we will review in order to keep track of the Wn-action.

First, observe that by restricting to weight one local functionals under the scaling action, we

only consider functionals that are linear in β. This constraint implies that

(Defn)C
××Aff(C) ∼= C∗loc(Ω0,∗(C, gn))Aff(C),

since we can write any such functional as a wedge product of β with a nontrivial Lagrangian in γ.

Following Chapter 5, Section 6 of [Cos11], we exploit a description of translation invariant local

functionals via D-modules:

(23) C∗loc

(
Ω0,∗(C, gD̂n)

)C ∼= C dz dz ⊗DC C∗Lie,red

(
Jet0(Ω0,∗(C; gn))

)
,

where Jet0 denotes jets of sections at zero of Ω0,∗(C; gn).

Using z for the holomorphic coordinate on C, we have

Jet0(Ω0,∗(C, gn)) ∼= gnJz, z,dzK.

and thus the identification (23) is manifestly Wn-equivariant. It follows that we have a Wn-

equivariant quasi-isomorphism

(Def)C
××C ' C dz ∧ dz ⊗C[∂z,∂z ] C∗Lie,red(gnJz, z,dzK)
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where on the left-hand side we are taking ivariants with respect to C× × C ⊂ C× × (C n C×) =

C××Aff(C). So, we only need to compute the C×-invariants of the right-hand side. Here C× acts

by scaling space-time.

The quasi-isomorphism of dg Lie algebras

(gnJzK, 0)
'−→
(
gnJz, z,dzK, ∂

)
is obviously Wn-equivariant. Finally, Costello’s calculation implies that (in the case that g = gn)

we have (
Cdz ∧ dz ⊗L

C[∂z,∂z ] C∗Lie,red(gnJzK)
)
' (C→ Ω̂0

n → Ω̂1
n)[3].

(That means the cochain complex on the right hand side starts with C in degree −3.) Moreover,

the right-hand side is quasi-isomorphic via the de Rham differential to(
Ω̂2
n[1]→ Ω̂3

n[0]→ · · ·
)
' Ω̂2

n,cl[1].

This identification is clearly Wn-equivariant. �

8.6. Holomorphic vector fields on the source. We digress momentarily to describe another

important symmetry present in the βγ system. The two-dimensional σ-model of all maps from a

Riemann surface S to a complex manifold is classically conformal. Analogously, the holomorphic

σ-model possesses a natural symmetry of the Lie algebra of holomorphic vector fields TS := T 1,0
S .

We will formulate this symmetry on the formal βγ system.

It is convenient for us to work with the Dolbeault resolution of holomorphic vector fields: define

the dg Lie algebra

TS = Ω0,∗(S;TS)

with differential given by ∂ and Lie bracket given by the extension of the Lie bracket of vector

fields to (0, ∗)-forms. There is an action of TS on the Dolbeault complex Ω0,∗(S;C)⊕n given by

Lie derivative of (0, ∗)-forms:

ξ · (γ ⊗ v) = (Lξγ)⊗ v.

(We use the script L to denote the Lie derivative with respect to vector fields on the source, to

avoid confusin it with LX , the Lie derivative of vector fields on the target.) This action extends to

an action of TS on the “double” dg Lie algebra DgSn so that it preserves the shifted pairing between

γ and β fields.

This action can be encoded by a local functional, and hence we obtain a T̂S-equivariant field

theory.

Lemma 8.15. The map of dg Lie algebras L : TS → Der(DgSn), sending a holomorphic vector field

ξ on S to the derivation Lξ, describes an action of holomorphic vector fields on the rank n free βγ

system. Moreover, it has a lift to a map of dg Lie algebras

IT : TS → Defn[−1]

ξ 7→ 〈β,Lξγ〉

along the map determined by the BV bracket {−,−} : Defn[−1]→ Der(DgSn).
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8.6.1. We wish to describe the equivariant obstruction-deformation complex for the action of TS .

The functional IT endows the direct sum TS ⊕ DgSn with the structure of a local Lie algebra. By

definition, on S = C, this equivariant deformation complex is given by the local cochains of this

local Lie algebra

DefTn = C∗loc

(
TC nDgSn

)
.

where Defn is the deformation complex for the formal βγ system defined above. Because C∗loc

always involves taking the reduced Lie algebra cochains, there is a useful splitting of the deformation

complex

DefTn
∼= C∗loc(TC)⊕ C∗loc(TC; Defn),

where Defn is the deformation complex for the free βγ system.

For any complex manifold X the complex C∗loc(TX) has an interpretation in terms of the diagonal

cohomology of X, studied by [Los98]. In the case of X = C it has a simple interpretation in terms

of Gelfand-Fuks cohomology.

Proposition 8.16 (Proposition 5.3 of [Wila]). The cohomology of C∗Lie(TC) is concentrated in

degree one and is isomorphic to H3
Lie(W1). Hence, H∗(C∗loc(TC)) ∼= C[−1].

An explicit generator for the cohomology is given by the local cocycle

ωGF : TC,c × TC,2 → C
(α⊗ ∂z, β ⊗ ∂z) 7→ 1

2π
1
12

∫
C
(
∂3
zα

0β0,1 + ∂3
zα

0,1β0
)

d2z

where α = α0 + α0,1dz and similarly for β.

Proposition 8.17. There exists a map of dg Lie algebras

(ωGF, J,K) : C[−2]⊕ Ω̂1
n[−1]⊕ Ω̂2

n,cl → DefTn [−1]

sending (1, ω, η) to (ωGF, Jω,Kη) where

• ωGF ∈ C∗loc(TC) ⊂ DefTn represents the generator of the Gelfand-Fuks cohomology H3
Lie(W1) ∼=

C;

• for every ω ∈ Ω̂2
n,cl the functional Jω ∈ Defn ⊂ DefTn is the one defined in Section 8.5,

and;

• for η ∈ Ω̂1
n, Kη is the cocycle in C1

loc(TC; Defn) sending a holomorphic vector field ξ =

ξ0∂z + ξ0,1dz∂z in TC to the element in Kη(ξ,−) ∈ Defn defined by

Kη(ξ, γ) =

∫
C
∂zξ

0
〈
ηS(γ), ∂γ

〉
gn

+

∫
C
∂zξ

1,0dz
〈
ηS(γ), ∂γ

〉
gn
.

Moreover, this map is equivariant for the action of formal vector fields Wn (where C[−1] is the

trivial module).

Proof. The assignment C → C∗loc(TC) sending 1 7→ ωGF is tautologically Wn-equivariant. More-

over, we have already shown that the assignment J : Ω̂2
n,cl[1]→ Defn is Wn-equivariant.

Thus, it suffices to show that K : Ω̂1 → C∗loc(TC; Defn) is Wn-equivariant. It suffices to check

that for all η ∈ Ω̂1
n and X ∈Wn,

KLXη = {IW
X ,Kη}.

This computation is parallel to the calculation in the proof of Proposition 8.13. �
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As a corollary we obtain a map of cochain complexes upon applying the functor C∗Lie(Wn;−):

(ωGF ,K, J) : C[−1]⊕ C∗Lie

(
Wn; Ω1

n ⊕ Ω2
n,cl[1]

)
→ C∗Lie(Wn; DefTn ).

The complex C∗Lie(Wn; DefTn ) controls equivariant deformations for both the Lie algebra Wn and

TC. The map (ωGF,K, J) will allow us to identify elements of the deformation complex with

ordinary characteristic classes.

9. Equivariant BV quantization of the formal βγ system

The free βγ system is a free BV theory and hence admits a natural quantization. (See Chapter

6 of [Gwi12] for an extensive development.) This quantization is easily modified to encompass the

formal βγ system, but here we want to quantize equivariantly with respect to the action of Wn. We

will find that there is an obstruction to quantizing equivariantly, given by the Gelfand-Fuks Chern

class chGF2 (T̂n) defined in Section 2.5.3. This obstruction is a very local avatar of the anomaly

described by Witten and Nekrasov [Wit07, Nek], and we will see in Part III that it corresponds in a

very precise way to the obstruction to constructing CDOs found by [MSV99, GMS00] as described

in Section 3.

There is, however, an equivariant quantization for a natural action of W̃n, the extension of

formal vector fields Wn by closed two-forms Ω̂2
cl introduced in Section 2. In fact, we will see

that the space of closed two-forms is precisely the space of deformations for the βγ system. We

construct this quantization explicitly using Feynman diagrams and, in later sections, explain when

and how it descends to complex manifolds.

Most of this section is devoted to formulating precisely what equivariant BV quantization means

and then proving the following result.

Theorem 9.1. There is a unique (up to contractible choice) W̃n-equivariant and C× × Aff(C)-

invariant quantization of the βγ system on C with target D̂n.

By an Aff(C)-invariant quantization, we mean one that is invariant with respect to the action

of affine symmetries of the complex line (i.e., translation and dilation by complex numbers). The

C×-symmetry condition says that the quantization has weight one with respect to scaling the β

fields, which can viewed as scaling the cotangent fibers of T ∗D̂n. (See the discussion preceding

Proposition 8.10.)

9.1. Recollections on equivariant BV quantization. In this section we discuss what it means

for a Lie algebra h to act on a quantum field theory. To be more precise, we review the formalism

developed in [CG], notably for the factorization Noether theorems (see chapters 11 and 12). A

key idea is to make C∗Lie(h) the base ring over which the field theory is defined, rather than the

complex numbers C. Under the dictionary discussed in Section 7, this approach should encode

how the Lie algebra h acts on the theory. We have already seen this idea deployed for the classical

field theory, by interpreting the local functional IW of Lemma 8.6 as a Maurer-Cartan element.

Recall that in the BV formalism, as developed in [Cos11, CG], a quantum BV theory consists

of a space of fields and an effective action functional {S[L]}L∈(0,∞), which is a family of non-local

functionals on the fields that are parametrized by a length scale L and satisfy

(a) an exact renormalization group (RG) flow equation,

(b) the scale L quantum master equation (QME) at every length scale L, and

(c) as L→ 0, the functional S[L] has an asymptotic expansion that is local.
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The first condition ensures that the scale L action functional S[L] determines the functional at

every other scale. The second can be interpreted as saying that we have a proper path integral

measure at scale L (i.e., the QME can be seen as a definition of the measure). The third condition

implies that the effective action is a quantization of a classical field theory, since a defining property

of a classical theory is that its action functional is local. (A full definition is available in Section

8.2 of [CG].)

Remark 9.2. The length scale is associated with a choice of Riemannian metric on the underlying

manifold, but the formalism of [Cos11] keeps track of how the space of quantum BV theories

depends upon such a choice (and other choices that might go into issues like renormalization).

Hence, when the choices should not be essential — such as with a topological field theory — one

can typically show rigorously that different choices give equivalent answers. The length scale is also

connected with the use of heat kernels in [Cos11], but one can work with more general parametrices

(and hence more general notions of “scale”), as explained in Chapter 8 of [CG]. We use a natural

length scale in this section; when it becomes relevant, in the context of factorization algebras, we

switch to general parametrices.

If we start with an h-equivariant classical BV theory E with action functional S — so that h

has an L∞ action on the fields that preserves the pairing and the action functional S — then we

can encode the action of h as a Maurer-Cartan element Ih in C∗Lie(h) ⊗ C∗loc(E). (For the formal

βγ system, we did this in Lemma 8.6.) We then view the sum S + Ih as the equivariant action

functional: the operator {S + Ih,−} is the twisted differential on C∗Lie(h)⊗C∗loc(E) with Ih as the

twisting cocycle, and this operator is square-zero because {S + Ih, S + Ih} is a “constant” (i.e.,

lives in C∗Lie(h) and hence is annihilated by the BV bracket).

This perspective suggests the following definition of an equivariant quantum BV theory. The

starting data is two-fold: an h-equivariant classical BV theory with equivariant action functional

S + Ih, and a BV quantization {S[L]} of the non-equivariant action functional S. Following

Costello, it is convenient to write S as Sfree +I, where the first “free” term is a quadratic functional

and the second “interaction” term is cubic and higher. In this situation, the effective action

S[L] = Sfree + I[L], i.e., only the interaction changes with the length scale.

Definition 9.3. An h-equivariant BV quantization is a collection of effective interactions {Ih[L]}L∈(0∞)

satisfying

(a) the RG flow equation

W (PLε , I[ε] + Ih[ε]) = I[L] + Ih[L]

for all 0 < ε < L,

(b) the equivariant scale L quantum master equation, which is that

Q(I[L] + Ih[L]) + dhI
h[L] +

1

2
{I[L] + Ih[L], I[L] + Ih[L]}L + ~∆L(I[L] + Ih[L])

lives in C∗Lie(h) for every scale L, and

(c) the locality axiom, with the additional condition that as L → 0, we recover the equivariant

classical action functional S + Ih modulo ~.

In other words, we simply follow the constructions of [Cos11, CG] working over the base ring

C∗Lie(h). A careful reading of those texts shows that the freedom to work over interesting dg

commutative algebras is built into the formalism. Note that our situation is particularly simple

since the non-equivariant classical field theory is free and hence admits a very simple quantization,

with I[L] = 0 for all L.
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Remark 9.4. Equivariant quantization is essentially a version of the background field method in

QFT. One treats elements of h as background fields and the interaction terms Ih[L] encode the

variation of the path integral measure with respect to these background fields. (Solving the QME

is our definition of well-posedness of the measure.)

9.2. The pre-theory. We will follow an approach directly parallel to the non-equivariant con-

struction of a BV quantization of the curved βγ system in [Cos]. Our first step is to try to

construct an equivariant effective pre-theory (i.e., effective actions satisfying the locality and RG

flow conditions but not necessarily the QME condition) for the Wn-equivariant formal βγ system.

Essentially, we try to run the RG flow from the classical theory by naively guessing

Ih[L] = lim
ε→0

W (PLε , I
h)

and then adding counterterms to deal with singularities that prevent this limit from existing. (One

of the main theorems of [Cos11] guarantees that we can construct such a pre-theory.) In the next

subsection, we will examine the failure of this action to satisfy the equivariant QME.

To construct the pre-quantization explicitly, we need to specify certain data, such as the heat

kernels and propagators with which we will work. As we are working on the Riemann surface

S = C, it is natural to work with the standard Euclidean metric and to take advantage of the

compatibility between its Laplacian and the operators ∂ and ∂. The analytic heat kernel we use is

Kt(z, w) =
1

4πt
e−|z−w|/4t · (dz − dw) ∧ (dz − dw).

Thanks to the decomposition gCn = Ω0,∗(C) ⊗ gn (i.e., the vector bundle is trivialized), the heat

kernel for DgCn factors into an analytic part and an algebraic part

Kt = Kan
t ⊗ (Idg + Idg∨).

The propagator Pε<L likewise factors as P anε<L ⊗ (Idg + Idg∨) where

P anε<L =

∫ L

t=ε

(∂
∗ ⊗ 1)Kan

t dt.

The analytic part of the propagator is only nontrivial on “mixed inputs,” i.e., where one side of the

edge is labeled by a γ and the other side is a β. (This property is, of course, a direct consequence

of the shifted pairing on fields.) Thus, one can view the propagator as “directed” from γ to β.

Figure 2 shows how we draw the edge labeled by a propagator.

The vertices of Feynman diagrams are also highly constrained, since every term in the interaction

IW is linear in β. Figure 1 shows the vertex where the target is D̂1 and the formal vector field is

tn∂t. As with the propagator, we view γ and β legs as oriented, and there is only ever one β leg.

There are strong consequences for Feynman diagrams due to this directedness and the linearity

in β: the only nontrivial connected Feynman diagrams that can appear have zero or one loops. A

connected graph of genus zero will be a tree with one leaf labeled by β and the other leaves labeled

by γ or a formal vector field X ∈ Wn. (and hence will encode a functional that has weight one

for the scaling action). Now consider the simplest kind of one-loop graph: a wheel with k vertices.

Since the edges of the loop are labeled by the propagator — and so the β legs of the vertices are

used up on the loop — the leaves can only take γ or X as input. A general one-loop graph will be

a wheel with trees attached. See Figure 3 for a simple example.

Proposition 9.5. For a connected genus one graph Γ, the limit limε→0WΓ(Pε<L, I
W) exists.

In this proposition we remove the factors of 2 and π in the definition of the heat kernel for

shortness of exposition. These factors will clearly not affect the existence of the limit.
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Ik = tn∂t

γ γ γ γ
· · ·

β

Figure 1. The vertex with n incoming γ legs and one outgoing β leg
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P

Figure 2. The propagator as directed from γ to β
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Figure 3. A wheel with four vertices

Proof. The graph weight WΓ will be a function of Wn and Ω0,∗(C) ⊗ gn. The graph weight, like

the propagator, factors as

W an
Γ (Pε<L, I

W)W g
Γ

where the analytic factor W an
Γ is a functional on the space Ω0,∗

c ⊕Wn[1] and the algebraic factor W g
Γ

is a functional on the space g[1]⊕Wn[1]. The algebraic factor does not depend on the regularization;

it is independent of ε and L. Thus, to show that the limit exists it suffices to consider the analytic

weight. It also suffices to assume that Γ is a wheel, since the singularities arise from the wheel and

not from any trees attached to the wheel.

Suppose Γ has k vertices and choose a labeling of the vertices v = (v1, . . . , vk). Let vertex vi
correspond to the functional

(γ, β,X) 7→ aj,m

∫
S

γ∧m1
1 ∧ · · · ∧ γ∧mnn ∧ βj

where

X =

n∑
j=1

∑
m=(m1,...,mn)∈Nn

aj,mt
m1
1 · · · tmnn ∂j .

In other words, this functional only cares about the coefficient of tm1
1 · · · tmnn ∂j in the vector field

X and uses it to produce a functional on β and γ of polynomial degree m1 + · · · + mn + 1. The

vertex vi thus has valence 1 + νi = m1 + · · · + mn + 2, where β and X each contribute one leg

and the remaining legs are γ. From hereon we will ignore the coefficient from X, as it does not
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affect convergence (only changing an overall constant) and cease to discuss the leg associated to

X. Hence we will view vi as having valence νi.

When we form the wheel, the β leg of vi is paired with a γ leg of vi+1 by a propagator. Thus

there are N =
∑
i(νi − 1) external legs. We now view the functional as a function of N distinct

inputs γ1, . . . , γN of Ω0,∗(C), which makes it easier to examine convergence.

Fix functions {fi,ji} ∈ Ω0,0
c (C) = C∞c (C) where i = 1, . . . k and ji = 1, . . . , νi − 1. The analytic

weight is

W an
Γ (P anε<L, I

W({fi,ij})) =

∫
z∈Ck

(
k∏
i=1

d2zi

)
k∏
i=1

νi−1∏
ji=1

fi,ji(z, z)

P anε<L(zj , zj+1)

 .

In the product zN+1 is identified with z1, and d2z denotes dz dz. When k = 1 this integral vanishes

because the propagator vanishes along the diagonal. Hence consider k ≥ 2. We want to show that

the ε→ 0 limit of the above integral exists for any choices of fi,ji .

Before delving into analysis, we make some remarks that simplify notation. First, we replace

the product function
∏k
i=1

∏νi−1
ji=1 fi,ji(z, z) by an arbitrary smooth function φ on Ck with compact

support, as the functional above defines a distribution on Ck. We thus need to show the integral

vanishes for all such φ. Second, we repress from our notation obvious factors such as d2zi, which

can be reinserted by looking at the domain of integration (which is always a vector space). Finally,

we make a linear change of coordinates: wi := zi+1− zi for 1 ≤ i < k and wk = zk. Note then that

zk − z1 =

k−1∑
j=1

wj .

Up to a constant factor independent of ε (i.e., the Jacobian of this change of coordinates), the

weight is∫
w∈Ck

φ(w,w)

∫
(t1,...,tk)∈[ε,L]k

1

t1 · · · tk

(
k−1∏
i=1

wi
ti
e−|wi|

2/ti

)k−1∑
j=1

wj
tk

 e−|
∑
j wj |

2/tk


The factor in parentheses is an explicit expression for the analytic propagators. We rewrite this

expression as

(24)

∫
w∈Ck

φ(w,w)

∫
(t1,...,tk)∈[ε,L]k

1

t1 · · · tk

(
k−1∏
i=1

wi
ti

)k−1∑
j=1

wj
tk

 e−
∑
i |wi|

2/ti−|
∑
j wj |

2/tk

 .

Because
∂

∂wi
e−|wi|

2/ti = −wi
ti
e−|wi|

2/ti ,

one can use integration by parts to trade powers of t−1
i wi for derivatives of φ. This is our next

step in proving convergence.

Define the differential operator

σ(t) =
1

t1 + · · ·+ tk

k−1∑
j=1

tj∂wj ,

which is a differential operator on functions on Ck−1 = Cw1 × · · · × Cwk−1
(i.e., functions of the

variables w1, . . . , wk−1) whose coefficients are functions of the variables (t1, . . . , tk) ∈ [ε, L]k. Define
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the first-order differential operator

Dm(t) := ∂wm −
1

t1 + · · ·+ tk

k−1∑
j=1

tj∂wj = ∂wm − σ(t),

with 1 ≤ m < k. We now explain the utility of these operators.

Set

E = e−
∑
i |wi|

2/ti−|
∑
i wi|

2/tk .

Then

σ(t)E = −

 1

t1 + · · ·+ tk

k−1∑
j=1

(
wj +

tj
tk

k−1∑
i=1

wi

)E

= −

 1

t1 + · · ·+ tk

(
1 +

∑k−1
j=1 tj

tk

)k−1∑
j=1

wj

E

= − 1

tk

k−1∑
j=1

wj

E,

and so we find

Dm(t)E = −wm
tm

E

for any m. In consequence, for example,

D1(t)

φ(w,w)

k−1∏
i=2

wi
ti

k−1∑
j=1

wj
tk

 e−
∑
i |wi|

2/ti−|
∑
i wi|

2/tk


=

(
−φ(w,w)

w1

t1
+ (D1(t)φ)(w,w)

) k−1∏
i=2

wi
ti

k−1∑
j=1

wj
tk

 e−
∑
i |wi|

2/ti−|
∑
i wi|

2/tk .

Note that the left hand side is a total derivative and hence integrates over w ∈ Ck to zero. The

first summand on the right hand side is our integrand from the integral (24), up to a sign and the

factor (t1 · · · tk−1)−1. Hence, we find that the integral (24) equals∫
w∈Ck

∫
(t1,...,tk)∈[ε,L]k

1

t1 · · · tk
(D1(t)φ)(w,w)

k−1∏
i=2

wi
ti

k−1∑
j=1

wj
tk

 e−
∑
i |wi|

2/ti−|
∑
i wi|

2/tk .

Analogous arguments apply, of course, for any Dm, due to the symmetry of the integrand.

Hence, applying the Dm(t) in order and using a variant of the preceding argument, we find that

the integral (24) equals∫
w∈Ck

∫
(t1,...,tk)∈[ε,L]k

1

t1 · · · tk
(Dk−1(t) · · ·D1(t)φ)(w,w)

k−1∑
j=1

wj
tk

 e−
∑
i |wi|

2/ti−|
∑
i wi|

2/tk .

We apply the same argument with σ(t) to show that the integral (24) equals∫
w∈Ck

∫
(t1,...,tk)∈[ε,L]k

1

t1 · · · tk
(σ(t)Dk−1(t) · · ·D1(t)φ)(w,w)e−

∑
i |wi|

2/ti−|
∑
i wi|

2/tk .

This integral depends on ε through both the domain of integration and the dependence of the

operators Dm(t) and σ(t) on t. We first eliminate the second kind of dependence.
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Observe that for any choice of allowed t, we have

|σ(t)f | ≤
k−1∑
j=1

|∂wjf |,

since tj/
∑
i ti < 1 for every j. Hence, we may replace σ(t)Dk−1(t) · · ·D1(t)φ in the integrand by

a compactly supported function ψ(w,w). That is, to show convergence of integral (24) as ε → 0,

it suffices to show convergence of∫
w∈Ck

∫
(t1,...,tk)∈[ε,L]k

1

t1 · · · tk
ψ(w,w)e−

∑
i |wi|

2/ti−|
∑
i wi|

2/tk

for any compactly supported ψ(w,w). We may suppose that ψ factors as f(w1, . . . , wk−1)g(wk)

and focus only on integrating over the variables w1, . . . , wk−1.

In this integral, there is no problem with integrating over the w variables, since the integrand is

compactly supported in w. The possible problems arise from the factor (t1 · · · tk)−1, which is not

integrable over the domain [0, L]k. We need to show that the integral over w contributes positive

powers of the ti so that the integral over t has an ε→ 0 limit.

Note that, due to our arguments above, integration by parts allows us to trade a power of wj
for a 1/tj . Hence if we give a partial Taylor expansion of ψ around the origin, the integrals against

nonconstant terms (which possess powers of wj) are more convergent than the constant term of

ψ. In other words, it suffices to show that there exists the ε→ 0 limit of

(25)

∫
(w1,...,wk−1)∈Ck−1

∫
(t1,...,tk)∈[ε,L]k

1

t1 · · · tk
e−

∑
i |wi|

2/ti−|
∑
i wi|

2/tk .

Performing a Gaussian integral on the variables w1, . . . , wk−1, we see that expression (25) is pro-

portional to∫
(t1,...,tk)∈[ε,L]k

(
k∑
i=1

ti

)−1

≤ C ·
k∏
i=1

∫ L

ti=ε

1

t
1/k
i

= C ′
k∏
i=1

(L(k−1)/k − ε(k−1)/k),

with C and C ′ constants. For k ≥ 2 the right hand side is finite as ε→ 0. �

Thanks to this proposition we have a well-defined equivariant prequantization.

Definition 9.6. For L > 0, let

IW[L] := lim
ε→0

W (Pε<L, I
W) = lim

ε→0

∑
Γ

~g(Γ)

|Aut(Γ)|
WΓ(PLε , I

W).

Here the sum is over all isomorphism classes of stabled connected graphs, but only graphs of genus ≤
1 contribute nontrivially. By construction, the collection satisfies the RG flow equation and its tree-

level L → 0 limit is manifestly IW. Hence {IW[L]}L∈(0,∞) is a Wn-equivariant prequantization

of the Wn-equivariant classical formal βγ system.

Organizing the sums by genus of the graphs, we write the interaction as a sum IW[L] = IW,0[L]+

~IW,1[L] where

IW,0[L] =
∑

Γ∈ Trees

1

|Aut(Γ)|
WΓ(Pε<L, I

W),

IW,1[L] =
∑

Γ∈ 1−loop

1

|Aut(Γ)|
WΓ(Pε<L, I

W).

We now turn to studying the obstruction to satisfying the equivariant quantum master equation.
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9.3. The obstruction. With the pre-theory in hand, we ask whether it satisfies the QME. The

main result of this subsection provides a direct link between the topology of manifolds and the

analysis of Feynman diagrams, where a characteristic class yields a local functional via the map JW.

Proposition 9.7. There is an obstruction to a Wn-equivariant quantization of the formal βγ

system that preserves the C××Aff(C) action by scaling and affine transformations. It is represented

by a non-trivial cocycle of degree one

Θ ∈ (DefW
n )C

××Aff(C)

such that

Θ = aJW(chGF
2 (T̂n))

for some non-zero number a, where JW is the quasi-isomorphism of Proposition 8.10 and chGF
2 (T̂n)

is the component of the Gelfand-Fuks Chern character living in C2
Lie(Wn; Ω̂2

n,cl).

This claim will follow from the series of definitions and lemmas that follows below.

By definition the scale L obstruction cocycle Θ[L] is the failure for the interaction IW[L] to

satisfy the scale L equivariant quantum master equation. Explicitly, one has

~Θ[L] = (dWn
+Q)IW[L] + ~∆LI

W[L] + {IW[L], IW[L]}L,

where the right hand side is divisible by ~ since IW,0 satisfies the classical master equation so that

the ~0 component vanishes. Moreover, the right hand side has no components weighted by ~2 or

higher powers, because the BV Laplacian ∆L vanishes on IW,1[L] as it is only a function of γ and

a vector field X. Thus, we have

~Θ[L] = (dWn
+Q)IW,1[L] + ~∆LI

W,0[L] + 2{IW,0[L], IW,1[L]}L,

and so Θ[L] only depends on γ and hence is a degree one element of C∗Lie(Wn; C∗Lie(gCn)).

Lemma 9.8 (Corollary 16.0.5 of [Cos]). The limit Θ := limL→0 Θ[L] exists and is an element of

degree one in C∗Lie(Wn,C
∗
loc(gCn)). Moreover, it is given by

lim
ε→0

∑
Γ∈2-vertex wheels

e∈Edge(Γ)

WΓ,e(Pε<1,Kε, I
W[ε]),

where the sum is over wheels Γ with two vertices and a distinguished inner edge e.

In the lemma above, the notation WΓ,e(Pε<1,Kε, I
W[ε]) denotes a variation on the usual weight

associated to a graph. As usual, we attach the interaction term IW[ε] to each vertex. To the

distinguished internal edge labeled e, we attach the heat kernel Kε, but we attach the propagator

Pε<1 to every other internal edge.

We now turn to the proof of Proposition 9.7. Let us be clear on what we need to accomplish,

as the computations are lengthy and explicit. We must construct the obstruction cocycle Θ by the

techniques of perturbative field theory. In the end, we want to recognize it as the local functional

JW(chGF
2 (T̂n)). We can describe that local functional already, thanks to our description of JW.

Lemma 9.9. Let X = ai∂i and Y = bj∂j be formal vector fields in Wn where the coefficients

ai, bj live in Ôn. For simplicity, suppose all the ai are homogeneous of degree k and the bj are

homogeneous of degree l. Then

JW(chGF
2 (T̂n))(X,Y, γ) =

∫
S

〈
(∂ja

i)S(γ), ∂
(
(∂ib

j)S(γ)
)〉

gn
,

with surface S = C and using the notation fS from Section 8.5.1.
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In particular, to focus on the analytic component, suppose n = 1 so γ ∈ Ω0,∗(C) as the target

is one-dimensional. Moreover, we can restrict to a(t) = tk and b(t) = tl. Then

JW(chGF
2 (T̂n))(tk∂t, t

l∂t, γ) =

∫
C
kγ∧k−1 ∧ ∂z(lγ∧l−1)dz(26)

= kl(l − 1)

∫
C
γ∧k+l−2 ∧ ∂z(γ)dz.(27)

This expression will appear as the analytic component of our Feynman diagrams.

Proof. We first observe that

JW
ω (X,Y, γ) = Jω(X,Y )(γ)

since the map J is Wn-equivariant. Moreover, since JddRθ = J̃θ, we deduce that

JW
ddRθ

(X,Y, γ) = Jθ([X,Y ])(γ).

Hence it is convenient to recognize that

chGF
2 (T̂n) = ddR(α)

where α ∈ C∗Lie(Wn, Ω̂
1
n) satisfies

α(X,Y ) = α(ai∂i, b
j∂j) = −(∂ja

i)ddR(∂ib
j).

Note that if the ai are homogeneous of degree k and the bj are homogeneous of degree l, then

α(X,Y ) is a one-form whose coefficients are homogeneous of degree k + l − 3.

Lemma 8.14 then implies

J̃α(X,Y )(γ1, . . . , γk−1, γ
′
1, . . . , γ

′
l−1) =

∫
S

〈
(∂ja

i)S(γ1, . . . , γk−1), ∂
(
(∂ib

j)S(γ′1, . . . , γ
′
l−1)

)〉
gn
,

where S = C for us. (Here we are describing the local functional as a tensor with k + l− 2 inputs

to be maximally explicit.) �

Now we turn to producing a simple, explicit expression for the obstruction. The limit in Lemma

9.8 can be moved inside the summation, i.e., the weight for each 2-vertex wheel Γ with edge e has

an ε→ 0 limit. We denote this summand by

ΘΓ,e = lim
ε→0

WΓ,e(P
1
ε ,Kε, I

W[ε]).

By the nature of the graph, this functional is of the form

ΘΓ,e : W⊗2
n ⊗ Sym(Ω0,∗

c ⊗ gn[1])→ C.

Given two formal vector fieldsX,Y , let ΘΓ,e(X,Y ) denote the associated local functional in C∗loc(gSn).

Due to linear dependence on the vector fields, it suffices to assume that X,Y are of the form

X = ai∂i and Y = bj∂j where the coefficients ai, bi ∈ Ôn are homogeneous of degrees k and l,

respectively. In this case, there is only one graph Γ whose functional ΘΓ,e(X,Y ) is nonzero: this

graph has a vertex of valency k + 1 and a vertex of valency l + 1, namely

IW
X

γ

...

γ

IW
Y

γ

...

γ

Pε<1

Kε
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For this graph, the functional ΘΓ,e(X,Y ) is homogeneous of degree k + l − 2:

ΘΓ,e(X,Y ) : Symk+l−2(Ω0,∗
c (C)⊗ gn[1])→ C.

By describing this functional explicitly, we will complete the proof of Proposition 9.7, as it will

agree on the nose with JW(chGF
2 (T̂n)).

Proposition 9.10. Let X = ai∂i be homogeneous of degree k and Y = bj∂j homogeneous of degree

l. Let Γ be the two-vertex wheel with vertices of valencies k + 1 and l + 1 and mark one internal

edge as distinguished. Then, we have an identification ΘΓ,e(X,Y ) = aJW(chGF
2 (T̂n))(X,Y ) for

some nonzero number a.

ΘΓ,e(X,Y )(γ) =

∫
C

〈
(∂ja

i)S(γ), ∂
(
(∂ib

j)S(γ)
)〉

gn
.

Proof. We simplify further by setting

X = tk1
1 · · · tknn ∂i and Y = tl11 · · · tlnn ∂j

with k =
∑
km and l =

∑
lm. Ignoring the analytic factors momentarily, we observe that in

computing the weight of the graph Γ, we contract β legs with γ legs. In our case, the X-vertex

contributes a βi leg, which then contracts with the ki different γ legs from the Y -vertex. Likewise,

the Y -vertex contributes a βj leg, which then contracts with the kj different γ legs from the

X-vertex. These contractions explain the terms (∂ja
i)S(γ) and (∂ib

j)S(γ) in the integrand.

We now turn to comparing the analytic factors. It suffices here to consider the situation n = 1,

since we have already taken care of the dependence on the target coordinates. To clarify the

notation, we use f1, . . . , fk−1 to label the inputs to the remaining legs of the X-vertex. We use

g1, . . . , gl−1 to label the inputs to the remaining legs of the Y -vertex.

The following diagram encodes the weight that we must compute:

f1 dz

f2
...

fk−1

g1

...

gl−1

Pε<1

Kε

We wish to take the ε→ 0 limit of the associated integral. Thus, we have

ΘΓ,e(X,Y )(f1dz, f2, · · · , gl−1) = lim
ε→0

∫
C2

(
k−1∏
i=1

fi(z1)

)l−1∏
j=1

gi(z2)

 dz1 ∧Kan
ε (z1, z2) ∧ P anε<1(z1, z2)

= lim
ε→0

∫
C2

(
k−1∏
i=1

fi(z1)

)l−1∏
j=1

gi(z2)

∫ L

t=ε

1

(4π)2εt
e−|z1−z2|

2/4ε ∂

∂z1
e−|z1−z2|

2/4t dt.

Now, ∂z1e
−|z1−z2|2/4t = − 1

4t (z1− z2)e−|z1−z2|
2/t. We make the change of coordinates w1 = z2− z1

and w2 = z2. The integral over w1, w2 can be written as

(28) −
∫
w1,w2∈C

(
k−1∏
i=1

fi

)
d2w1d2w2

l−1∏
j=1

gi

w1
1

4(4π)2εt2
exp

(
−1

4
(t−1 + ε−1)|w1|2

)
.
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Using the same trick as in the proof that the theory involves no counterterms, we introduce the

differential operator

D(t) =

(
1− t

t+ ε

)
∂

∂w1
=

ε

t+ ε

∂

∂w1
.

Then

D1(t)

k−1∏
i=1

fi

k∏
j=1

gi
1

εt
exp

(
−1

4
(t−1 + ε−1)|w1|2

)
=

−w1

t

k−1∏
i=1

fi

l−1∏
j=1

giw1 +D1(t)

k−1∏
i=1

fi

l−1∏
j=1

gi

 1

4εt
exp

(
−(t−1 + ε−1)|w1|2

)
The left hand side is a total derivative, hence the integal in (28) can be written as

−
∫
w1,w2

∂

∂w1

(∏
fi
∏

gi

) 1

4(4π)2t(ε+ t)
exp

(
−1

4
(t−1 + ε−1)|w1|2

)
.

In the ε→ 0 limit only the the first term in the Wick expansion for integrating w1 will be nonzero.

This term is
1

(4π)2

∫
w2

d2w2
∂

∂w1

(∏
fi
∏

gi

)
(w1 = 0)

ε

(t+ ε)2
.

Note that the condition w1 = 0 implies that z1 = z2 in our original parametrization. Thus

∂

∂w1

(∏
fi
∏

gi

)
(w1 = 0) =

(
∂

∂z

∏
fi(z)

)∏
gj(z)

where z = z1 = z2. Finally, we compute the ε→ 0 limit of the t-integral

1

(4π)2
lim
ε→0

∫ 1

ε

ε

(t+ ε)2
dt =

1

2
.

Integrating by parts (to get rid of the (−) sign) we see that the total weight is

1

2(4π)2

∫
z∈C

(∏
fi

) ∂

∂z

(∏
gj

)
d2z

as desired. Setting fi = gj we see that this coincides with the analytic part of JW(ch2(T̂n))(X,Y, fi =

gj) written above in (27). �

Remark 9.11. Note that when restricted to linear vector fields gln ↪→Wn, the entire obstruction Θ

vanishes. This vanishing means that there is no obstruction to quantizing equivariantly for the Lie

algebra gln. This result is just the Lie algebra-level version of an earlier observation: the action of

the group GLn lifts ~-linearly to an action on the quantization.

9.4. The extended theory. We have just seen that there is an obstruction to the existence of

a Wn-equivariant quantization of the formal βγ-system. As is common in physics, we use that

obstruction to extend the Lie algebra and obtain an equivariant quantization for the extended Lie

algebra. Indeed, we have already seen that the second Gelfand-Fuks-Chern character defines the

extension

0 // Ω̂2
n,cl

// W̃n

p
// Wn

// 0

in Section 2. We will now construct a classical theory that is equivariant for W̃n and show that it

admits a natural equivariant BV quantization.
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9.4.1. The action of Wn on the classical formal βγ system is given by a map of L∞ algebras

IW : Wn  C∗loc(DgCn)[−1]. By composing with the projection p : W̃n →Wn, we get an L∞ map

ĨW := p∗IW : W̃n  C∗loc(DgCn)[−1].

Equivalently, p∗IW determines a Maurer-Cartan element in the dg Lie algebra C∗Lie(W̃n; C∗loc(DgCn))

and hence a W̃n-equivariant classical field theory.

As in the non-extended case, there is a W̃n-equivariant obstruction-deformation complex D̃ef
W

n ,

which is the graded vector space Ŝym(W̃∨n [−1])⊗C]loc(DgSn) equipped with the differential d
W̃n

+

∂ + {ĨW ,−}, where d
W̃n

denotes the differential on C∗Lie(W̃n). Note that we can write

D̃ef
W

n
∼= C∗Lie(W̃n)⊗C∗Lie(Wn) DefW

n .

Proposition 8.10, which concerns the unextended deformation complex, then implies that the

C× ×Aff(C)-invariant piece of the extended deformation complex satisfies(
D̃ef

W

n

)C××Aff(C)

' C∗Lie(W̃n; p∗Ω̂2
n,cl[1]).

Here, p∗Ω̂2
n,cl is the W̃n-module given by pulling back the natural Wn-module structure on closed

two-forms along p.

9.4.2. The extended pre-theory. Our goal is to describe quantizations for this extended W̃n-equivariant

field theory. Let {IW[L]} be the prequantization for the Wn-equivariant classical field theory, as

above. For each L > 0, we define the functional

ĨW [L] := p∗IW[L] ∈ C]Lie(W̃n)⊗ C]Lie(DgCn)J~K.

Lemma 9.12. The collection {ĨW [L]} defines a pre-quantization for the W̃n-equivariant classical

field theory. Moreover, the obstruction to satisfying the W̃n-equivariant QME at scale L is Θ̃[L] =

p∗Θ[L]. In particular Θ̃ := limL→0 Θ̃[L] exists and is equal to p∗Θ.

Proof. This follows from the fact that for any graph Γ we haveWΓ(Pε<L, p
∗IW) = p∗WΓ(Pε<L, I

W).

�

Just as in the non-extended case there is the possibility that the pre-quantization does not

define an equivariant quantization. The above lemma identifies this obstruction cocycle which we

will go on to show is cohomologically trivial.

The quasi-isomorphism JW : C∗Lie(Wn; Ω̂2
n,cl[1]) → (DefW

n )C
××Aff(C) from Proposition 8.10 ex-

tends to a quasi-isomorphism

(29) JW̃ : C∗Lie(W̃n; Ω̂2
n,cl[1])

'−→ (D̃ef
W

n )C
××Aff(C)

by tensoring C∗Lie(W̃n) over the ring C∗Lie(Wn). The lemma implies that the obstruction Θ̃ is

identified with the cocycle p∗(chGF
2 (T̂n)) under the map JW̃.

9.4.3. Quantum correction. Let h be a Lie algebra and V a module for h. Moreover, suppose

α ∈ C2
Lie(h;V ) is a 2-cocycle. Then, we can form the extension

0→ V → h̃
p−→ h→ 0.

The bracket between x, y ∈ h is defined by [x, y]h̃ := [x, y]h + α(x, y) where [−,−]h is the bracket

in the original Lie algebra. The bracket between x ∈ h and v ∈ V is [x, v]h̃ = x · v. We can pull

back the cocycle p∗α ∈ C∗Lie(h̃;V ). In this situation, this pullback cocycle is automatically trivial.
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An explicit trivializing element is idV : V → V viewed as an element of the Chevalley-Eilenberg

complex C∗Lie(h̃;V ).

In our situation this says that the cocycle p∗(chGF
2 (T̂n)) is trivializable and hence so is the

obstruction {Θ̃[L]}. To define a quantum theory we need this trivialization at the level of func-

tionals on fields. Indeed, according to the above Lemma, which uses standard facts about Feynman

diagrams, it suffices to trivialize the local functional Θ̃ encoding the obstruction.

Lemma 9.13 (Lemma 3.33 of [LL16]). Suppose Iqc and O1 ∈ Defn satisfy

QIqc + {I, Iqc} = O1.

Then, for each L, the functional

Iqc[L] = lim
ε→0

∑
Γ∈Trees
v∈V (Γ)

WΓ,v(Pε<L, I, I
qc)

satisfies

(30) QIqc[L] + {I(0)[L], Iqc[L]}L = O1[L].

Proof. For the non-equivariant case, see the referenced Lemma in [LL16]. The equivariant case is

an immediate consequence. �

As a corollary of this general fact we see that if Iqc ∈ D̃ef
W

n trivializes the obstruction cocycle

Θ̃, then the effective family I[L] + ~Iqc[L] satisfies the W̃n-equivariant quantum master equation.

In fact, we have an obvious choice for the local functional Iqc. The map J : Ω̂2
n,cl → Defn

determines an element in C1
Lie(Ω̂2

n,cl; Defn) ⊂ C1
Lie(W̃n; Defn) and hence an element the equivariant

deformation complex D̃ef
W

n . We will use Iqc = J .

Proposition 9.14. The local functional J trivializes Θ̃ in the equivariant deformation complex.

That is,

(31) (∂ + d
W̃n

)J + {ĨW, J} = Θ̃.

Proof. The functional J is the image of idΩ2 under the map JW̃ from Equation (29). By construc-

tion JW̃ determines a map of complexes C∗Lie(W̃n; Ω̂2
n,cl) → D̃ef

W

n and hence commutes with the

differentials on both sides. That is,

JW̃(d
W̃n

ϕ) = ∂JW̃(ϕ) + {ĨW, JW̃(ϕ)}

for all ϕ ∈ C∗Lie(W̃n; Ω̂2
n,cl). In particular, for ϕ = idΩ2 we have

JW̃(p∗chGF
2 (T̂n)) = ∂J + {ĨW, J}.

We have already seen that the image of p∗chGF
2 (T̂n) under JW̃ is the obstruction cocycle Θ̃, and

this is what we wanted to show. �

Finally, we arrive at the main result concerning the extended equivariant BV theory.

Theorem 9.15. The effective family {ĨW[L] + ~J [L]}L>0 satisfies both RG flow and the W̃n-

equivariant quantum master equation

(d
W̃

+Q)(ĨW[L] + ~J [L]) +
1

2
{ĨW[L] + ~J [L], ĨW[L] + ~J [L]}L + ~∆L(ĨW[L] + ~J [L]) = 0.

Hence it provides a W̃n-equivariant quantization of the classical theory ĨW based on a length scale

regularization. Moreover, this quantization is unique up to homotopy.
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Proof. The first part follows from Proposition 9.14 and Lemma 9.13 above. Uniqueness follows

from the fact that H1(W̃n; Ω̂2
n,cl) = 0. �

Remark 9.16. Here, as in Lemma 9.13, the term Iqc[L] arises naturally by naively applying RG

flow to ĨW + ~Iqc and asking only for the sum of the terms in which at least one vertex is labeled

by Iqc. (The terms involving just ĨW have singularities, but we’ve already resolved them.) Note

that a stable connected graph containing Iqc as a vertex has nonzero weight only if it is a tree,

because Iqc only has inputs from γ. Moreover, only one copy of Iqc can appear.

9.5. The conformal anomaly. In Section 8.6 we discussed how the classical theory of the formal

βγ system is equivariant for the action of holomorphic vector fields on the source T S . Indeed, we

have described the local functional IT ∈ DefTn that encodes this action. In this section we address

the problem of the quantizing this symmetry compatibly with the action of formal vector fields

Wn on the target n-disk.

Proposition 9.17. There is an obstruction to a T C ×Wn-equivariant quantization of the formal

βγ system. It is represented by a non-trivial cocycle

2nωGF + ΘW + ΘT ∈ C∗Lie

(
Wn; DefTn

)
.

Here, ωGF ∈ DefTn is the local Gelfand-Fuks cocycle representing the generator of H3
Lie(W1). More-

over,

JW(chGF
2 (T̂n)) = aΘW , KW(cGF

1 (T̂n)) = bΘT .

for some constants a, b.

Remark 9.18. This proposition says that there are three independent obstructions to finding a

T C ×Wn-equivariant quantization of the formal βγ system. The obstruction ΘW coincides with

the Wn-equivariant obstruction computed in the previous sections and is independent of T C. The

obstruction ΘT is new, and we will show that it reflects the fact that chiral differential operators

on a complex manifold X admit a global conformal structure if and only if c1(TX) = 0. The

obstruction ωGF only depends on the background fields T C and hence is independent of the fields

of the βγ system. It reflects that fact that even when c1(TX) = 0, one needs to centrally extend

holomorphic vector fields to get a global action. We will see that this obstruction constitutes the

central charge of resulting Virasoro symmetry.

Proof. The obstruction is computed in a manner similar to the obstruction just for Wn. Indeed,

a version of Lemma 9.8 still holds, with the interaction IW replaced by IW + IT . That is, the

obstruction to a T C ×Wn equivariant quantization can be written as a graph expansion

lim
ε→0

∑
Γ∈2-vertex wheels

e∈Edge(Γ)

WΓ,e(Pε<1,Kε, I
W[ε] + IT [ε]).

This obstruction is an element of C∗Lie(Wn; DefTn ) and splits up into a sum of three linear pieces:

(1) a factor that does not depend on Wn, i.e., lives in DefTn ⊂ C∗Lie(Wn; DefTn ) ;

(2) a factor ΘW that does not depend on T C and is an cocycle in C∗Lie(Wn; Defn); and

(3) a factor ΘT that is linear in both TS and Wn and is a cocycle in C1
Lie(Wn; DefTn ).

We now describe these terms explicitly.
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The first term. The term in DefTn has the form

lim
ε→0

∑
Γ∈2-vertex wheels

e∈Edge(Γ)

WΓ,e(Pε<1,Kε, I
T [ε]).

The calculation of this obstruction was performed in Section 7 of [Wila] and was shown to be equal

to the local functional 2nωGF ∈ DefTn where we have defined ωGF in Section 8.6.

The second term. The term independent of T C has a graph expansion of the form

ΘW = lim
ε→0

∑
Γ∈2-vertex wheels

e∈Edge(Γ)

WΓ,e(Pε<1,Kε, I
W[ε]).

This term is precisely the local functional Θ ∈ C∗Lie(Wn; Defn) representing the obstruction to a

Wn-equivariant quantization. Thus JW(chGF
2 (T̂n)) = ΘW, as desired.

The third term. We aim to show that there is an identification KW(cGF
1 (T̂n)) = bΘT . Since we

only consider the graph expansion over two-vertex wheels, the cocycle representing the third piece

of the obstruction ΘT is given by the weight of the ε→ 0 limit of the following diagram

IT

ξ

IW γ
...
γ

Pε<1

Kε

where ξ labels a holomorphic vector field in T C and γ ∈ Ω0,∗(C; gn).

For fixed ξ ∈ T C we have the functional Kξ := KW(cGF
1 (T̂n))(ξ,−), which is an element of

the Wn-equivariant deformation complex DefW
n . For simplicity, we consider the case that ξ =

ξ0∂z ∈ Ω0(C;TC). The Gelfand-Fuks-Chern character evaluated on a vector field X = ai∂i is

cGF
1 (T̂n)(ai∂i) = 1

2πi∂ia
i. Thus, we have the explicit formula for Kξ

Kξ(X, γ) =

∫
S

∂zξ
0
〈
(∂ia

i)S(γ), ∂γ
〉
gn
.

It suffices to show that for each X ∈Wn the obstruction satisfies ΘT (ξ,X,−) = bKξ(X), for some

nonzero constant b, as elements of Defn.

As we did in the calculation of the obstruction in the previous sections, it suffices to assume

that the formal vector field is homogeneous of the form X = tk1
1 · · · tknn ∂i where k1 + · · ·+ kn = k.

Then, both ΘT (ξ,X,−) and Kξ(X) are of homogeneous degree k − 1:

Symk−1(Ω0,∗(C)⊗ gn)→ C.

Ignoring the analytic factors momentarily, we observe that in computing the weight of the graph

Γ, we contract β legs with γ legs. In our case, the X-vertex contributes a βi leg, which then

contracts with the ki different γ legs from the vertex labeled by the holomorphic vector field ξ.

These contractions explain the term (∂ia
i)S(γ).

We now compare the analytic factors. Since the dimension of the target formal disk was only

relavent for the algebraic piece, it suffices to set n = 1. The analytic weight we must compute is

represented by the ε→ 0 limit of the diagram
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ξ0∂z

f1dz

f2
...
fk−1

Pε<1

Kε

The weight of this diagram is given by∫
C2

(
ξ0∂z1Pε<1(z1, z2)

)
∧

(
k−1∏
i=1

fi(z2)

)
dz2 ∧Kε(z1, z2).

We compute the z1-derivative of the propagator as

∂

∂z1
Pε<1(z1, z2) =

∫ L

t=ε

1

16(4π)t3
(z1 − z2)2e−|z1−z2|

2/4tdt (dz1 − dz2) .

Making the standard change of coordinates w1 = z2 − z1 and w2 = z2 we find that the weight can

be expressed as∫
w1,w2

ξ0w2
1

(
k−1∏
i=1

fi

)
d2w1d2w2

∫ 1

t=ε

1

16(4π)2εt3
exp

(
−1

4
(t−1 + ε−1)|w1|2

)
.

The only term in the Wick expansion of the integral above that contributes is a nonzero multiple

of ∫
z

(
∂2
zξ

0
)

(z)

(
k−1∏
i=1

fi(z)

)
d2z

∫ 1

t=ε

ε3

(ε+ t)3
dt.

A simple evaluation of the t-integral yields a finite limit as ε→ 0. Furthermore, we can integrate the

above z-integral by parts to put the analytic part of the obstruction ΘT (ξ,X, f1dz, f2, . . . , fk−1)

in the form that is proportional to ∫
z

(
∂zξ

0
)
∂z

(
k−1∏
i=1

fi

)
d2z.

This is precisely the analytic form of the functional Kξ(X), as desired. �

10. The partition function of the equivariant theory

In this section we analyze the scale ∞ effective interaction on an elliptic curve coming from

the quantization constructed above. It defines a natural element of the Gelfand-Fuks cohomology

C∗Lie(Wn; Ω−∗n ) that deserves to be called the n-dimensional formal Witten class. We show that

under Gelfand-Kazhdan descent, this formal cocycle maps to the Witten class of the complex

manifold.

Remark 10.1. The arguments here are borrowed from [Cos], notably Section 17, where Costello

identifies the Witten class of the target X as part of the quantized action functional of the curved

βγ system. We simply observe that his approach applies equally well with the formal disk as target,

so long as one uses Gelfand-Fuks cohomology. In [Cos] Costello also provides an interpretation of

the Witten class as a kind of “projective volume form” on the derived mapping space from the

universal elliptic curve to X. We do not discuss that here, but his interpretation applies to our

approach as well.
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10.1. The formal Witten class. Suppose V is a formal vector bundle, i.e., an object of the

category VB(Wn,GLn). We have constructed the Gelfand-Fuks-Chern characters

chGF
k (V) ∈ CkLie(Wn,GLn; Ω̂kn,cl).

Let Ω̂−∗n =
⊕

k Ω̂kn[k] denote the formal de Rham forms arranged in opposite degrees from usual

(i.e., with k-forms beginning in degree −k rather than k). Note that we do not include the exterior

derivative as part of the total differential (for degree reasons this is not possible, but it is not

relevant to our setting either). Each cocycle chGF
k (V) then provides a cocycle of degree zero in

Ω̂−∗n . Thus, any interesting formal combination of such characters — like the Witten class defined

below — naturally sits in degree zero.

Definition 10.2. Let E be an elliptic curve equipped with a holomorphic volume form ω ∈ Ω1,0(E).

The n-dimensional logarithmic formal Witten class evaluated at (E,ω) is the formal sum

log Witn(E,ω) :=
∑
k≥2

(2k − 1)!

(2πi)2k
E2k(E,ω) chGF

2k (T̂n).

Here the Eisenstein series is given by the formala

E2k(C/Λ,dz) =
∑

λ∈Λ−{0}

λ−2k

where we consider an elliptic curve given as a quotient of the complex plane by the lattice Λ. For

an arbitrary E, we find a lattice Λ such that dz identifies with ω under the isomorphism C/Λ ∼= E.

Suppose the lattice is spanned by two elements

a+ ib, c+ id ∈ C.

Then the sum can be written as∑
λ 6={0}

λ−2k =
∑

(m,n)∈Z2−{(0,0)}

(ma+ imb+ nc+ ind)−2k.

10.2. The theory on an elliptic curve. The quantization we have constructed above is invariant

for the group Aff(C) of affine symmetries of the complex plane. Thus, for any elliptic curve

E = C/Λ, we can descend the quantization on C along the quotient map C→ E = C/Λ. The dg

Lie algebra describing the theory on the elliptic curve E is

DgEn = Ω0,∗(E; gn)⊕ Ω1,∗(E; g∨n [−2]).

There is a simplification we can make in this setting. The choice of a holomorphic volume form ω

determines an isomorphism of dg Lie algebras

Ω0,∗(E; gn ⊕ g∨n [−2]) ∼= DgEn
γ ⊗ (ξ, τ) ↔ (γ ⊗ ξ, (γ ∧ ω)⊗ τ)

.

This isomorphism is naturally (Wn,GLn)-equivariant.

Note that there is an element ω∨ ∈ Ω0,1(E) such that
∫
ω∧ω∨ = 1. At the level of cohomology,

[ω∨] spans H1(E,O), by Serre duality. We are free to choose ω∨ to be harmonic, meaning it is

annihilated by both ∂ and ∂. If E = C/Λ, then there is a constant

v(E) =

∫
E

dz dz

and ω∨ = v(E)−1dz. In general, let δ denote (iπ)−1ω∨.
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Let H(E) ⊂ DgEn denote the sub dg Lie algebra of harmonic forms (that is, those forms that

are in the kernel of ∂ and ∂). We have an isomorphism

H(E) ∼= C[δ]⊗ (gn ⊕ g∨n [−2])

of dg Lie algebras, thanks to our choices above.

In anticipation of this section’s main result, note that

C[δ]⊗ gn[−1] ∼= gn n gn,

the natural extension of gn by the shifted adjoint representation gn[−1]. Hence,

C∗Lie

(
Wn; C∗Lie,red(C[δ]⊗ gn)

) ∼= C∗Lie(Wn; Ω̂−∗n ),

where Ω̂−∗n is the regraded formal de Rham complex. We now explain why the scale ∞ effective

action for the equivariant BV theory produces a cocycle in this cochain complex.

The harmonic subspace H(E) describes the solutions on E to the equations of motion for the

formal βγ system. If we restrict the scale ∞ effective interaction to this subspace, it provides an

~-dependent cocycle in the Lie algebra cochains:(
ĨW[∞] + ~J [∞]

) ∣∣∣
H(E)

∈ C∗Lie

(
W̃n; C∗Lie,red(C[δ]⊗ (gn ⊕ g∨n [−2]))

)
[~].

Note that the one-loop term of the effective interaction ĨW,(1)[∞] + ~J [∞] is only a functional of

C[δ]⊗ gn and does not depend on C[δ]⊗ g∨n [−2].

In fact, at scale ∞, things become even simpler.

Lemma 10.3. The functional J [∞] vanishes on the subspace of harmonic forms:

J [∞]
∣∣
H(E)

= 0.

Thus, the scale ∞ effective interaction lies in the image of IW[∞]|H under the pullback map

p∗ : C∗Lie

(
Wn; C∗Lie,red(C[δ]⊗ gn)

)
→ C∗Lie(W̃n; C∗Lie,red (C[δ]⊗ gn)) ,

where p : W̃n →Wn is the extension of Wn by closed two-forms determined by chGF
2 (Tn).

Proof. Recall, for fixed closed two-form ω the local functional Jω is defined to be a functional on

the space Ω0,∗(E; gn). The definition of Jω invovles a single holomorphic derivative acting on one

of the input fields. When we restrict to harmonic forms C[δ]⊗ gn ↪→ Ω0,∗(E; gn) the holomorphic

derivative acts by zero and hence Jω|H vanishes for all ω. Thus J |H is identically zero. Since

the scale ∞ action J [∞] involves at least one vertex labeled by J we see that its restriction also

vanishes. �

In particular, the one-loop scale ∞ interaction comes as an element in

C∗Lie(Wn; C∗Lie,red(C[δ]⊗ gn)) = C∗Lie(Wn; Ω̂−∗n ).

We wish to explicitly compute this element.

First, we make a remark about where the functional IW lives when our spacetime is an elliptic

curve and we restrict to harmonic forms. This restriction can be viewed as a functional

IW
∣∣
H(E)

: Wn ⊕ C[δ]⊗ (gn[1]⊕ g∨n [−1])→ C.

Since IW is linear in the g∨n and δgn component, we can view this restriction as an element in

space

C∗Lie

(
Wn; C∗Lie,red(gn)⊗ δg∨ ⊗ gn

)
.
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Let

ddR : C∗Lie,red(gn))→ C∗Lie(gn, g
∨) ∼= Ω̂1

n

be the de Rham differential. Then the element

(ddR ⊗ 1)IW ∈ C∗Lie(Wn; C∗Lie,red(gn))⊗ δg∨ ⊗ End(gn) ∼= C∗Lie(Wn; Ω̂1
n ⊗ End(gn))

is precisely the Atiyah class AtGF(T̂n) as shown in Section 8.4.3.

Now we can move on to the main result of this section.

Proposition 10.4. As a function on the harmonic forms H(E), the one-loop part of the scale ∞
effective quantization ĨW,(1)[∞] is

1

32π4
E2(E,ω) p∗chGF

2 (T̂n) +
∑
k≥2

(2k − 1)!

(4π2)2k
E2k(E,ω) p∗chGF

2k (T̂n),

as a cocycle in C∗Lie(W̃n; Ω̂−∗n ). In particular, the one-loop effective quantization is cohomologous

to p∗ log Witn(E,ω).

Proof. The weight expression for ĨW,(1) is given by∑
Γ∈Wheels

1

|Aut(Γ)|
WΓ(P0<∞, Ĩ

W).

We are computing the restriction of this to the subspace

Ŝym(Wn[1]∨)⊗ Ŝym
(
((C[δ]⊗ gn[1])

∨
)
)
.

Each vertex of the wheel is labeled by the interaction IW. We now write down the propagators

for which we are contracting.

We identify

Ω0,∗(E) ∼= C∞(E)⊗ C[δ]

µ−1dz ↔ δ

where µ = iπ
∫
E

dz dz.

The scale ∞ propagator is

P0<∞(z, w) =

∫ ∞
0

(∂
∗ ⊗ 1)Kt(z, w)dt.

When we descend to the elliptic curve, the heat kernel is

Kt(z, w) =

(
1

4πt
e−|z−w|

2/4t

)
(δ ⊗ 1− 1⊗ δ)⊗ (idgn + idg∨n

)

where (4πt)−1e−|z−w|
2/4t ∈ C∞(E × E) is the scalar heat kernel for the Laplacian on functions.

The adjoint ∂
∗

satisfies

∂
∗
(f(z, z)dz) =

∂f

∂z
and hence we identify

P0<∞(z, w) =

∫ ∞
0

µ−1 ∂

∂z

(
1

4πt
e−|z−w|

2/4t

)
⊗ (idgn + idg∨n

) dt.

In turn, we can think of this formula as the integral kernel for the operator

µ−1 ∂

∂z
(2∂∂

∗
)−1 ⊗ id : C∞(E)⊗ gn → C∞(E)⊗ gn

where 2∂∂
∗

is the scalar Laplacian acting on functions.
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Using the identity ddRI
W = At(T̂n), we see that the sum of weights for diagrams of exactly k

vertices is

1

k
Tr

((
p∗AtGF(T̂n)⊗ µ−1 ∂

∂z
(2∂∂

∗
)−1

)k)
∈ C∗Lie

(
W̃n; C∗Lie(C[δ]⊗ gn)

)
∼= C∗Lie(W̃n; Ω̂−∗n ).

(This calculation recapitulates that of the obstruction.) We know that the algebraic piece simplifies

to Tr(AtGF(T̂n)) = k!(2πi)kchGF
2k (T̂n). For odd k, the analytic factor vanishes. Finally, a direct

computation shows that

Tr

((
µ−1 ∂

∂z
(2∂∂

∗
)−1

)2k
)

=
1

(4π2)2k
E2k.

One simply picks a natural Fourier basis for smooth functions on an elliptic curve E = C/Λ, on

which basis the operator ∂
∂z (2∂∂

∗
)−1 is easy to describe. (See, for instance, section 17.8 in [Cos].)

This fact completes the proof. �

11. The factorization algebras of equivariant observables

So far we have constructed classical and quantum BV theories for the formal βγ system. We now

turn to analyzing the observables of these theories, using the machinery of [CG], which intertwines

the BV formalism with factorization algebras. As we show in Part 3, the factorization algebras

that we construct here provide a refinement of the vertex algebras Gr ĈDOn and ĈDOn from Part

1.

In brief a factorization algebra is a local-to-global object on a manifold — in that sense, it is

like a sheaf — that encodes how to combine sections living on disjoint opens — and hence, like

an algebra. In [CG] it is shown that every field theory in the BV formalism has an associated

factorization algebra of observables. For a classical field theory, the observables Obscl assign to

an open U , the commutative dg algebra of functions on the space of fields on U . Thus classical

observables form a commutative factorization algebra. A BV quantization amounts, in essence, to

deform the differential from {Scl,−} to {Sq,−}+ ~∆, where Scl is the classical action functional

and Sq is its quantization. The quantum observables are thus a deformation of the commutative

factorization algebra Obscl to a factorization algebra (which has no commutative structure).

Our work in Section 9 thus provides factorization algebras for the equivariant and non-equivariant

formal βγ system. Before we spell out those objects in detail, though, we must give the definition

of a factorization algebra and discuss the relevant functional analysis.

Remark 11.1. Although we attempt to describe all the relevant ideas and definitions here, we rely

extensively on results and arguments in [CG], which contains a lengthy treatment of the formalism

we deploy. For further details, motivation, and context, we refer the reader there.

11.1. An overview of factorization algebras. LetX be a topological space and C⊗ a symmetric

monoidal category. For us X will be a Riemann surface, typically C, and C⊗ will be a category

of cochain complexes of vector spaces with ⊗ the tensor product. (In Section 11.2 we discuss the

type of vector spaces and tensor product that we use, since issues of functional analysis appear.)

Here we give the general definition and refer to [CG] for more detail and motivation.

Definition 11.2. A prefactorization algebra F on X with values in C⊗ assigns to each open U

in X, an object F(U) in C, and assigns to each finite collection {U1, . . . , Un} of pairwise disjoint

opens in X where each Ui ⊂ V , a morphism

FU1,...,Un
V : F(U1)⊗ · · · ⊗ F(Un)→ F(V ).
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These assignments satisfy

(1) the morphisms compose, so that

FU1,...,Un
V ◦

n⊗
i=1

FTi,1,...,Ti,miUi
= FT1,1,...,Tn,mn

V

for any choice of pairwise disjoints open {Ti1 , . . . , Timi } inside Ui for each i, and

(2) the morphisms are equivariant under rearrangement of labels, so that for any permutation

σ ∈ Sn, the composite

F(Uσ(1))⊗ · · · ⊗ F(Uσ(n))
∼=−→ F(U1)⊗ · · · ⊗ F(Un)

FU1,...,Un
V−−−−−−→ F(V )→ F(V )

equals FUσ(1))⊗···⊗F(Uσ(n)

V .

This structure encodes a kind of algebra parametrized by the geometry of X. The data of F
explains how to “multiply” elements living on opens Ui into an element on V .

An associative algebra A provides an example living on X = R. To each open interval I, one

assigns A, and to a union of disjoint intervals tj∈JIj , one assigns the tensor product
⊗

j∈J A.

Each structure map is determined by the multiplication in A.

Another example, central to our work here, is the following. Let E → X be a vector bundle

on a smooth manifold. Let Ec denote the precosheaf of compactly supported sections of E: to

each open U , we assign Ec(U) = Γc(U,E), and there is a natural extension-by-zero Ec(U)→ Ec(V )

whenever U ⊂ V . This precosheaf satisfies that

Ec(U1 t U2) ∼= Ec(U1)⊕ Ec(U2)

for any disjoint union of opens. Using the appropriate notion of tensor product, discussed below,

one then sees that

Sym(Ec(U1 t U2)) ∼= Sym(Ec(U1)⊕ Ec(U2)) ∼= Sym(Ec(U1))⊗ Sym(Ec(U2)),

which provides a natural map

Sym(Ec(U1))⊗ Sym(Ec(U2))→ Sym(Ec(V ))

for any V ⊃ U1 t U2. In this way, one shows that Sym(Ec) forms a prefactorization algebra.

A factorization algebra is a prefactorization algebra satisfying a local-to-global condition, just

as a sheaf is a presheaf satisfying one. The primary difference in the conditions is that the notion

of cover changes.

Definition 11.3. A Weiss cover {Ui}i∈I of an open V is a collection of opens Ui ⊂ V such that

for any finite set of points {x1, . . . , xn} ⊂ V , there is some Ui ⊃ {x1, . . . , xn}.

We will restrict our attention now to C that are categories of cochain complexes of vector spaces.

(More generally, the definition below is well-behaved for cochain complexes on a Grothendieck

abelian category. See Appendix C of [CG].) Since we view quasi-isomorphic cochain complexes

as equivalent (i.e., we are interested in the higher category arising from quasi-isomorphism as

the notion of weak equivalence), the local-to-global condition is a cochain refinement of the usual

notion.

Definition 11.4. A factorization algebra is a prefactorization algebra F such that for any open

V and any Weiss cover {Ui}i∈I of V , the natural map

Č({Ui}i∈I ,F)→ F(V )

is a quasi-isomorphism. (Here the left hand side denotes the Čech complex of F on the cover.)
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11.2. A comment on functional analysis. We are working throughout with infinite-dimensional

vector spaces such as the space of smooth functions C∞(X) on a smooth manifold. Thus we need

to be careful about issues such as tensor products and duals, since the setting of plain vector spaces

is not appropriate or adequate for our constructions. Appendix B of [CG] describes a category of

differentiable vector spaces well-suited to our setting, and it explains its relationship with other

natural choices, such as locally convex topological vector spaces, bornological vector spaces, or

convenient vector spaces. The reader wishing for a discussion about the subtleties of constructing

factorization algebras in such settings should look in [CG].

Here we simply state explicitly what we mean by duals and tensor product for the vector spaces

with which we work. These definitions are natural for both differential geometry and functional

analysis.

Let E → X be a finite-rank vector bundle on a smooth manifold. We use the following notations:

(1) the smooth sections are E = Γ(X,E),

(2) the compactly supported smooth sections are Ec = Γc(X,E),

(3) the distributional sections are E , and

(4) the compactly supported distributional sections are E c.

Let E! = E∨⊗DensX denote the vector bundle given by the tensor product of the fiberwise linear

dual E∨ with the density line DensX . Then we write

(1) the smooth sections as E ! = Γ(X,E!),

(2) the compactly supported smooth sections as E !
c = Γc(X,E

!),

(3) the distributional sections are E
!
, and

(4) the compactly supported distributional sections are E
!

c.

Note that the vector bundle map ev : E∨ ⊗ E → C given by the fiberwise evaluation pairing

induces a vector bundle map 〈−,−〉fib : E! ⊗ E → DensX . This pairing then extends a natural

bilinear pairing

〈−,−〉 : E
!

c × E → C
(λ, f) 7→

∫
X
〈λ, f〉fib

.

There are clearly also versions for E
! × Ec or with distributional sections of E and so on.

Definition 11.5. We write E ∨ for E
!

c and call it the dual of E . We use 〈−,−〉 for the evaluation

pairing ev : E ∨ × E → C. Similarly, we write E ∨c for E
!
, (E )∨ for E !

c , and (E c)
∨ for E !.

Given E → X and F → Y finite-rank vector bundles on smooth manifolds, let E�F → X ×Y
denote π∗XE⊗π∗Y F , i.e., the tensor product of the vector bundles pulled back along the projection

maps πX : X × Y → X and πY : X × Y → Y .

Definition 11.6. We write E ⊗F for the smooth sections of E�F and call it the tensor product.

Similarly, we write Ec ⊗Fc for the compactly supported smooth sections of E � F , E ⊗F for the

distributional sections of E � F , and E c ⊗F c for the compactly supported distributional sections

of E � F .

It makes sense to ask for sections of E�F that are distributional in the X-direction but smooth

in the Y -direction, and we write E ⊗F for this space.

Definition 11.7. For a Z-graded vector bundle E → X, the algebra of functions on E is

Sym(E ∨) :=
⊕
n≥0

((E
!

c)
⊗n)Sn .
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The completed algebra of functions on E is

Ŝym(E ∨) :=
∏
n≥0

((E
!

c)
⊗n)Sn .

In particular, an element f of the nth symmetric power Symn(E ) can be identified with a

compactly supported distributional section of Γ(Xn, (E!)�n) that is invariant under the natural

permutation action of Sn.

Note that these definitions make it straightforward to express the Chevalley-Eilenberg cochains

of dg Lie algebras like DgSn , whose underlying graded vector spaces are of the type described here.

11.3. The non-equivariant classical observables. We begin by defining the classical observ-

ables on a fixed source.

Definition 11.8. The classical observables Obscl
n (S) for the rank n formal βγ system on the

Riemann surface S is the completed algebra of functions on the space of fields

Ω0,∗(S)⊕n ⊕ Ω1,∗(S)⊕n = (DgSn)[1]

equipped with the differential given by extending ∂ as a derivation. Hence

Obscl
n (S) = C∗Lie(DgSn),

where the Chevalley-Eilenberg cochains are constructed using the appropriate versions of dual and

tensor product.

Explicitly, the underlying graded algebra is

Ŝym(Ω
1,∗
c (S)⊕n[1]⊕ Ω

0,∗
c (S)⊕n[1]).

The differential can be understood explicitly as follows. For some n-fold tensor product of linear

functionals on the fields

a = α1 ⊗ · · · ⊗ αn,
we have

∂(a) = (∂α1)⊗ · · · ⊗ αn ± α1 ⊗ (∂α1)⊗ · · · ⊗ αn + · · · ± α1 ⊗ · · · ⊗ (∂αn).

This differential is equivariant with respect to the permutation action of the symmetric group Sn
and hence induces a differential on the nth symmetric power.

It is manifest that these observables are natural with respect to holomorphic embeddings. That

is, given a holomorphic embedding i : S ↪→ S′, there is a natural extension map

i∗ : Obscl
n (S)→ Obscl

n (S′)

that is naturally induced by the restriction map of fields

i∗ : DgS
′

n → DgSn .

Indeed, we have a factorization algebra on any Riemann surface by Theorem 5.2.1 of [CG]. For

the purpose of extracting the vertex algebra, it will suffice to focus on S = C and not consider all

Riemann surfaces at the same time.

Definition 11.9. Let Obscl
n denote the factorization algebra on C of classical observables for the

rank n formal βγ system.

We remark that as GLn(C) acts naturally on Cn ∼= gn[1], it also acts naturally on Obscl
n (S) for

any Riemann surface S. This action manifestly respects the differential ∂, which only depends on

the source S and not on the target D̂n.
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11.4. The non-equivariant quantum observables. The BV formalism suggests that the quan-

tum observables on S should arise by

(a) tensoring the underlying graded vector space of Obscl
n with C[[~]] and

(b) modifying the differential to ∂ + ~∆, where ∆ is the BV Laplacian.

This suggestion does not work because ∆ is not defined on all of the observables; the naive formula

involves an ill-defined pairing of distributions. There are two ways to circumvent this difficulty.

First, one can work with a smaller class of observables — such as those arising from smooth

functionals, not distributional ones — and this approach is developed in detail for the free βγ

system in Chapter 5, Section 3 of [CG]. (We discuss this approach in Section 11.7, where we also

show the two approaches agree.) Second, one can mollify ∆ instead. This approach is developed

in a very broad context in Chapter 9 of [CG], and we have encountered it already in the scale L

BV Laplacians ∆L. These two approaches provide quasi-isomorphic factorization algebras, as we

show in Proposition 11.24. The second approach is what we will explain here, as it is the one that

extends to the equivariant setting.

Before delving into the machinery necessary to define a factorization algebra of quantum ob-

servables, let us note that we have a working description of the global observables on C.

Definition 11.10. The global scale L quantum observables for the rank n formal βγ system has

underlying graded vector space

Ŝym(Ω
1,∗
c (C)⊕n[1]⊕ Ω

0,∗
c (C)⊕n[1])[[~]]

with differential ∂ + ~∆L. We denote it Obsqn[L](C).

By Lemma 9.3.1.2 of [CG], the quantum observables are isomorphic for any choice of length

scale. The RG flow provides an explicit isomorphism WL
ε : Obsqn[ε](C) → Obsqn[L](C) as follows:

given an observable f at scale ε, let WL
ε (f) satisfy

δWL
ε (f) = W (PLε , δf)

where δ2 = 0 and |δ| = −|f |. (In other words, this map arises by taking the “derivative of RG

flow.”)

The basic approach used here works in general, except that we will need to work with a more

flexible notion of “length scale”: we need to allow arbitrary parametrices for ∂. After reviewing

this machinery, we use it to define the factorization algebra of quantum observables.

11.4.1. Recap of parametrices and BV Laplacians. We give here the specialization to our situation

of the general definition from Chapter 8, Section 2.4 of [CG]. Recall that we are working on C
with its standard, Euclidean metric. Let ∂

∗
denote the Hodge dual operator to ∂ with respect to

this metric. It is our choice of “gauge-fix,” in the terminology of [Cos11]. Let 4 = [∂, ∂
∗
] denote

the Hodge Laplacian on Dolbeault forms.

We remark on our convention for integral kernels. Given an operator P on Ω0,∗(C), we use KP

to denote the integral kernel for P , which is the section of Ω0,∗(C)⊗ Ω
1,∗
c (C) such that

(Pα)(z) =

∫
w∈C
〈KP (z, w), α(w)〉w,

where the BV pairing is along the w-direction.

Definition 11.11. A parametrix for ∂ on Ω0,∗(C) is a distributional section Φ of Ω1,∗(C × C)

such that

(1) Φ has cohomological degree one,
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(2) Φ is symmetric with respect to the S2 action,

(3) Φ has proper support with respect to the two projection maps from C2 to C, and

(4) (4⊗ id)Φ −Kid is a smooth section of Ω1,∗(C × C), where Kid is the integral kernel for

the identity operator with respect to the BV pairing.

Let Param denote the set of parametrices.

There is a natural partial ordering on Param by support: Ψ ≤ Φ if supp(Ψ) ⊂ supp(Φ).

We remark that the integral kernel Ψ =
∫ L

0
Kan
t , using the analytic heat kernel from Section

9.2, satisfies all these conditions except proper support. It is, in fact, supported everywhere on C2.

(It is thus an “almost-parametrix.”) One can easily obtain a parametrix from Ψ as follows: pick a

smooth function f on C2 that is 1 in a neighborhood of the diagonal and vanishes sufficiently far

from the diagonal, and consider fΨ. This construction will allow us to translate between results

written in terms of heat kernels (i.e., length scale) and those written in terms of parametrices.

Remark 11.12. Above we only define parametrices for ∂. Each Φ ∈ Param automatically determine

a parametrix for the rank n formal βγ system by taking Φ⊗ (idgn + idg∨n
). Given this relationship,

we will not overload the notation and use Φ, with the implicit understanding that the algebraic

factor is included in the rank n case.

We now define versions of the propagator and BV Laplacian for each parametrix Φ, analogous

to PLε and ∆L from earlier. Note that for the rank n formal βγ system,

Definition 11.13. Given a parametrix Φ, the Φ-propagator is the integral kernel

PΦ =
1

2
(∂
∗ ⊗ id + id⊗ ∂∗)Φ.

Let κΦ denote the integral kernel Kid − (∂ ⊗ id + id⊗ ∂)PΦ.

The crucial point here is that the kernel κΦ is smooth. Moreover, it is the analog of the analytic

heat kernel Kt from earlier.

We are now in a position to define a mollified BV Laplacian.

Definition 11.14. The Φ-BV Laplacian ∆Φ is the operator ∂κΦ . That is, it is the endomorphism

of (Obscl
n (C))] — the underlying graded algebra of observables — given by contracting with κΦ.

For clarity’s sake, let us describe this operator explicitly. Given a in the nth symmetric power

of the observables, pick a lift ã to the nth tensor power. Then

(∂κΦ
a)(x) = ã(κφ ⊗ x⊗ · · · ⊗ x),

where we insert n− 2 copies of x on the right hand side.

These definitions allow one to define effective field theories, but with length scale replaced by

a choice of parametrix. For a full treatment, see Section 8.2.9 of [CG]. The essential changes are

that

• RG flow from Φ to Ψ is given by W (PΦ − PΨ,−), using the same Feynman diagram

expansion, and

• the same local functional should be recovered in the limit as the support of the parametrices

goes to the small diagonal.

We can obtain such an effective field theory from the length scale version by RG flow to any

parametrix from a fixed almost-parametrix for some length scale.
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11.4.2. Observables. We can now mimic the scale L definition of global observables.

Definition 11.15. For a parametrix Φ, the global Φ-quantum observables for the rank n formal

βγ system has underlying graded vector space

Ŝym(Ω
1,∗

(C)⊕n[1]⊕ Ω
0,∗

(C)⊕n[1])[[~]]

with differential ∂ + ~∆Φ. We denote it Obsqn[Φ](C).

Again, Lemma 9.3.1.2 of [CG] shows that the quantum observables are isomorphic for any choice

of parametrix. The isomorphism is explicitly given by the “derivative of the RG flow”:

WΨ
Φ : f ∈ Obsqn[Φ](C) 7→ ∂

∂δ
(W (PΨ − PΦ, δf)) ∈ Obsqn[Ψ](C).

Because our parametrices have proper support, though, they only expand the support of an ob-

servable f by a controlled amount (essentially determined by how the size of the parametrix’s

support).

Definition 11.16. Let Obsqn(C) denote the cochain complex of quantum observables up to iso-

morphism. That is, an observable f ∈ Obsqn(C) is a family of elements {f [Φ]}Φ∈Param for every

parametrix Φ such that the f [Ψ] = WΨ
Φ (f [Φ]) for any pair of parametrices Ψ and Φ.

Definition 11.17. Let f be an observable in Obsqn(C) and denote its Taylor expansion by

f =
∑
j,k≥0

~jfj,k,

with fj,k in the kth symmetric power. We say that f has support in U ⊂ C if for every (j, k),

there is some compact subset C ⊂ Uk and some parametrix Φ such that supp(fj,k[Ψ]) ⊂ C for all

Ψ ≤ Φ.

By Lemma 9.4.0.2 of [CG], the graded vector space Obsqn(U) of observables with support in U is

preserved by the differential ∂+~∆ and hence provides a sub-complex of Obsqn(C). The remainder

of Chapter 9 of [CG] shows that these naturally form a factorization algebra.

Definition 11.18. Let Obsqn denote the factorization algebra on C of quantum observables for the

rank n formal βγ system.

We remark again that GLn(C) acts naturally on Cn ∼= gn[1] and on its linear dual so as to

preserve the evaluation pairing. Hence GLn(C) also acts naturally on Obsq
n(U) for any open

U ⊂ C. This action respects the differential ∂ + ~∆Φ, since ∂ only depends on the source U and

not on the target D̂n and ∆Φ depends on the target only through the evaluation pairing.

11.5. The Wn-equivariant classical observables. We discussed in Section 3 8.3 that diffeo-

morphisms on the target of the curved βγ system naturally act on the fields by post-composition.

In Section 3.3 we gave an efficient description of this action for the formal βγ system via an L∞-

action of Wn on DgUn for any open U ⊂ C. This action then determines an L∞-action of Wn on

Obscl
n (U) = C∗Lie(DgUn ) and hence a cochain complex C∗Lie(Wn,Obscl

n ). In other words, by the yoga

of Koszul duality, this action can be encoded as a modification of the differential on the tensor

product C∗Lie(Wn) ⊗ Obscl
n . By Lemma 8.6 we know that {IW,−} provides this twisting of the

differential. Since IW is a local functional, this modified differential is still local in the source man-

ifold C and thus respects the structure maps of the factorization algebra. The following definition

gathers together these observations.
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Definition 11.19. The factorization algebra of Wn-equivariant classical observables on C is

eqObscl
n = C∗Lie(Wn,Obscl

n ).

The underlying graded vector space is

Ŝym(Wn
∨[−1])⊗ Ŝym((Ω

1,∗
c )⊕n[1]⊕ (Ω

0,∗
c )⊕n[1])

with differential dC∗Lie(Wn) + ∂ + {IW,−}.

Note that in IW, the dependence on the vector field X ∈Wn is linear. Hence Obscl
n has a strict

Lie algebra action of Wn, not a complicated L∞-action. In light of the remarks following Definition

11.18, we see the following, which we record as a lemma for use when applying Gelfand-Kazhdan

descent in Section .

Lemma 11.20. The classical observables Obscl
n are a representation of the Harish-Chandra pair (Wn,GLn).

In particular GLn acts by (strict) automorphisms of the factorization algebra, and Wn acts by

(strict) derivations of the factorization algebra. Via restriction along p : (W̃n,GLn)→ (Wn,GLn)

the classical observables Obscln are also a representation for the pair (W̃n,GLn).

11.6. The W̃n-equivariant quantum observables. The construction of the W̃n-equivariant

quantum observables is straightforward, given the work we did in Section 9. The logic is analo-

gous to the case of classical observables: we encode the L∞-action of W̃n on observables in the

differential.

Definition 11.21. The factorization algebra of W̃n-equivariant quantum observables on C is

eqObsq
n = C∗Lie(W̃n,Obscl

n ).

The underlying graded vector space is

Ŝym(W̃∨n [−1])⊗ Ŝym((Ω
1,∗
c )⊕n[1]⊕ (Ω

0,∗
c )⊕n[1])

with differential

d
C∗Lie(W̃n)

+ ∂ + {IW,0,−}+ ~∆ + ~{IW,1 + J,−},

to give an explicit description.

For clarity’s sake let us point out that this means that for each parametrix Φ, we have global

observables

Ŝym(W̃∨n [−1])⊗ Ŝym(Ω
1,∗
c (C)⊕n[1]⊕ Ω

0,∗
c (C)⊕n[1])

with differential

d
C∗Lie(W̃n)

+ ∂ + {IW,0[Φ],−}Φ + ~∆Φ + ~{IW,1[Φ] + J [Φ],−}Φ.

These observables are isomorphic for all choices of parametrix, so that our notation in the definition

should be unambiguous. Moreover, we find that the notion of support for an observable is well-

behaved and so we can talk about the observables with support in a fixed open U , thus obtaining

a factorization algebra.

Remark 11.22. Working over the base ring C∗Lie(W̃n) amounts to a version of the background field

method, where we view the quantum action functional (encoded in the differential) as depending

on a choice of vector field and closed 2-form, i.e., an element of W̃n. In a sense we see that after

quantizing, we obtain extended symmetries of the theory which we have already seen coincide with

those of the physical curved βγ system.
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By contrast to the classical case, the quantum observables Obsq
n do not have a strict Lie action

of W̃n. The ~-term IW,1 is not linear in Wn and has contributions of every even power. Thus

we cannot apply strict Gelfand-Kazhdan descent for (W̃n,GLn). We have already observed that

when restricted to linear vector fields gln ↪→ W̃n that the anomaly vanishes. Thus, the quantum

observables Obsqn admit a strict action by gln.

11.7. An aside on the two versions of non-equivariant observables. As mentioned earlier,

there is another approach to constructing the non-equivariant factorization algebra of observables

for the formal βγ system, which is developed in [CG]. We sketch it briefly here and prove that it

is quasi-isomorphic to the observables described above.

Thus, the key idea is to work with observables built out of smooth or smeared distributions. By

contrast, the observables already introduced live in a completed symmetric algebra of distributions

(more precisely, the distributions dual to Dolbeault forms), and the need for parametrices is due to

inability to apply the BV Laplacian to such distributions, since distributions do not always pair.

Here is a concrete example of replacing distributions with smeared versions. Consider the delta-

function

δ0 : γ 7→ γ(0).

Now pick a compactly-supported smooth function f : (0, 1)→ R such that
∫
R f(t) dt = 1. Then a

smeared version is

δ̃0 : γ 7→ 1

2πi

∫ 1

r=0

∫
|z|=r

γ(z)

z
dz f(r) dr,

which agrees with δ0 if γ is holomorphic, by Cauchy’s theorem. In particular, in the cochain

complex Ω
1,∗
c (C)[1], these distributions δ0 and δ̃0 are cohomologous 0-cocycles.

Definition 11.23. The smeared quantum observables for the rank n formal βγ system with

support in the open U ⊂ C has underlying graded vector space

Ŝym(Ω1,∗
c (U)⊕n[1]⊕ Ω0,∗

c (U)⊕n[1])[[~]]

with differential ∂ + ~∆. We denote it Obsq,fr
n (U).

As the observables are built out of smooth sections, the “naive” BV Laplacian ∆ = ∂Kid is well-

defined. We view this operator as the BV Laplacian “at scale zero,” since Kid is the distributional

limit of the KL. Moreover, since ∆ is fully local, these smeared observables automatically form a

factorization algebra, with no need to discuss support issues.

This construction raises the question of how the smeared observables compare to the observables

from Definition 11.18. They are, in fact, quasi-isomorphic factorization algebras, but the quasi-

isomorphism is built in two steps. First, on smeared observables, the RG flow operator makes

sense from “scale zero” to an arbitrary parametrix Φ:

WΦ
0 : Obsq,fr

n (C)→ Obsq,fr
n [Φ](C)

where the target Φ-observables consists of the same graded vector space of smeared observables

but with differential ∂+~∆Φ. This map is an isomorphism of cochain complexes with inverse W 0
Φ.

(It does affect support of observables, but we say an observable f ∈ Obsq,fr
n [Φ](C) is supported in

an open set U if W 0
Φ(f) is supported in U .) Second, consider the inclusion

i[Φ] : Obsq,fr
n [Φ](C) ↪→ Obsq

n[Φ](C),

arising from the inclusion of smooth sections into distribution sectionals. This map is a quasi-

isomorphism: the spectral sequence arising from the ~-filtration is an isomorphism on the first page.
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The composite i ◦WΦ
0 thus defines a quasi-isomorphism of cochain complexes, and it intertwines

support conditions, thus extending to a map i : Obsq,fr
n → Obsq

n. Hence we have proved the

following.

Proposition 11.24. The map i : Obsq,fr
n → Obsq

n is a quasi-isomorphism of factorization algebras.

12. Semi-strict Gelfand-Kazhdan descent

In Section 8, we have seen that there is a dg Lie algebra DgSn encoding the βγ system with target

the formal disk D̂n, and we have seen that this dg Lie algebra has a natural action of GLn and

has a natural L∞-action of Wn. We might hope that the curved βγ system with target a complex

n-manifold X could be obtained by applying Gelfand-Kazhdan descent to this dg Lie algebra. This

hope is not misplaced, as we’ll see, but it requires generalizing the formalism of Harish-Chandra

descent to allow for L∞-actions of the Lie algebra.

In this section we develop this formalism along the lines of our treatment of descent in Part I,

but we develop the minimum necessary to realize our primary goal and hence leave untreated many

interesting questions (such as allowing Harish-Chandra pairs in which the Lie algebra is replaced

by an L∞ algebra). Nonetheless, our techniques should apply to a broad collection of situations,

notably to constructing the perturbative part of a nonlinear σ-model using BV quantization.

Indeed, much of what we do is a re-articulation of the methods of Kontsevich, Cattaneo-Felder,

and many others, that is compatible with the machinery of [CG]. We finish by explaining how

our methods recover Costello’s approach to the curved βγ system in [Cos]. (His use of L∞-spaces,

however, allows for more exotic targets than just complex manifolds, though.)

Remark 12.1. As our particular examples are explicit, we are able to get away with a modest and

quite limited generalization of Gelfand-Kazhdan descent for derived objects. There should be a

full-fledged derived version. (Parts of [CPT+] can be seen as a giant step in that direction.)

12.1. Semi-strict modules. We continue to work with Harish-Chandra pairs (g,K), as in Part

1, so g is a Lie algebra and K is a Lie group along with an action ρ of K on g and an inclusion

of Lie algebras i : Lie(K) ↪→ g so that the Lie algebra action determined by i agrees with the

differential of the group action ρ.

Definition 12.2. A semi-strict Harish-Chandra module for the pair (g,K) is a dg vector space

(V,dV ) equipped with

(i) a strict group action ρKV of K, meaning a group map

ρKV d : K → GL(V d)

for each degree d such that the product map
∏
d ρ

K
V d : K →

∏
d GL(V d) commutes with the

differential dV ;

(ii) an L∞-action of g on V , i.e., a map of L∞-algebras ρgV : g  End(V ), such that the

composite

CLie
∗ (ρgV ) ◦ CLie

∗ (i) : CLie
∗ (Lie(K))→ CLie

∗ (End(V ))

equals the map

CLie
∗ (DρKV ) : CLie

∗ (Lie(K))→ CLie
∗ (End(V )).

Here DρKV : Lie(K)→ End(V ) is the differential of the strict K-action and i : Lie(K)→ g is part

of the data of the Harish-Chandra pair (g,K).
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We call this semi-strict because we allow an L∞-action of g, but our other conditions are quite

strict. This definition, while ad hoc, is nonetheless well-suited to our situation.

Definition 12.3. A map of semi-strict Harish-Chandra modules

f : (V, ρKV , ρ
g
V )→ (W,ρKW , ρ

g
W )

consists of

(i) a cochain map fK : V →W that (strictly) intertwines the K-actions and

(ii) a map of CLie
∗ (g)-comodules

fg : CLie
∗ (g, V )→ CLie

∗ (g,W ),

such that the composites

CLie
∗ (DρKW ) ◦ CLie

∗ (fK) : CLie
∗ (Lie(K), V )→ CLie

∗ (g,W )

and

fg ◦ CLie
∗ (DρKV ) : CLie

∗ (Lie(K), V )→ CLie
∗ (g,W )

are identical.

12.2. Semi-strict descent. Fix a (g,K)-bundle P with flat connection, so that there is a Maurer-

Cartan element ω in the dg Lie algebra Ω∗(P ) ⊗ g. Equivalently, there is a map of commutative

dg algebras

ω∗ : C∗Lie(g)→ Ω∗(P )

determined by extending to an algebra map, the map ω∗ : g∨[−1]→ Ω∗(P ) on generators encoded

by ω.

Let V be a semi-strict module for the pair (g,K). Hence there is a map of commutative dg

algebras

ρg∗V : C∗Lie(End(V ))→ C∗Lie(g),

which is the linear dual of the coalgebra map ρgV : g End(V ). By composing, we obtain a map

of commutative dg algebras

ρg∗V ◦ ω
∗ : C∗Lie(End(V ))→ Ω∗(P ),

which then corresponds to a Maurer-Cartan element

ωV ∈ Ω∗(P )⊗ End(V ).

The operator

∇P,V := ddR + ωV

then defines a flat “super-connection” on the trivial bundle P × V → P over P . (Here “super”

simply means that some terms of ωV may contain higher forms, and not just one-forms.)

The following results straightforwardly from the definitions.

Lemma 12.4. The operator ∇P,V has the following properties:

(1) It preserves the sub-algebra of basic forms.

(2) If f ∈ O(X) ∼= O(P )K and α ∈ (Ωk(P )⊗ V )bas ∼= Ωk(X;VX), then

∇P,V (f · α) = (ddRf)⊗ α+ f ⊗∇V α.

(3) It is square-zero.
101



Using this lemma, we define the cochain complex

(32) desc((P → X,ω), V ) :=
(
(Ω∗(P )⊗ V )bas,∇P,V

)
.

It is a dg module over the commutative dg algebra Ω∗(X).

Definition 12.5. The semi-strict descent functor

desc : Locop
(g,K) ×Modfin(g,K) → ModΩ∗(X)

is given by the construction just described.

Note that if V is strict HC-module, then (32) is just the de Rham complex of the flat vector

bundle desc((P → X,ω), V ) = (VX ,∇P,V ) from Definition 1.13.

Semi-strict Gelfand-Kazhdan descent is simply semi-strict Harish-Chandra descent applied to

the pairs (Wn,GLn) or (W̃n,GLn) along Xcoor or X̃coor
α , respectively. Everything is parallel to

what we did in Part 1. In particular, it is lax monoidal, via the argument from Lemma 2.18.

We now note an important relationship between strict and semi-strict descent, which follows

from a standard fact about L∞-representations: given an ordinary Lie algebra g (i.e., concentrated

in degree zero) and an L∞ representation V of g, the cohomology H∗(V ) is a strict representation

of g. Hence we observe the following.

Lemma 12.6. If (V, ρKV , ρ
g
V ) is a semi-strict module for the pair (g,K), then H∗(V ) naturally

becomes a strict module for (g,K) with ρKH∗(V ) the induced action of K on H∗(V ) (since it respects

the differential on V ) and ρgH∗(V ) the induced strict action of g on H∗(V ).

12.3. Descent of the equivariant observables. We record the following immediate conse-

quences of our work in Section 11.

Proposition 12.7. For each open U ⊂ C,

(1) the classical observables Obscl
n (U) is a strict module over (Wn,GLn), and

(2) the quantum observables Obsq
n(U) is a semi-strict module over (W̃n,GLn).

The structure maps of Obscl
n are strictly equivariant map for (Wn,GLn), i.e., maps of strict

(Wn,GLn)-modules. The structure maps of Obsq
n are maps of semi-strict (W̃n,GLn)-modules.

These assertions follow by reinterpreting, via Koszul duality, our descriptions of the equivariant

observables as dg modules over C∗Lie(Wn) (in the classical case) or C∗Lie(W̃n) (in the quantum case).

We can thus apply semi-strict Gelfand-Kazhdan descent and obtain the following result. Note

that we are working in the category of dg modules over the commutative dg algebra Ω∗(X) in the

category of differentiable vector spaces discussed in Section 11.2.

Corollary 12.8. The strict Gelfand-Kazhdan descent of Obscl
n on an n-dimensional complex man-

ifold X is a commutative factorization algebra in dg modules over Ω∗(X). It depends on a choice

of Gelfand-Kazhdan structure (FrX,σ), but every choice produces a naturally isomorphic factor-

ization algebra.

If the n-dimensional complex manifold X has vanishing ch2(TX) ∈ H2(X,Ω2,hol
cl ), then each

extended Gelfand-Kazhdan structure (X,α, σ, σΩ2) where α is a choice of trivialization of ch2(TX)

and σ, σΩ2 are the auxiliary sections needed to define descent (whose choices do not change the

descent object up to homotopy) the semi-strict Gelfand-Kazhdan descent of Obsq
n is a factorization

algebra in dg modules over Ω∗(X).
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Definition 12.9. For X a complex n-manifold, let Obscl
X denote the commutative factorization

algebra on C produced by strict Gelfand-Kazhdan descent of Obscl
n .

For X a complex n-manifold and α ∈ Ω2
cl(X) a trivialization of ch2(TX), let Obsq

X,α denote the

factorization algebra on C produced by semi-strict Gelfand-Kazhdan descent of Obsq
n.

By Lemma 12.6 we know that for each open U ⊂ C,

(1) the cohomological classical observables H∗Obscl
n (U) is a strict module over (Wn,GLn),

and

(2) the cohomological quantum observables H∗Obsq
n(U) is a strict module over (W̃n,GLn).

Moreover, the structure maps of H∗Obscl
n are strictly equivariant map for (Wn,GLn), i.e., maps of

strict (Wn,GLn)-modules. Likewise, the structure maps of H∗Obsq
n are maps of strict (W̃n,GLn)-

modules. Thus we can also apply strict Gelfand-Kazhdan descent to the cohomology of observables.

Corollary 12.10. The strict Gelfand-Kazhdan descent of H∗Obscl
n on an n-dimensional complex

manifold X is a commutative factorization algebra. It depends on a choice of Gelfand-Kazhdan

structure (FrX,σ), but every choice produces a naturally isomorphic factorization algebra.

If the n-dimensional complex manifold X has vanishing ch2(TX) ∈ H2(X,Ω2,hol
cl ), then for

each choice of trivialization α of ch2(TX) and each extended Gelfand-Kazhdan structure the strict

Gelfand-Kazhdan descent of H∗Obsq
n is a factorization algebra.

In Section 13 below, we provide a description of these factorization algebras that is humanly

understandable, but first we will swiftly relate our work to Costello’s approach in [Cos].

12.4. Comparison with Costello’s work. In [Cos] Costello provided a BV quantization of

the curved βγ system with target a complex manifold X, and it was clear that the associated

factorization algebra ought to be chiral differential operators, based on the work in [Wit07, Nek].

Our work grew out of attempts to verify that expectation. Here we explain how Gelfand-Kazhdan

descent recovers the L∞ spaces that Costello uses and why descent of our equivariant quantization

recovers the relevant cases of Costello’s quantizations. These results are independent of the rest of

the text, and hence the disinterested reader should skip this section.

Our construction starts by encoding the formal n-disk as an L∞ algebra gn and the formal βγ

system as DgSn . Costello’s approach is to write down a global analogue: for each complex mani-

fold X, he constructs a curved L∞ algebra gX in dg modules over the de Rham complex Ω∗(X).

His version of the classical curved βγ system is encoded in DgSX , whose Maurer-Cartan equation

recover the equations of motion. (More precisely, this Maurer-Cartan equations describes formal

deformations of constant maps to holomorphic maps.) The factorization algebra of classical ob-

servables assigns to an open set U ⊂ C, the cochain complex C∗Lie(DgUX). The quantum observables

are a deformation thereof.

Let us explain his construction of gX . Consider the∞-jet bundle JholX for holomorphic functions,

which has a canonical flat connection. The sheaf of horizontal sections for this flat connection is

exactly the sheaf OX of holomorphic functions on X. In fact, the de Rham complex of JholX is

quasi-isomorphic to OX , where the quasi-isomorphism sends a holomorphic function to its ∞-jet.

By definition, gX is the curved L∞ algebra encoded under Koszul duality by the commutative dg

algebra

C∗Lie(gX) = Ω∗(X, Ŝym(T 1,0∗
X )) ∼= Ω∗(X,JholX ).

(Everything here is in modules over Ω∗(X).) The differential on the left hand side is pulled back

along an isomorphism of pro-vector bundles σ : Ŝym(T 1,0∗
X )

∼=−→ JholX . This isomorphism σ is
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constructed by fixing a connection on the tangent bundle TX and using its associated exponential

map at each point x to identify the formal neighborhood of x in X with the formal neighborhood

of the origin in TxX. In this way, the ∞-jet of a function at x is identified with a formal power

series in T ∗xX, which is the desired isomorphism σ.

But this procedure is precisely how Gelfand-Kazhdan descent works! Once we fix a formal

exponential on the frame bundle of X — typically via a choice of connection — we have an

isomorphism σ. Moreover, the descent of C∗Lie(gn) using this data is exactly Ω∗(X, Ŝym(T 1,0∗
X ))

equipped with the pullback of the Grothendieck connection along σ. In other words, Gelfand-

Kazhdan descent recovers Costello’s curved L∞ algebra, once one applies the Koszul duality.

A parallel argument applies to DgSX . After fixing the isomorphism σ, Gelfand-Kazhdan descent

of DgSn produces C∗Lie(DgSX) on the nose. Hence, under Koszul duality, we recover Costello’s

classical BV theory as encoded in the curved L∞ algebra DgSX .

A careful reading of [Cos] will show that his Feynman diagrammatic work is the global version

of ours: our analysis of the obstructions to quantization and constructions of quantizations given

a trivialized obstruction is directly parallel and descends to his.

Our discussion can be summarized as follows.

Proposition 12.11. Under Gelfand-Kazhdan descent on a complex manifold X, the formal βγ

system recovers the classical BV theory associated to X in [Cos]. Moreover, the obstruction-

deformation complex descends to that in [Cos], so that the obstruction to BV quantization recovers

the obstruction identified in [Cos]. Finally, given a trivialization of this obstruction, descent recov-

ers the quantized action functional in [Cos].

The primary corollary of this is that the factorization algebra associated to Costello’s quanti-

zation of the curved βγ system with target X is isomorphic to the factorization algebra Obsq
X,α

we have constructed via semi-strict Gelfand-Kazhdan descent of the formal βγ system with target

D̂n.

Moreover, we recover the Witten class as originally obtained by Costello. That is, we have

already identified the equivariant scale ∞ interaction ĨW[∞] on an elliptic curve E with the

Witten genus

p∗ log Witn(E,ω) ∈ C∗Lie(W̃n,GLn; Ω̂−∗n ).

Consider the characteristic map defined by extended Gelfand-Kazhdan descent determined by a

trivialization α of the second Chern character of X. It is given by

c̃hα : H∗Lie(W̃n,GLn; Ω̂−∗n )→ H∗(X; Ω−∗X ).

The image of p∗Witn(E,ω) under this map is the logarithmic Witten genus of the complex mani-

fold X

log Wit(X,E, ω) =
∑
k≥2

(2k − 1)!

(2πi)2k
E2k(E,ω)ch2k(TX),

described using a holomorphic volume element on the elliptic curve E.

13. A concrete description of the observables

In this Section we examine the factorization algebras Obscl
X and Obsq

X,α produced by descent

of the equivariant observables for the formal βγ system. Our goal is to extract information from

them that is easy to interpret, particularly from the physical point of view. For instance, we will

give an explicit description of observables with support at a point in the source C — and hence also

for observables supported at finitely many points — which is a bridge to Part III, where we show
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that the cohomological factorization algebras H∗Obscl
X and H∗Obsq

X,α recover the vertex algebras

GrCDOX and CDOX,α, respectively. In short, we show that these point observables admit explicit

expressions in terms of natural geometric objects on the target manifold, notably tensor bundles.

Throughout we use the tensor product and symmetric powers described in Section 11.2.

13.1. Polynomials, power series, and the (Wn,GLn)-decomposition of observables. We

will provide a characterization of the formal tensor fields that constitute the observables for the

formal βγ system. We will use this characterization in the next section for the non-formal observ-

ables.

Before talking about the full algebras of observables, it is useful to understand the space of

linear observables, which are simply the dual space to the fields. It will help to bear in mind some

simple facts about smooth functions.

For any disk Dr(0) ⊂ C centered at the origin, there is a natural linear map

j : C∞(Dr(0))→ C[[z, z]]

sending a function f to its Taylor series j(f) at the origin. (We use the coordinates z and z since

we will eventually focus on holomorphic functions.) Borel’s lemma tells us this map is surjective.

There is also an inclusion

C[z, z] ↪→ C∞(Dr(0))

obtained by viewing a polynomial as a function on the disk, and the composite with j is the

inclusion of polynomials into power series.

The ∂ operator makes sense on both polynomials and power series. Let Ω0,∗
poly denote the cochain

complex

C[z, z]
∂−→ C[z, z]dz

and let Ω0,∗
pow denote the version with power series. We have the following relationship.

Lemma 13.1. There is a commuting diagram

C[z] O(Dr(0)) C[[z]]

Ω0,∗
poly Ω0,∗(Dr(0)) Ω0,∗

pow

' ' '

j

where the vertical maps are the inclusion of the cohomology, which is concentrated in degree zero.

Note that at the level of fields — rather, in terms of the dg Lie algebras encoding the formal

βγ system — this result tells us that we have

gn[z]⊕ (g∨n [z]dz)[−2] gn ⊗O(Dr(0))⊕ (g∨n ⊗ Ω1,hol(Dr(0)))[−2] gn[[z]]⊕ (g∨n [[z]]dz)[−2]

Dgpolyn DgDr(0)
n Dgpown

' ' '

j

where, for example, Dgpolyn means the dg Lie algebra

Ω0,∗
poly ⊗ gn ⊕ Ω1,∗

poly ⊗ g∨n [−2].

This relationship is convenient for analyzing observables.
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Lemma 13.2. The classical observables Obscl
n (Dr(0)) sit inside the commuting diagram

C∗Lie(Dgpown ) Obscl
n (Dr(0)) C∗Lie(Dgpolyn )

C∗Lie(gn[[z]]⊕ (g∨n [[z]]dz)[−2]) H∗Obscl
n (Dr(0)) C∗Lie(gn[z]⊕ (g∨n [z]dz)[−2])

by applying the functor C∗Lie.

These maps naturally intertwine the Harish-Chandra action of (Wn,GLn), so that we obtain an

analogous commuting diagram after Gelfand-Kazhdan descent. One must verify that the vertical

maps are quasi-isomorphisms, which we do below in Proposition 13.11. But first let us analyze in

more detail which (Wn,GLn)-representations appear in the observables.

Consider the case of C∗Lie(gn[[z]] ⊕ (g∨n [[z]]dz)[−2]), since it sits inside all the other examples.

Recall that C∗Lie(gn) ∼= Ôn = C[[t1, . . . , tn]]. The Lie algebra gn[[z]]⊕(g∨n [[z]]dz)[−2] can be viewed

as an extension of gn ' gn · z0 by the representation

M = gn[[z]]z ⊕ (g∨n [[z]]dz)[−2],

and hence

C∗Lie(gn[[z]]⊕ (g∨n [[z]]dz)[−2]) ∼= C∗Lie(gn, Ŝym(M∨[−1])).

We now show that this vector space (as it all sits in degree zero) is a direct product of tensor fields.

Some notation will simplify the discussion. The appropriate linear dual of C[[z]] is the direct

sum
⊕

k≥0 C ζk, where ζk is the dual element to zk. Let ζkdz∨ denote the dual to zkdz. Then

M∨[−1] =
⊕
0<k

(g∨n ⊗ ζk)[−1]⊕
⊕
0≤l

(gn ⊗ ζldz∨)[1].

More succinctly, we have

M∨[−1] ∼=
⊕
0<k

g∨[−1]⊕
⊕
0≤l

gn[1].

Let ⊗̂ denotes the completed tensor product, so that Ŝym(V ⊕W ) ' Ŝym(V ) ⊗̂ Ŝym(W ) for any

pair of vector spaces.

Then

Ŝym(M∨[−1]) ∼=
⊗̂
0<k

Ŝym(g∨n [−1]) ⊗̂
⊗̂
0≤l

Ŝym(gn[1])

= colim
K,L→∞

⊗̂
0<k<K

Ŝym(g∨n [−1]) ⊗̂
⊗̂

0≤l<L

Ŝym(gn[1]).

where the (k, l)th tensor term is associated to ζk and ζldz
∨. (Recall that in the infinite tensor

product of unital algebras, a term a1⊗a2⊗· · · has aj = 1 for all but finitely many j.) In summary

we have the following.

Lemma 13.3. As a (Wn,GLn)-modules, the commutative algebra C∗Lie(gn[[z]] ⊕ (g∨n [[z]]dz)[−2])

decomposes as the infinite tensor product of formal tensor fields,⊗̂
0<k

Ŝym(T̂ ∗n ) ⊗̂
⊗̂
0≤l

Ŝym(T̂n),

where T̂n denotes the formal vector fields viewed as an adjoint representation of Wn and T̂ ∗n denotes

the formal one-forms viewed as the coadjoint representation.

Since Gelfand-Kazhdan descent is monoidal, we obtain a useful corollary.
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Corollary 13.4. For X a complex n-manifold, the Gelfand-Kazhdan descent of C∗Lie(gn[[z]] ⊕
(g∨n [[z]]dz)[−2]) is isomorphic to the OX-module⊗̂

0<k

ŜymOX (T ∗X) ⊗̂
⊗̂
0≤l

ŜymOX (TX),

where TX denotes the sheaf of holomorphic vector fields and T ∗X denotes the sheaf of holomorphic

one-forms.

Analogous results can be formulated for the polynomial situation and also for C∗Lie(Dgpown ) and

C∗Lie(Dgpolyn ), which now involve powers of z and dz∨ as well. By the same reasoning as we just

use, we find the following. (Observe that due to having monomials of the form zkzk
′
, the indexing

now is doubled.)

Lemma 13.5. For the Lie algebra gn[[z, z]]⊕g∨n [[z, z]][−2], the commutative algebra C∗Lie(gn[[z, z]]⊕
g∨n [[z, z]][−2]) decomposes as a (Wn,GLn)-module into⊗̂

(k,k′)∈N2{(0,0)}

Ŝym(T̂ ∗n ) ⊗̂
⊗̂

(l,l′)∈N2

Ŝym(T̂n),

where (k, k′) indexes zkzk
′

and likewise for (l, l′).

A little more work provides us with this result.

Lemma 13.6. The underlying graded vector space of commutative algebra C∗Lie(Dgpown ) decomposes

as a (Wn,GLn)-module into⊗̂
(k,k′)∈N2{(0,0)}

Ŝym(T̂ ∗n ) ⊗̂
⊗̂

(l,l′)∈N2

Ŝym(T̂n) ⊗̂
⊗̂

(m,m′)∈N2

Ŝym(T̂ ∗n [1]) ⊗̂
⊗̂

(n,n′)∈N2

Ŝym(T̂n[1]),

where (k, k′) indexes zkzk
′

and likewise for the other double indices.

Proof. The decomposition of the underlying graded (Wn,GLn)-module of C∗Lie(Dgpown ) is also

straightforward, given our work above, but it involves some bookkeeping. The underlying graded

vector space of Dgpown is

degree: 1 2

vector space: gn[[z, z]]⊕ g∨n [[z, z]][−2] (gn[[z, z]]⊕ g∨n [[z, z]][−2])⊗ dz

Thus, C∗Lie(Dgpown ) is concentrated in nonpositive degrees, and the preceding lemma gives us the

degree zero component, which we denote A. The new contribution B comes from the degree two

component of Dgpown . It generates an algebra by linear dual of this component placed in degree -1:

B := Ŝym (((gn[[z, z]]⊕ g∨n [[z, z]][−2])⊗ dz)∨[1]) .

We have

C∗Lie(Dgpown )] ∼= A⊗ B
as graded algebras. We thus need to have a succinct way to describe the algebra B.

Let ζm,ndz∨ denote the dual element to zmzndz. Then

B = Ŝym

 ⊕
(k,k′)∈N2

g∨n ζm,ndz∨ ⊕
⊕

(l,l′)∈N2

gn[2] ζm,ndz∨


=

⊗̂
(k,k′)∈N2

Ŝym(T̂ ∗n [1]) ⊗̂
⊗̂

(l,l′)∈N2

Ŝym(T̂n[1]).

Hence we obtain the claim. �
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13.2. The classical observables supported at a point. The observables C∗Lie(Dgpown ) have a

natural field-theoretic interpretation: they are the observables supported at the origin in the source

manifold C. As we will explain below, these observables map to the observables Obscl
n (U) supported

on any open U ⊂ C containing the origin, and so they provide a rich source of easily-understood

measurements.

Recall that the distributions (i.e., continuous linear functionals on smooth functions) supported

at the origin in C consist of finite linear combinations of the the delta function δ0 supported at

the origin and its partial derivatives. In other words, it consists of linear functionals that read off

the Taylor coefficients of a smooth function. We introduce the notation ζm,n for the distribution

∂mz ∂
n
z δ0. Hence, the smooth distributions with support at the origin are the vector space

D0 :=
⊕

(m,n)∈N2

C ζm,n = (C[[z, z]])∨.

By our work above, we see that the linear dual of the power series Dolbeault complex Ω0,∗
pow is the

cochain complex

D0 dz∨
∂
∨

−−→ D0

ζm,n dz∨ 7→ ζm,n+1

,

which is concentrated in degrees 0 and -1. We denote it by (Ω0,∗)∨0 . An analogous complex (Ω1,∗)∨0
encodes the distributional dual of the Dolbeault complex of 1-forms with support at the origin.

Remark 13.7. A nice feature of working with a holomorphic field theory, like the βγ system, is

that using the linear observables supported at the origin, one can fully identify any solution to

the equations of motion. This fact is the linear dual to the fact that O(C) ↪→ C[[z]], i.e., every

holomorphic function is determined by its power series expansion.

The linear observables — supported at the origin — of the rank n formal βγ system are then

(Ω0,∗)∨0 ⊗ g∨n [−1]⊕ (Ω1,∗)∨0 ⊗ gn[1].

For us, the algebra of classical observables is the completed symmetric algebra on these linear

observables. Let (Obscl
n )0 denote the cochain complex of observables with support at the origin on

the rank n formal βγ system. Explicitly, we have

(Obscl
n )0 = Ŝym((Ω0,∗)∨0 ⊗ g∨n [−1]⊕ (Ω1,∗)∨0 ⊗ gn[1])

with the differential by extending as a derivation the differential on the linear generators.

We record an immediate consequence of the fact the distributions with compact support extend

from smaller to larger open sets.

Lemma 13.8. For any open set U ⊂ C containing the origin, there is a cochain map

(Obscl
n )0 ↪→ Obscl

n (U)

extending the inclusion of the distributions supported at the origin to the distributions with support

in U .

This map is manifestly equivariant with respect to the (Wn,GLn) action and hence descends.

Corollary 13.9. For any open set U ⊂ C containing the origin, there is a map of dg Ω∗(X)-

modules

(Obscl
X)0 ↪→ Obscl

X(U)

extending the inclusion of the distributions supported at the origin to the distributions with support

in U .
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Remark 13.10. Formulating a version of this statement for the quantum observables would be

more delicate, as one must work with parametrices and RG flow. As we are working with a free

theory here, however, one can instead use the “smoothed observables.” See below for a discussion

of quantum observables.

Note that the underlying graded vector space of (Obscl
X)0 is

ŜymΩ](X)(Ω
](X, (Ω0,∗)∨0 ⊗ T ∗X)⊕ Ω](X, (Ω1,∗)∨0 ⊗ TX))

as we are working over the base algebra Ω∗(X). Equivalently, one can express it as the de Rham

complex of a (gigantic!) dg vector bundle

Ω](X, Ŝym((Ω0,∗)∨0 ⊗ T ∗X ⊕ (Ω1,∗)∨0 ⊗ TX)).

The differential involves both ∂ for the source manifold C and a connection ∇ along the target X.

We now turn to determining the cohomology of (Obscl
X)0, which encodes the measurements one

can make at the origin of C of the fields γ and β with target X.

Proposition 13.11. There is a natural isomorphism

H∗(Obscl
X)0
∼= H∗

X,⊗̂
0<k

ŜymOX (T ∗X) ⊗̂
⊗̂
0≤l

ŜymOX (TX)

 ,

identifying the cohomological observables supported at the origin with C∗Lie(gn[[z]]⊕(g∨n [[z]]dz)[−2]).

Proof. Before embarking on a spectral sequence, we note that the arguments for Lemma 13.6 tell

us that we obtain an infinite (completed) tensor product of tensor bundles from Gelfand-Kazhdan

descent, via the identification of (Obscl
X)0 with C∗Lie(Dgpown ), so that we view Dgpown as the “fields”

(more accurately, jets of fields at the origin).

The differential on (Obscl
n )0 has the form ∇+∂, where ∂ denotes the extension of the differential

on (Ω0,∗)∨0 and (Ω1,∗)∨0 and ∇ denotes the connection along X arising from Gelfand-Kazhdan

descent. As ∇ is a connection, it increases the de Rham form degree in the X-direction, whereas ∂

preserves this de Rham form degree in the X-direction, since it only cares about the C-direction.

Consider then the filtration on (Obscl
n )0 induced by the filtration Ω≥∗(X) on Ω∗(X). The first

page of the spectral sequence is the cohomology with respect to ∂:

Ω](X, Ŝym(H∗(Ω0,∗)∨0 ⊗ T ∗X ⊕H∗(Ω1,∗)∨0 ⊗ TX)).

These groups H∗(Ω0,∗)∨0 and H∗(Ω1,∗)∨0 are concentrated in cohomological degree 0 and are

spanned by the linear functionals {ζn,0}, which give the holomorphic Taylor coefficients. They

do not vary along X, so

H∗(Ω0,∗)∨0 ⊗ T ∗X ∼=
⊕
n∈N

T ∗X and H∗(Ω1,∗)∨0 ⊗ TX ∼=
⊕
n∈N

TX .

The induced differential on the first page of the spectral sequence is the induced connection ∇̃ on

the bundle

Ŝym(H∗(Ω0,∗)∨0 ⊗ T ∗X ⊕H∗(Ω1,∗)∨0 ⊗ TX),

so we need to unravel what this bundle means from the perspective of Gelfand-Kazhdan descent.

By Corollary 13.4 we know it is identified with the ∞-jet bundle⊗̂
0<k

Ŝym(T 1,0∗
X ) ⊗̂

⊗̂
0≤l

Ŝym(T 1,0
X ).
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(More precisely, it is the jet bundle encoding holomorphic sections.) The induced connection is the

many-fold tensor product of the Grothendieck connection under this identification. This induced

connection ∇̃ is the differential on the first page of the spectral sequence, which collapses on the

second page. Thus, we see that the second page is

H∗

X,⊗̂
0<k

ŜymOX (T ∗X) ⊗̂
⊗̂
0≤l

ŜymOX (TX)

 ,

the cohomology of the O-module from Lemma 13.4. �

13.3. The decomposition by conformal dimension: the rotation action on the source.

The rotation action of U(1) on C — or any disk Dr(0) — induces a rotation action on the fields

of the curved βγ system and on the observables Obscl
X(Dr(0)). It is easy to identify the subspaces

of given conformal dimension in light of our work above. In particular, we know that polynomials

decompose according to conformal dimension as

C[z, z] =
⊕
w∈Z

C[z, z]w where C[z, z]w =
⊕

m−n=w

C zmzn,

and so power series decompose as

C[z, z] =
∏
w∈Z

C[z, z]w.

Polynomials are dense in smooth functions, so we see that C∞(C) has the same subspaces, albeit

it is some completion of the direct sum of these subspaces. These dimensional decompositions

directly apply to the “fields” Dgpolyn and Dgpown .

As observables are symmetric algebras on the linear observables, the dimensional decomposi-

tion of the fields allows us to identify the observables’ dimensional decomposition. A thorough

description is straightforward but involves substantial notation, so we will state the result only for

the cohomological observables H∗(Obscl
X)0 supported at the origin, as this result is the only one

we explicitly need.

Lemma 13.12. The conformal dimension N component of H∗(Obscl
X)0 is⊕

a,b∈NN such that∑
0<k akk+

∑
0≤l bll=N

⊗
0<k

Symak
OX (T ∗X)⊗

⊗
0≤l

Symbl
OX (T ∗X).

Proof. For example, the conformal dimension of an element of the symmetric power Syma
OX (TX)

associated to the monomial zk is ak. Hence the direct sum consists of conformal dimension N

components, by summing all the relevant conformal dimensions. In the other direction, note that

an element of the infinite tensor product composing H∗(Obscl
X)0 must be the identity for all but

finitely many of the indices k and l. A term in this element must have a polynomial contribution

from any given index, due to the bound of N on the total conformal dimension. �

13.4. The quantum observables. The quantum observables exhibit the same behavior as the

classical observables with respect to the rotation action and the (W̃n,GLn) action. The arguments

must be modified, however, to deal with the BV Laplacian, for example. Instead of working with

the observables supported at the origin, it is more convenient to work with the global observables

Obsq
n(C) or Obsq

X(C).
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Let us begin by discussing Obsq
n(C). There are two versions, depending on whether one works

with parametrices or the smoothed observables. We restrict our attention to parametrices associ-

ated with the heat kernel, as these are manifestly invariant for the U(1) and (W̃n,GLn) actions:

Obsq
n(C)[L] = (Ŝym(Ω

1,∗
c (C)⊗ g∨n [−1]⊕ Ω

0,∗
c (C)⊗ gn[1])[[~]], ∂ + ~∆L).

The smoothed observables are

Obsq,fr
n (C) = (Ŝym(Ω1,∗

c (C)⊗ g∨n [−1]⊕ Ω0,∗
c (C)⊗ gn[1])[[~]], ∂ + ~∆),

so that we take the symmetric algebra on the smooth distributions, such as Ω1,∗
c (C) ⊂ Ω

1,∗
c (C),

inside all distributions. The naive BV Laplacian is well-defined on the smoothed observables. (See

[CG] for a discussion.) Ignoring the differentials momentarily, one sees that the same decomposi-

tions from above apply; one can still use the monomials zmzn to organize one’s thinking.

The new term in the differential is a BV Laplacian, either ∆L or ∆. Recall that these are built

out of the evaluation pairing between gn and g∨n and the wedge-and-integrate pairing between

Ω0,∗
c (C) and Ω1,∗

c (C). (At scale L the pairing on Dolbeault forms is modified by a mollifying function

that is U(1)-invariant.) Both pairings are equivariant for the actions by U(1) and (W̃n,GLn), and

we have constructed equivariant quantizations, so that BV Laplacians manifestly intertwine with

these actions. In particular, the dimensional decompositions are preserved by the differential.

Moreover, when one wants to focus on cohomology, one can exploit the ~-filtration

Obsq
n ⊃ ~Obsq

n ⊃ ~2Obsq
n ⊃ · · ·

to good effect. For instance, there is a spectral sequence associated to this filtration, and it collapses

on the first page, since the cohomology with respect to ∂ is concentrated in degree zero. Hence,

as vector spaces,

H∗Obsq
n(C) ∼= H∗Obscl

n (C)[[~]].

By our discussion above, we see that we thus already know the decompositions of H∗Obsq
n(C) with

respect to the U(1) or (W̃n,GLn) actions.

Proposition 13.13. The conformal dimension N component of H∗(Obsq
n(C)) is

C[[~]]⊗
⊕

a,b∈NN such that∑
0<k akk+

∑
0≤l bll=N

⊗
0<k

Symak(T̂ ∗n )⊗
⊗
0≤l

Symbl(T̂n).

We obtain an immediate corollary by Gelfand-Kazhdan descent.

Corollary 13.14. The conformal dimension N component of H∗(Obsq
X(C)) is

C[[~]]⊗
⊕

a,b∈NN such that∑
0<k akk+

∑
0≤l bll=N

⊗
0<k

Symak
OX (T ∗X)⊗

⊗
0≤l

Symbl
OX (TX).

14. Conformal structure on observables

We have already discussed how a trivialization α of the second component of the Chern charac-

ter of the complex manifold X determines a sheaf of factorization algebras Obsq
X,α, via semi-strict

Gelfand-Kazhdan descent of the W̃n-equivariant factorization algebra Obsq
n. Equivalently, in Sec-

tion 12.4, we showed that this is the factorization algebra of quantum observables of the curved

βγ system with target X associated to the trivialization α.

In Section 8.6 we showed how the Lie algebra of holomorphic vector fields on the source acts on

the classical formal βγ system. Indeed, we constructed a Maurer-Cartan element IT ∈ C∗loc(T S)⊗
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C∗loc(DgSn) implementing this symmetry. By Koszul duality, this element thus defines a map of Lie

algebras

IT : T S = Ω0,∗(S;T 1,0
S )→ C∗loc(DgSn)[−1],

where the the BV bracket {−,−} provides the Lie bracket on local functionals. A local functional

can be interpreted as an observable, at least when S is compact, and so our goal is to refine this

map to a map of factorization algebras.

First, we need to replace T S by a local-to-global object. Holomorphic vector fields on S admit

a natural enhancement to a sheaf of dg Lie algebras: to an open set U ⊂ S, we assign T U :=

Ω0,∗(U, T 1,0U). But a sheaf is contravariant in opens on S, whereas Obscl
S is covariant in opens on

S. There is an easy fix: take holomorphic vector fields with compact support. Let T Sc denote this

precosheaf of dg Lie algebras, which is also a cosheaf of dg vector spaces. By Chapter 11 of [CG],

the map on global sections refines to a map of precosheaves

Ψcl
n : T Sc → Obscl

n [−1]

of dg Lie algebras on S. Since T Sc is a trivial Wn-module, we see that applying Gelfand-Kazhdan

descent yields a map of sheaves on X

Ψcl
X : T Sc → ObsclX [−1]

of precosheaves of dg Lie algebras on S, where Obscl
X is the classical observables of the curved βγ

system with target X. The underline means that it is a constant sheaf in the X-direction.

This map Ψcl
X extends to a map of factorization algebras

(33) Ψcl
X : Sym∗(T Sc [1])→ Obscl

X [−1],

since Sym(g[1]) is the enveloping P0 algebra of a Lie algebra g and Obscl has a natural P0 algebra

structure. (We note that the symmetric algebra of a cosheaf has a natural factorization algebra

structure.) This map should be viewed as a factorization algebra refinement of the Noether theorem

in classical physics: a symmetry determines an operator (i.e., a current) in the observables of the

classical theory. We now wish to study the quantum counterpart to this map of factorization

algebras.

The quantum version of the symmetry of holomorphic vector fields is a factorization algebra

depending on a central charge c that we call the Virasoro factorization algebra with charge c and

denote Virc. On C, this holomorphic factorization algebra is related to the Virasoro vertex algebra

in a natural way, as shown in [Wila]. We already know that the factorization algebra of quantum

observables Obsq
n carries an action of the extended Lie algebra W̃n and hence determines a sheaf

Obsq
X,α on any complex manifold X with trivial second Chern character.

The natural question is, then, how to construct the quantum version of the map (33). This

question can also be understood as a problem of equivariant quantization, by the Koszul-type

duality between solutions of the equivariant quantum master equation and maps of BD algebras.

We have already computed the obstruction to quantizing the symmetry of holomorphic vector

fields on S = C in a way compatible with the action of formal vector fields on the target Wn.

Hence, the main result is the following.

Proposition 14.1. Suppose α is a trivialization of ch2(TX) and let Obsq
X,α be the resulting fac-

torization algebra on C of observables for the curved βγ system with target X. If c1(TX) = 0, then

there is a map of sheaves on X of holomorphic factorization algebras on C

(34) Ψq
X : Virc=n → ObsqX,α
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that, modulo ~, agrees with the classical map of factorization algebras Ψcl in Equation (33).

This claim will follow from obstruction calculations we have already done when combined with

the following quantum version of the Noether theorem for factorization algebras.

Theorem 14.2 ([CG], Theorem 12.1.0.2). Let a local Lie algebra E defined on a manifold S

describe a classical BV theory and suppose E has an action of a local Lie algebra L. Fix a L-

dependent quantization {IL[L]}L>0 as described in Section 9.1 such that the obstruction to solving

the equivariant QME vanishes modulo functionals depending solely on E. There is then an ~-

dependent cocycle η ∈ C∗loc(L)[[~]] of degree one, and a map of factorization algebras

Ψq : CLie,η
∗ (Lc)→ Obsq,

where CLie,η
∗ (Lc) is the factorization algebra of η-twisted Chevalley-Eilenberg chains of Lc.

Explicitly, this cocycle η determines a central extension

0→ C[−1]→ L̃c(U)→ Lc(U)→ 0

for each open set U ⊂ S. By definition, we set

CLie,η
∗ (Lc)(U) = CLie

∗ (L̃c(U)),

which is a factorization algebra as shown in [CG]. We now proceed to prove Proposition 14.1.

Proof. We consider the Gelfand-Kazhdan descent of the classical formal βγ system. As discussed

in Section 12.4, the L∞ algebra DgSn becomes the curved L∞ algebra DgSX defined over Ω∗X . The

dg Lie algebra of holomorphic vector fields T S is classically a trivial Wn-module, thus the action

of T S on the formal βγ system descends to an action on the curved βγ system described by DgSX .

As usual, we work on S = C.

The obstruction calculation of Proposition 9.5 for the Wn×T C equivariant quantization implies

that the DgCX -dependent obstruction vanishes provided we choose a trivialization α for ch2(TX)

and a trivialization β for c1(TX). Given such a quantization, we see that the cocycle as in Theorem

14.2 is precisely given by η = nωGF. That is, the part of the obstruction that is independent of

the fields DgCX .

The resulting factorization algebra for the curved βγ system with choice of trivialization α is

given by Obsq
X,α. Finally, the Virasoro factorization algebra of central charge 2n is precisely the

factorization algebra Virc=2n := CLie,2nωGF

∗ (T C
c ). The proposition follows. �

Part III: Comparison of the constructions

15. Overview

In this part, we finally relate the two stories we have told: we show that the Batalin-Vilkovisky

quantization of the curved βγ system from Part II produces the chiral differential operators con-

structed in Part I. The key technical tool is a functor Vert that extracts a vertex algebra from a

factorization algebra on C satisfying a set of natural conditions. This tool was introduced in [CG],

where it was already shown that the formal βγ system recovers the correct vertex algebra and

an isomorphism was given from Vert(Obsq
n) to ĈDOn. But it is more subtle to identify that the

BV quantization recovers the correct equivariant vertex algebra. To show this, we develop some

general arguments that relate factorization algebra derivations with vertex algebra derivations.

From these arguments we swiftly verify that Vert(Obsq
n) is naturally isomorphic to ĈDOn as a

(W̃n,GLn)-equivariant vertex algebra.
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Thanks to the machinery of Gelfand-Kazhdan descent, we then deduce our main result.

Theorem 15.1. Let X be a complex n-manifold together with a trivialization α of ch2(TX) ∈
H2(X; Ω2,hol

cl ). Then the factorization algebra ObsqX,α obtained by Gelfand-Kazhdan descent de-

termines a sheaf of vertex algebras Vert(ObsqX,α) on X. Moreover, there is an isomorphism of

sheaves of vertex algebras on X

Φ : CDOX,α

∼=−→ Vert(ObsqX,α)

that is natural in the choice of trivialization α.

Another goal of this paper is to show how physical arguments about the curved βγ system

are transformed into vertex algebra arguments. Thus, as a short coda, we review the treatments

by Witten [Wit07] and Nekrasov [Nek], and we indicate how their approaches are related to our

methods.

16. From factorization to vertex algebras

Our central challenge now is to relate the vertex algebra produced in Part I with the factorization

algebra produced in Part II. Although factorization algebras are more flexible and general than

vertex algebras — appearing in every dimension, for instance, and not just on Riemann surfaces —

there are recognition criteria that guarantee when a factorization algebra on C recovers a vertex

algebra. In essence, the vector space of the vertex algebra is determined by the value of the

factorization algebra on a disk, and the vertex operators are determined by the structure map

for two disjoint disks sitting inside a larger disk (i.e., by a flattened pair of pants). Chapter 5 of

[CG] is devoted to a careful treatment of this relationship and constructs a functor Vert from a

certain category of “holomorphic” factorization algebras on C to the category of vertex algebras.

This chapter also includes a detailed examination of the free βγ system and its associated vertex

algebra. Here we will overview the main theorem relating factorization and vertex algebras, which

requires us to introduce some terminology and machinery we need for our main goal.

Two kinds of technical issues appear in formulating the theorem:

• describing how the structure maps can “vary holomorphically” and

• pinning down various functional analytic aspects.

The first involves ideas essential to the goal of this paper, so we dwell a bit on it. The second is

resolved essentially automatically, given our context and the results from [CG], but we discuss it

briefly.

16.1. Translation and derivations. We need to be able to talk about the structure maps in

families in order to say that they vary holomorphically. Our earlier definition of factorization

algebras, however, works with the collection of opens in C as a set, with no topological—much less

complex-analytic—structure. It is straightforward to introduce variations of the definitions with

such structure and that manifestly contain the examples we’ve constructed here.

Definition 16.1. For U ⊂ C and z ∈ C, let

τzU = {w ∈ C : w − z ∈ U}

denote the translation of U by z. Then a factorization algebra F on C is (discretely) translation-

invariant if we have an isomorphism τz : F(U) ∼= F(τzU) for every open U and every z ∈ C
satisfying

(i) for any z, z′, τz ◦ τz′ = τz+z′ and
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(ii) for any disjoint open subsets U1, . . . , Uk in V , the diagram

F(U1)⊗ · · · ⊗ F(Uk)
τz
//

��

F(τzU1)⊗ · · · ⊗ F(τzUk)

��

F(V )
τx

// F(τzV )

commutes. (Here the vertical arrows are the structure maps of the factorization algebra.)

Note that the sheaf of holomorphic functions O on C satisfies the sheaf-theoretic version of this

definition, as does the Dolbeault complex. In consequence, the factorization algebras Obscl
n and

Obsq
n are translation-invariant.

We now turn to talking about families. Let cl(U) denote the closure of an open set U ⊂ C.

Given U1, . . . , Un disjoint opens in V , let

Conf(U1, . . . , Un |V ) = {(z1, . . . , zn) ∈ Cn : ∀i 6= j, cl(τziUi)∩cl(τzjUj) = ∅ and ∀i, cl(τziUi) ⊂ V }.

In other words, this open subset of Cn parametrizes all the translations of the Ui that keep them

in V and keep their closures disjoint. (It will suffice to focus on collections Ui whose closures are

disjoint.) This space Conf(U1, . . . , Un |V ) inherits the structure of a complex manifold from Cn.

Now let F be a discretely translation-invariant factorization algebra. We can use the isomor-

phisms to replace any appearance of F(τzU) with F(U). Hence for each point (z1, . . . , zn) ∈
Conf(U1, . . . , Un |V ), we have a structure map

m(z1,...,zn) : F(U1)⊗ · · · ⊗ F(Un)→ F(V )

by the composite

F(U1)⊗ · · · ⊗ F(Un)→ F(τz1U1)⊗ · · · ⊗ F(τznUn)→ F(V ),

where the first map is the tensor product of translation maps τzi and the second map is the

structure map of F .

To talk about these structure maps varying smoothly over Conf(U1, . . . , Un |V ), we need the

factorization algebra to take values in vector spaces (or cochain complexes thereof) in which one

can talk about smooth families. We will work in the context described in Section 11.2, where the

topology (or bornology) provides a precise notion of smooth families of linear maps.

Definition 16.2. A translation-invariant factorization algebra F on C is smoothly translation-

invariant if:

(i) For any collection of opens U1, . . . , Un in V whose closures are pairwise disjoint, the maps

mz1,...,zn depend smoothly on (z1, . . . , zk) ∈ Conf(U1, . . . , Un |V ).

(ii) The factorization algebra F is equipped with an action by derivations of the abelian Lie

algebra R2 of translations. For v ∈ R2 and open U ⊂ C, we will denote the corresponding

derivation by d/dv : F(U)→ F(U). This Lie algebra action is viewed as an infinitesimal

version of the global translation invariance.

(iii) This infinitesimal action is compatible with the global translation invariance in the following

sense. For v ∈ R2, let vi ∈ (R2)n denote the vector (0, . . . , v, . . . , 0), with v placed in the

i-slot and 0 in the other n− 1 slots. If αi ∈ F(Ui), then we require that

d

dvi
mz1,...,zn(α1, . . . , αn) = mz1,...,zn

(
α1, . . . ,

d

dv
αi, . . . , αn

)
.
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The translation Lie algebra is real. As F is defined over C, we can extend the action to the

complexified translation Lie algebra R2 ⊗R C. We will denote by ∂z and ∂z the derivations on F
associated to the obvious vector fields on C. To be holomorphic, we want the vector field ∂z to act

homotopically trivially on F .

Definition 16.3. A translation-invariant prefactorization algebra F on C is holomorphically

translation-invariant if it is equipped with a derivation η : F → F of cohomological degree −1

such that

dη = ∂z, [η, η] = 0, and [η, ∂z] = 0.

Here d refers to the differential on the dg Lie algebra Der(F).

16.2. Rotation and decomposition. In practice, we are interested in F where the action by

translation extends to an action of orientation-preserving Euclidean transformations of C.

Definition 16.4. A holomorphically translation-invariant prefactorization algebra F on C with a

compatible U(1) action is a smoothly U(1)nR2-invariant prefactorization algebra F together with

an extension of the action of the complex Lie algebra

LieC(U(1) nR2) = C {∂θ, ∂z, ∂z} ,

where ∂θ is a basis of LieC(U(1)), to an action of the dg Lie algebra

C {∂θ, ∂z, ∂z} ⊕ C{η},

where η is of cohomological degree −1 and the differential is dη = ∂z. In this dg Lie algebra, all

commutators involving η vanish except for [∂θ, η] = −η.

The theorem on vertex algebras requires a technical hypothesis regarding the U(1)-action on

the factorization algebra F : we need this action to be tame, in the following sense.

For any compact Lie group G, the space D(G) of distributions on G is an algebra under convo-

lution. The convolution product ∗ is smooth in the sense that it varies nicely in families, as per

our approach to functional analysis, so that the algebra structure is smooth in families. There is

a natural map δ : G→ D(G) sending an element g to the δ-function at g. It is a smooth map and

a homomorphism of monoids.

Definition 16.5. A tame action of G on a vector space V of the type discussed in Section 11.2

(e.g., convenient) is a smooth action of the algebra D(G) on V . (Note that this means G acts on

V via composition G→ D(G)× sending g to δg.) For V a cochain complex of such vector spaces,

a tame action commutes with the differential on E.

The case G = U(1) is the only one relevant for us here. For each integer k, the function

ρk : eiθ 7→ eikθ encodes an irreducible representation of U(1). It determines a distribution ρk dθ

on U(1) that we will abusively call ρk as well. In D(U(1)), the element ρk is an idempotent.

Definition 16.6. Let V be equipped with a tame action of U(1), which we will denote by ∗. Let

Vk denote the weight k eigenspace for the U(1)-action on V . The map ρk ∗ − : V → V defines a

projection from V onto Vk.

16.3. The theorem about Vert. We now turn to the main theorem from Chapter 5 of [CG],

which provides a functor from a certain category of factorization algebras on C to the category of

vertex algebras.
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Definition 16.7. Let F be a tamely U(1)-equivariant holomorphically translation-invariant fac-

torization algebra on C. Let Fk(Dr(0)) denote the subcomplex of weight k eigenspaces in F(Dr(0)),

the value of F on a radius r disk around the origin. Then F is amenably holomorphic if it satisfies

the following conditions:

(1) For every pair of radii r < r′, the structure map

Fk(D(0, r))→ Fk(D(0, r′))

is a quasi-isomorphism.

(2) For k � 0, the vector space H∗(Fk(D(0, r)) is zero.

(3) For each k and r, we require that H∗(Fk(D(0, r)) is isomorphic to a countable sequential

colimit of finite-dimensional graded vector spaces.

Observe that for an amenably holomorphic factorization algebra F , the vector spaceH∗(Fk(D(0, r))

is independent of r by assumption. Let VF denote the vector space
⊕

k∈ZH
∗(Fk(D(0, r)) and V F

denote the vector space
∏
k∈ZH

∗(Fk(D(0, r)). Note that for any disk Dr(0), there is a map VF →
H∗F(Dr(0)) by the inclusion of the weight spaces. Likewise, there is map H∗F(Dr(0)) → V F .

The structure maps of F thus determine a family of maps mz : VF ⊗ VF → V F given by the

composition

VF ⊗ VF → H∗F(Dr(0))⊗H∗F(Dr(z))→ H∗F(DR(0))→ V F ,

where the middle map is the structure map of H∗F with radii r and R such that 2r < |z| and

|z|+ r < R. By construction, these maps mz vary holomorphically in the parameter z ∈ C−{0}.
Let FAam denote the category of amenably holomorphic factorization algebras on C, where

morphisms are maps of prefactorization algebras intertwining the actions of C by translation and

U(1) by rotation. Let VA denote the category of vertex algebras.

Theorem 16.8. There is a functor Vert : FAam → VA. For F amenably holomorphic, the

underlying vector space of the vertex algebra is VF , and the vertex operator YVert(F) is determined

by the maps mz arising from the structure maps of F .

For a proof, see Section 2 of Chapter 5 in [CG].

Immediate consequences of this theorem include the following.

Lemma 16.9. Let X ∈ Der(F) be a derivation of F as an amenably holomorphic factorization

algebra. In particular, we require that X commutes with translation, [X, ∂z] = 0, [X, ∂z] = 0, and

[X, ∂θ] = 0. Then X induces a vertex algebra derivation VX on Vert(F).

We call such derivations amenably holomorphic.

Proof. Let Dr denote the disk of radius r centered at the origin. Let Fk(Dr) denote the weight k

subspace of F(Dr) with respect to the rotation action of S1. By hypothesis, X preserves the weight

spaces: ∂θ acts on Fk(Dr) by multiplication by k, and since X commutes with ∂θ, it preserves

each weight space. Hence X induces a linear map VX on VF =
⊕

kH
∗(Fk(Dr)).

As X is a derivation, it intertwines with the structure maps of F . In particular, for any two

small disjoint disks D1 and D2 included into a larger disk Dbig, we see that

XDbig (mD1,D2

Dbig
(v1, v2)) = mD1,D2

Dbig
(XD1v1, v2)±mD1,D2

Dbig
(v1, XD2v2).

Since the action of X equivariant with respect to affine transformations of C, we see that this

derivation property holds for the one-parameter family of “multiplication” operations

mz,0 : VF ⊗ VF → V F [[z, z−1]].
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Hence the action of VX on VF is a derivation of the vertex operator map Y , which is given by the

Laurent expansion of mz,0. �

By a similar but easier argument, we find the following.

Lemma 16.10. Let φ : F → F be an automorphism of an amenably holomorphical factorization

algebra F . Then φ induces an automorphism of vertex algebras Vφ : VF
∼=−→ VF .

Note that in both these situations we require that the derivation or automorphism commutes

on the nose with all the equivariant structure on F . Such a strict situation is adequate for our

purposes here. (The homotopical versions of these statements should hold but will not be pursued.)

We now wish to apply these lemmas to the case where the factorization algebra has an action of

a pair (g,K). The data of a semi-strict (g,K)-structure on F involves a group homomorphism ρK :

K → Aut(F) together with an L∞-homomorphism ρg : g→ Der(F) that satisfy the compatibilities

in Definition 12.2.

Corollary 16.11. Let F be an amenably holomorphic factorization algebra together with the struc-

ture of a semi-strict (g,K)-module. where g acts by derivations and K acts by automorphisms of

the amenably holomorphic factorization algebra. Then the Z≥0-graded vertex algebra Vert(F) has

a strict action of the pair (g,K).

17. Observables for the formal βγ system

As an example of the relationship encoded in Vert, the free βγ system is examined in depth

in Chapter 5 of [CG]. It is shown that the factorization algebra Obsfr
n of quantum observables

is amenably holomorphic and that the associated vertex algebra is precisely the usual βγ vertex

algebra.

Theorem 17.1 (Theorem 5.3.3.2, [CG]). The factorization algebra Obsq,fr
n is amenably holo-

morphic. Moreover, there is an isomorphism of Z≥0-graded vertex algebras Φfr
n : CDOn

∼=−→
Vert(Obsq,fr

n )|~=2πi after specializing ~ = 2πi.

The construction is naturally GLn-equivariant, and it extends from the symmetric algebra to

the completed symmetric algebra without difficulties. (We discuss below some features of this

construction important to our main objective.) Hence, in combination with Proposition 11.24, we

obtain the following result.

Corollary 17.2. The factorization algebra Obsq
n is amenably holomorphic. Moreover, there is a

GLn-equivariant isomorphism of Z≥0-graded vertex algebras Φn : ĈDOn

∼=−→ Vert(Obsq
n)|~=2πi.

Section 18 tackles the much more subtle challenge of showing the isomorphism Φn is W̃n-

equivariant, and hence that we get an isomorphism of (W̃n,GLn)-equivariant vertex algebras.

This property is crucial for applying Gelfand-Kazhdan descent and hence recognizing that the BV

quantization truly does recover chiral differential operators.

In the remainder of this section, we review some aspects of the βγ system’s factorization and

vertex algebras that are useful for our central goal.

Remark 17.3. An extensive and expository treatment of these aspects appears in Chapter 6 of

[Gwi12].
118



17.1. Some useful identifications. It will be useful to understand explicitly how to identify

a representative in the factorization algebra for an element in the vertex algebra. To be more

precise, the construction Vert ensures that given v ∈ ĈDOn, there is some cohomology class [Ov]

in H∗Obsq
n(Dr(0). We would like to have a cochain representative Ov in the disk observables

Obsq
n(Dr(0)) as well. Similarly, given a Fourier mode v(n), we would like to know a cochain

representative Ov(n)
in the annular observables Obsq

n(Ar<R(0)). Although the functor Vert ensures

these wishes can be fulfilled, the formulas may be quite complicated.

We now examine this issue, starting with the classical observables, where the situation is simpler,

before turning to the quantum observables. To minimize the number of indices, we restrict to

n = 1; hence, we have elements bn and cm with no upper index. The extension to arbitrary n is

straightforward: just reinsert the superscripts, e.g., use cjm and not just cm.

For the classical observables and GrĈDOn, Cauchy’s formula provides explicit integral expres-

sions for the most important linear observables (i.e., distributions on the fields γ and β). For

example, set

Oc−m(γ, β) =
m!

2πi

∫
|z|=1

γ(z)

zm+1
dz.

This linear observable simply reads off the coefficient of zm in the power series expansion of a

holomorphic γ. The support of this distribution is the unit circle, so that we can view Ocn as

a cocycle in Obscl
1 (Ar<R(0)) for any annulus with r < 1 < R. But it also provides a cocycle in

Obscl
1 (DR(0)), and this cocycle is a representative of the element cn in Gr ĈDO1. Similarly, a

cochain representative of bn is

Ob−l(γ, β) =
(l − 1)!

2πi

∫
|z|=1

β(z)

zl
,

which reads off the coefficient of zl+1 in the power series expansion of a holomorphic one-form β.

It is thus easy to provide explicit representatives for monomials like bi1 · · · bilcj1 · · · cjm . One sim-

ply takes the obvious product — in the symmetric algebra of distributions — of the representatives

just given.

It is also straightforward to produce smeared versions of these observables, if one wants (and

we will want it shortly). Fix a bump function f(r) on some interval (a, b), with 0 < a, such that∫ b
a
f(r) dr = 1. Then

O′c−m(γ, β) =
m!

2πi

∫ b

a

∫
|z|=r

γ(z)

zm+1
dz f(r)dr

is a smeared representative of cm.

Note that if one is working with an annulus rather than disk, then negative powers of n are

allowed in the denominator. In this setting the cocycles Ocm and Obl read off Laurent coefficients.

As observables on an annulus, they correspond to Fourier modes from the point of view of vertex

algebras. To be explicit, the zeroth Fourier mode (cm)(0) is represented by Ocm viewed as an

observable on an annulus. Let us explain why.

The vertex operator on GrCDO admits a concrete interpretation in terms of “observing” coef-

ficients of expansions. The element Y (cm;w) should be viewed as an observable on the annulus:

given γ a holomorphic function on the annulus and w a point on that annulus, Y (cm;w) measures

the coefficient of (z − w)m in the power series expansion of γ around w. If we know the Laurent

expansion of γ around 0, then we can provide an expression for this coefficient.
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For instance, if we know a Laurent expansion

γ(w) =
∑
m∈Z

c−mw
m,

then

Y (c0;w)(γ) =
∑
m

wmc−m(γ).

In the first line, we view the cm as numbers, providing the Laurent coefficients of γ, but in the

second line, we view the cm as operators, providing the Laurent coefficients of γ. In consequence,

we see that the mth Fourier mode (c0)(−m) has

Oc−m(γ, β) =
m!

2πi

∫
|z|=1

γ(z)

zm+1
dz

as an explicit representative.

From the factorization algebra point of view, the vertex operator amounts to saying that the

observable

Oc0,w(γ, β) =
1

2πi

∫
|z−w|=ε

γ(z)

z − w
dz,

which measures the value of γ at w, is cohomologous to the observable∑
m∈Z

wmOc−m(γ, β)

in Obscl(Ar<R(0)) with for r < |w| < R and ε sufficiently small.

We now turn to providing a tool for understanding how the quantum observables and ĈDOn

relate.

17.2. Quantizing observables. For the free βγ system on C, there is a natural cochain isomor-

phism

qU : Obscl,fr(U)[~]
∼=−→ Obsq,fr(U)

between the classical and quantum observables on any fixed open U . (Recall that the superscript

fr means the smooth or smeared observables. See Section 11.7.) This isomorphism “promotes” a

classical observable to a quantum observable. It does not preserve, however, the structure maps

of the factorization algebras, and so we view the quantum observables as deforming the structure

maps of Obscl,fr in an interesting, ~-dependent way: for U,U ′ disjoint opens in V , the “quantized”

structure map sends observables F ∈ Obscl,fr(U) and F ′ ∈ Obscl,fr(U ′) to

F ? F ′ = q−1
V (qU (F ) · qU ′(F ′)) ∈ Obscl,fr(V )[~],

where · denotes the factorization product in Obsq,fr. We use ? to emphasize that we are “deformation-

quantizing” the factorization product on the classical observables.

This description allows one to understand concretely how BV quantization affects the factoriza-

tion algebra, since the classical observables Obscl,fr(U) are very explicit and simply amount to al-

gebraic functions on the space of holomorphic functions O(U) and holomorphic one-forms Ω1
hol(U).

Details of this construction can be found in Section 6, Chapter 4 and Section 3, Chapter 5 of [CG].

To construct the map q, we use the fact that on C, the operator ∂ possesses a natural choice of

propagator (or Green’s function), namely

P (z, w) =
1

2πi

dz + dw

z − w
.

This distributional one-form on C2 satisfies (∂⊗1)P = δ∆, where δ∆ is the delta-current supported

along the diagonal and providing the integral kernel for the identity. One can view this one-form
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as a distributional section of the fields γ and β: for example, for fixed w, the one-form dz/(z−w)

is a β field in the z-variable as it is a (1, 0)-form, and dually for the other term in P .

This element P also defines a second-order differential operator ∂P on the commutative algebra

Obscl,fr(U). Let us recall the general algebraic context. For any symmetric algebra Sym(V ∗), an

element v ∈ V defines a vector field ∂v via contraction: given f ∈ Symn+1(V ∗), we set

∂vf(x1 ⊗ · · · ⊗ xn) = f(v ⊗ x1 ⊗ · · · ⊗ xn),

by viewing f as an Sn-invariant element of (V ∗)⊗n. Similarly, given p ∈ V ⊗2, we define a second-

order differential operator ∂p by contraction. Recall that the classical observables Obscl,fr(U) are

a symmetric algebra, and let ∂P be the operator obtained by contraction.

Definition 17.4. Define the promotion map

q : Obscl,fr(U)[~] → Obsq,fr(U)

F 7→ exp(~∂P )F
.

In other words, one applies a version of Wick contraction to any classical observable F , repeatedly

contracting away two inputs with the propagator.

Remark 17.5. In terms of the RG flow used in Part II, this map q encodes flowing to length

scale L = ∞. Because our theory is free and we restrict to smeared observables, this operation

is well-defined. Effectively, it describes the relations between observables after integrating out the

nonzero modes.

17.3. An example. Consider the classical observable on the annulus A = {1/2 < |z| < 3/2} given

by

F (γ, β) =
1

2πi

∫
|z|=1

γ ∧ β,

for γ ∈ C∞(A) and β ∈ Ω1,0(A). (We say F vanishes if γ is a (0, 1)-form or if β is a (1, 1)-form.)

Its cohomology class [F ] in H0Obscl,fr(A) encodes a function on O(A) and Ω1
hol(A) where for

γ =
∑
n∈Z

c−nz
n and β =

∑
n∈Z

b−nz
n dz,

we have

[F ](γ, β) =
∑

−m−n=−1

cmbn

by Cauchy’s integral formula. As F is not a smeared classical observable, we cannot immediately

apply q but first must replace it by a cohomologous smeared observable F̃ . (If one tries to evaluate

∂PF , one finds it is ill-defined.)

Here is one approach to smearing among many. Note that the functional

H(γ, β) =
1

(2πi)2

∫
|z|=r

∫
|w|=R

γ(z)dz ∧ β(w)

z − w
,

with R > r, is cohomologous to F . (Simply plug in holomorphic γ and β and use Cauchy’s

theorems.) This functional H, while distributional, is easier to “smear” by letting r and R

vary. Fix a compactly supported bump function f(r,R) on B = (1/2, 1) × (1, 3/2) such that∫
B
f(r,R) dr dR = 1. Define

F̃ (γ, β) =
1

(2πi)2

∫
B

∫
|z|=r

∫
|w|=R

γ(z)dz ∧ β(w)

z − w
f(r,R) dr dR.

121



Then q(F̃ ) = F̃ , since

∂P F̃ = F̃ (P (z, w)) =
1

(2πi)2

∫
B

∫
|z|=r

∫
|w|=R

dz ∧ dw

(z − w)2
f(r,R) dr dR = 0.

In fact, the smearing was not necessary here: the contraction ∂PH is already well-defined.

Remark 17.6. This approach works well for classical observables with simple descriptions, like our

F above. The initial formula might involve integrating some polynomial in γ and β around a

circle, but one can replace it, up to cohomology, by an integral over a collection of disjoint circles,

where each copy of γ and β has its own circle. Our H is constructed in such a fashion. Once the

supports of these circles are disjoint, one can apply q directly, without smearing.

18. Local symmetries acting on observables

Our goal here is to articulate how local symmetries of a field theory like the βγ system produce

derivations of the associated vertex algebras. The core construction makes sense for any BV theory

but we will focus on a version applicable here. (These manipulations are certainly well-known in

the physics literature; our work just articulates them in the language of factorization algebras.)

18.1. General arguments. Every local functional L in a field theory provides both a derivation

of the observables and an observable itself. We want to understand how these two manifestations

of L relate.

The derivations arise as “Hamiltonian vector fields.” Consider the map of dg Lie algebras

Ham : Oloc[−1] → Der(Obscl
T )

L 7→ {L,−}
.

(See Section 3, Chapter 5 of [Cos11] for a discussion of this construction.) In other words, a local

functional can be viewed as a symmetry of the classical field theory. Note that this map naturally

extends to a map of graded Lie algebras into Der(ObsqT ), but it does not intertwine the differentials,

which is an example of why classical symmetries might not quantize.

We would like to view some of these symmetries as “inner,” i.e., realized as the factorization

product with an observable, just as an inner derivation of an associative algebra means it is given

by bracketing with an element of the algebra. To compare derivations to factorization products,

however, we need to be able to turn local functionals into observables. A minor issue is that local

functionals need not have compact support and hence do not provide observables on fields with

non-compact support. This problem is easy to fix.

Let L be a local functional, and let L denote the Lagrangian density such that L =
∫
L. By

this we mean that if γ and β are fields with compact support, then

L(γ, β) =

∫
C
L(γ, β).

Let K ⊂ C be a compact subset whose boundary ∂K is a smooth submanifold. Set LK =
∫
K
L,

so that one simply integrates over K rather than all of C. As K is compact, we see that LK is a

well-defined observable on all fields, not just those with compact support.

In short, for U an open set containing the compact submanifold K, we have a cochain map

(−)K : Oloc → Obscl
n (U)

L 7→ LK
.

This map extends to quantum observables but no longer respects the differentials.
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A direct computation then gives a relationship between the factorization product and the deriva-

tion.

Lemma 18.1. Let F be a cocycle in Obsq
n(U) and K ⊂ U a compact submanifold. Then

dq(LKF ) = dq(LK)F + {LK , F},

where the notation LKF , for instance, denotes the product in the completed symmetric algebra

underlying Obsq
n. Hence, if dq(LK) has support in U \K, then at the level of cohomology

[{LK , F}] = −[dq(LK) · F ],

where · denotes the factorization product for the structure map Obsq
T (V \U)⊗Obsq

T (U)→ Obsq
T (V ).

Remark 18.2. This relationship between “local symmetries” (i.e., given by local functionals aka

local currents) and the operator product of observables is reminiscent of Ward identities. We will

see below an explicit instantiation of this relationship, but note here one simple consequence of the

lemma: An observable that is killed by {LK ,−} classically — and hence is fixed by that symmetry

— may not be killed at the quantum level.

We now restrict our attention to local functionals of a special form, which admit a particularly

useful application of this lemma. (The arguments we develop here apply with minor changes to

any free BV theory on C whose action is given by ∂.)

Given a finite set of constant-coefficient holomorphic differential operators

D1, . . . , Dm ∈ C[∂/∂z],

consider the local functional

L(γ, β) =

∫
C
D1(γ) ∧ · · · ∧Dm(γ) ∧ β.

Note that one must take some care to properly interpret such a functional, as with IW or J

defined in Section 8.4. This functional vanishes except when working over base dg algebras not

concentrated in degree zero.

Definition 18.3. A local functional L is constant-coefficient holomorphic, β-linear if it is a sum

of local functionals of the form above.

A nice property of such a local functional L is that the derivation {L,−} is manifestly amenably

holomorphic because the integrand is translation-invariant and rotation-equivariant. Hence we see

the following.

Lemma 18.4. The factorization algebra derivation {L,−} induces a derivation VL on the vertex

algebra ĈDOn.

We now wish to find an alternative description of that derivation. Recall that the differential

on Obscl
n is denoted ∂, as it is the extension of ∂ on the linear observables to a derivation on the

symmetric algebra.

Lemma 18.5. For a local functional

L(γ, β) =

∫
C
D1(γ) ∧ · · · ∧Dm(γ) ∧ β,

with D1, . . . , Dm ∈ C[∂/∂z], there is an equality

(∂LK)(γ, β) =

∫
∂K

D1(γ) ∧ · · · ∧Dm(γ) ∧ β,
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for any compact submanifold K of C.

Proof. This claim follows from Stokes’ lemma. Compute

(∂LK)(γ, β) =

∫
K

∂ (D1(γ) ∧ · · · ∧Dm(γ) ∧ β.)

=

∫
K

(d− ∂) (D1(γ) ∧ · · · ∧Dm(γ) ∧ β)

=

∫
K

d (D1(γ) ∧ · · · ∧Dm(γ) ∧ β)

=

∫
∂K

D1(γ) ∧ · · · ∧Dm(γ) ∧ β.

The reason ∂ annihilates the integrand is that β contributes a dz term already. �

Consider as well a closely related situation.

Definition 18.6. A local functional L is constant-coefficient holomorphic, β-free if it is a sum of

local functionals of the form ∫
C
D1(γ) ∧ · · · ∧Dm(γ) ∧ dz

where the Dj are constant-coefficient holomorphic differential operators.

Lemma 18.7. For a constant-coefficient holomorphic, β-free local functional L =
∫
L, there is an

equality

∂LK =

∫
∂K

L,

for any compact submanifold K of C.

We now want to promote this relationship of classical observables to one between quantum

observables. We do this in two steps. First, recall that the smeared classical observables are quasi-

isomorphic to the (distributional) classical observables, by the Atiyah-Bott lemma. (See Appendix

D of [CG] as well as Section 2, Chapter 4.) Hence we replace LK by a smeared observable L̃K
that is cohomologous, and likewise for any classical observable. Notationally, we will leave this

replacement implicit and write simply LK . Second, every (smeared) classical observable F can be

promoted to a quantum observable q(F ) by the cochain isomorphism q, as discussed in Section 17.2.

As we want to identify elements of the vertex algebra from observables, we restrict our attention

to the following situation. Fix radii 0 < s < S < r < R and consider the inclusion

AS<r(0) tDs(0) ↪→ DR(0)

of an annulus and a small disk into a big disk. All are centered at the origin. We will consider the

factorization product

(35) Obsqn(AS<r(0))⊗Obsqn(Ds(0))→ Obsqn(DR(0)).

At the level of vertex algebras, this map corresponds to the action of “fields” (which live on annulus

and thus depend on z and z−1) on “states” (which live on a disk and hence in the state space).

Definition 18.8. Let L be a constant-coefficient local functional that is β-linear or β-free. Its disk

observable Ldisk is L{|z|≤r}. For the circle S1
r of radius r, its circle observable Lcirc is ∂Ldisk.

The circle observable Lcirc is an element of Obsqn(A) where A is any annulus containing the

circle of radius r. Note that a circle observable should be identifiable with a Fourier mode of some

field for the vertex algebra.
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Lemma 18.9. Let L be a constant-coefficient local functional that is β-linear or β-free. For any

cocycle F ∈ Obsq
n(Ds(0)), we have

~ [{q(L), F}] = [q(Lcirc) · F ]

at the level of cohomology, where · denotes the factorization product in (35), and where Lcirc is

the circle observable supported on some circle contained in the annulus AS<r(0).

Proof. We compute

dq(q(Ldisk)F ) = dq(q(Ldisk))F ± q(Ldisk)dqF + ~{q(Ldisk), F}

= q(Lcirc)F + ~{q(Ldisk), F},

since q intertwines the classical differential ∂ and quantum differential dq and since the support of

F is contained in the disk |z| < r, on which L and Ldisk are indistinguishable.

At the level of cohomology, we thus obtain

[q(Lcirc) · F ] = ~ [{q(L), F}]

as claimed. �

Example 18.10. Consider the local functional

L(γ, β) =
1

2πi

∫
γ ∧ β.

Note that

Lcirc(γ, β) =
1

2πi

∫
|z|=1

γ ∧ β,

is precisely the functional F from Section 17.3. We showed there that Lcirc is cohomologous to

the functional

H(γ, β) =
1

(2πi)2

∫
|z|=r

∫
|w|=R

γ(z)dz ∧ β(w)

z − w
,

with R > r. This functional H is manifestly the zeroth Fourier mode of c0b−1, by the discussion

in Section 17.1.

The zeroth Fourier mode of c0b−1 acts like a number operator or Euler vector field, in the sense

that

(c0b−1)(0)f = pf

when f is a homogeneous polynomial of degree p in the variables cm, bl, with m ≤ 0 and l < 0.

On the other hand, note that q(L) = L + C, where C is a constant, since L is quadratic and

hence only admits at most one nontrivial contraction with the propagator P . Hence, the derivation

{q(L),−} agrees with the derivation {L,−}. Direct computation of this derivation shows that it

also counts the number of incoming γ and β legs into any observable; it is the number operator.

At the level of the vertex algebra, it thus recovers the zeroth Fourier mode of c0b−1, as claimed by

the lemma.

Let us build on this example to get a general statement. As a matter of notation, if AS<r(0) ↪→
DR(0) denotes the inclusion of the annulus inside of the disk, denote the resulting structure map

of the factorization algebra by ι : Obsqn(AS<r(0)) → Obsqn(DR(0)). In the language of vertex

algebras, this map sends a field A to the state A|0〉.
For an arbitrary constant-coefficient local functional, we then have the following relation between

the vertex algebra and in the factorization algebra.
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Lemma 18.11. Let L be a local functional that is β-linear or β-free, and let · be the factorization

product (35). For each disk observable O ∈ Obsqn(Ds(0))(k),

[q(Lcirc) ·O] = ~[ι(q(Lcirc))](0)[O].

That is, L determines a vertex algebra derivation that is inner.

Proof. For notational convenience, we assume n = 1. Moreover, it suffices to assume that c is a

linear observable, since the operations are derivations and one can thus apply the Leibniz rule.

Let L be a functional of the form
∫
γ∧p ∧ β. It follows that the circular observable is given by

Lcirc =

∫
|z|=1

γ∧p ∧ β.

In the vertex algebra ĈDO1, the element (c0)pb−1 corresponds to the cohomology class of Lcirc.

Recall that a linear observable on the disk is a linear combination of observables of the form

Oc−mγ, β) =
m!

2πi

∫
|z|=

γ(z)

zm+1
dz

Ob−l(γ, β) =
(l − 1)!

2πi

∫
|z|=

β(z)

zl

where m ≥ 0, l > 0. We will compute the cohomology class of Lcirc · Oc−m in Obsq(DR(0)) and

demonstrate the claim explicitly in this case. We leave the case of Ob−l for the reader, as it follows

a parallel treatment.

Note that q(Lcirc) = Lcirc because both Oc−m and Ob−l involve a factor of dz. Also, q(Oc−m) =

Oc−m . Moreover, we have

∂P
(
Lcirc ·Oc−m

)
(γ, β) =

m!

2πi

∫
|z|=

γ(z)∧p

zm+1
.

Thus (Lcirc · Oc−m)(γ) = ~ m!
2πi

∫
|z|=

γ(z)∧p

zm+1 . On the other hand, the zeroth Fourier mode of cp0b−1

applied to c−m is computed as

(cp0b−1)(0)(c−m) = (cp0b−1)(0)(T
mc0) = Tm((cp0b−1)(0)c0) = Tm(cp0),

which is precisely the cohomology class of the observable above.

The proof for local functionals that are β-free is completely analogous. �

18.2. The action of W̃n. The preceding discussion was abstract but there are two local function-

als that play an important role for us: the local functionals IW and J produced by equivariant BV

quantization. As discussed in Section 9.4 in Part II, the local functionals encode how W̃n acts on

the rank n formal βγ system. Specifically, we showed that this equivariant quantization equipped

the the factorization algebra Obsqn with the structure of a semi-strict (W̃n,GLn)-module. More-

over, we showed that this semi-strict action induces a strict action of (W̃n,GLn) on the cohomology

H∗Obsqn.

Our goal now is to use the tools we just introduced to describe the strict action of W̃n on

ĈDOn determined by these local functionals. Recall that there exists a Lie algebra map ρ : W̃n →
DerVA(ĈDOn), by Theorem 3.12 from Section 3.4. Explicitly, viewing a pair (X,ω) ∈Wn × Ω̂2

n,cl

as an element of W̃n as in Section 3.4, we have

ρ(f(t)∂j , 0) = (f(c)bj−1)(0)

and

ρ(0,d(f(t)dtj)) =
(
f(c)T (cj0)

)
(0)
.
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(On a formal disk, every closed 2-form is exact, so it suffices to give the formula in terms of a

1-form f(t)dtj .) These vertex algebra derivations are manifestly inner, i.e., come from elements of

the state space of ĈDOn.

Lemma 18.12. For X ∈Wn, the local functional IW
X determines a derivation {q(IW

X ),−} of the

factorization algebra Obsq
n whose associated vertex algebra derivation is ρ(X, 0).

Proof. Every formal vector field is a linear combination of vector fields with monomial coefficients,

so we simply consider X = tm1
1 · · · tmnn ∂j . The associated local functional is

IW
X (γ, β) =

∫
C
γm1

1 ∧ · · · ∧ γmnn ∧ βj ,

which is constant-coefficient holomorphic and β-linear. By Lemma 18.9, we know that we can

understand the derivation {q(IW
X ),−} through the factorization product with (IW

X )circ, which

should correspond to the Fourier mode of some element of ĈDOn.

By Lemma 18.11 we find that for X = tm1
1 · · · tmnn ∂j , the factorization product by (IW

X )circ
corresponds, at the level of the vertex algebra, to the zeroth Fourier mode of (c10)m1 · · · (cn0 )mnbj−1,

as desired. Thus, we recover precisely the formula for ρ. �

Likewise, we have the following.

Lemma 18.13. For ω ∈ Ω̂2
n,cl, the local functional Jω corresponds to the vertex algebra derivation

ρ(0, ω).

Proof. Every closed 2-form ω on the formal disk is the exterior derivative dθ of a 1-form θ. More-

over, every 1-form is a linear combination of 1-forms with monomial coefficients, so we simply

consider θ = tm1
1 · · · tmnn dtj . The associated local functional is

Jdθ(γ, β) =

∫
C
γm1

1 ∧ · · · ∧ γmnn ∧ ∂zγj dz,

which is constant-coefficient holomorphic and β-free. The derivation {q(Jdθ),−} corresponds to

the factorization product with the circle observable

(Jdθ)circ(γ, β) =

∫
|z|=1

γm1
1 ∧ · · · ∧ γmnn ∧ ∂zγj dz.

Moreover, this circle observable corresponds to the zeroth Fourier mode of (c10)m1 · · · (cn0 )mnT (cj0),

by Lemma 18.11, as desired. �

19. The main result

In light of our arguments in the preceding sections, we obtain the following.

Theorem 19.1. The isomorphism of Z≥0-graded vertex algebras

Φ : ĈDOn

∼=−→ Vert(Obsqn)

is equivariant with respect to the actions of (W̃n,GLn). Moreover, it is compatible with the Ôn-

module structure.

Proof. We proved the equivariance assertion in the preceding sections. Thus it remains to discuss

the Ôn-module structure. This aspect, however, is the focus of Section 13, where we describe how

observables on a disk decompose according to conformal dimension and then identify each subspace

of fixed conformal dimension with some type of formal tensor fields. At the level of cohomology

— which provides the decomposition for Vert(Obsqn) — these match with ĈDOn. �
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An immediate corollary, via Gelfand-Kazhdan descent and its variants, is our main result.

Corollary 19.2. Let X be a complex n-manifold together with a trivialization α of ch2(TX) ∈
H2(X; Ω2,hol

cl ). Then the factorization algebra ObsqX,α obtained by Gelfand-Kazhdan descent de-

termines a sheaf of vertex algebras Vert(ObsqX,α) on X. Moreover, there is an isomorphism of

sheaves of vertex algebras on X

Φ : CDOX,α

∼=−→ Vert(ObsqX,α)

that is natural in the choice of trivialization α.

The naturality in the choice of trivialization can be phrased in a compelling way. Recall from

Section 8.4 that there is an obstruction-deformation complex for the curved βγ system on X,

which is a sheaf of dg vector spaces encoding important information about this BV theory. For

instance, a degree one cocycle encodes a first-order deformation of the classical action that satisfies

the classical master equation and thus defines a well-posed classical BV theory. This complex is

obtained by Gelfand-Kazhdan descent, and it involves only local functionals that are invariant for

the action of C× ×Aff(C) by scaling (of the β field) and affine transformations.

In particular, the obstruction to quantization is a degree two cocycle in this cochain complex,

which is identified with ch2(TX) by Lemma 9.7. Corollary 8.11 tells us that this sheaf of dg vector

spaces is quasi-isomorphic to the sheaf Ω2,hol
cl on X. Hence we deduce the following.

Corollary 19.3. The map Φ provides an isomorphism of gerbes from the gerbe of BV quantizations

of the curved βγ system (constructed via descent and invariant under C× × Aff(C)) to the gerbe

of CDOs.

19.1. Remark on conformal structure. With the identification of chiral differential operators

with the observables of the βγ system, our analysis in Part II immediately implies an observation

about the conformal symmetry of this sheaf of vertex algebras.

In Section 14 we showed that after fixing a trivialization α of ch2(TX), there is a map of sheaves

on X

Ψq : Virc=2n → Obsq
X,α

of factorization algebras on C, provided that c1(TX) = 0. (In fact, we have such a map for every

trivialization of c1(TX)).

The factorization algebra Virc is amenably holomorphic, and it is shown in [Wila] that its

associated vertex algebra Vert(Virc) is isomorphic to the Virasoro vertex algebra Virc of central

charge c. By the functoriality of the functor Vert, we obtain the following immediate corollary of

the above analysis, which implies the aforementioned Proposition 5.12 from Part I.

Corollary 19.4. Let α be trivialization of ch2(TX) and let CDOX,α be the associated sheaf of

CDOs. Then for each trivialization β of c1(TX), the map of holomorphic factorization algebras

Ψq
β : Virc=2n → Obsq

X,α determines a map of sheaves of vertex algebras Vert(Ψq
β) : Virc=2n →

CDOX,α.

20. Discussion of some physics literature

Our goal in this section is to relate our work to the perspectives offered by Witten and Nekrasov

on the curved βγ system. Both [Wit07] and [Nek] undertake a similar analysis, but we will focus

on Witten’s. The format of our comparison is to remind the reader about general aspects of σ-

models, to explain how Witten identifies the anomalies to quantization and how his method relates
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to ours, and to indicate how Witten determines the patching rules for the chiral algebras and how

this approach relates to ours.

20.1. General comments about nonlinear σ-models. We begin by sketching a general per-

spective that informs the problem.

Remark 20.1. This perspective assumes that the path integral exists and exhibits behavior anal-

ogous to finite-dimensional integrals. In a sense, we run the argument sketched here backwards to

construct the putative path integral measure.

Let Σ denote a source manifold and X a target manifold. A nonlinear σ-model has, as its space

of fields, the infinite-dimensional manifold Maps(Σ, X). The equations of motion for the theory cut

out a submanifold Sol of this mapping space as the space of solutions, and typically a component

of this space of solutions is given by a copy of X viewed as the constant maps from Σ to X. We

will call this the perturbative sector.

In trying to compute the path integral, one expects that for ~ very small, the putative measure

should be concentrated very close to Sol inside Maps(Σ, X). One might then try to approximate

the path integral by simply integrating over a small tubular neighborhood around Sol. The pertur-

bative contribution would then be the integral over a small tubular neighborhood around X inside

Maps(Σ, X). To organize the computation of this perturbative contribution, one can identify a

tubular neighborhood with the normal bundle to X inside Maps(Σ, X). Hence, one obtains an

infinite-dimensional vector bundle over X whose fiber over x ∈ X is

NxMaps(Σ, X) ∼= TxMaps(Σ, X)/TxX ∼= Maps(Σ, TxX)/TxX.

One then computes the integral over the tubular neighborhood in two stages: first, fiberwise

integration over the normal bundle, and then integration over X. This fiberwise integral can be

approached with Feynman diagrammatics, with the base X playing the role of a “background

field.” In this sense, the perturbative sector is local on the target X

A better approximation to the full path integral would involve the other components of Sol.

They provide the “instanton corrections” to the perturbative computation. As a nonconstant

solution is not concentrated at a single point in X — by definition — these corrections are not

local on X and require different techniques.

20.2. Anomalies and obstructions. Fix some method for perturbative computations. At each

point x of X, we apply our method to integrate over the normal bundle Nx. This integral ought

to take values in a one-dimensional vector space, and hence the full fiberwise integral provides

a section in a line bundle over X. A priori we do not know which line bundle it is, since the

perturbative constructions are done locally on X and then patched together.

As Witten notes in Section 2.3 of [Wit07], the Chern class of this line bundle is a discrete

invariant and hence should not depend on continuous parameters, such as the coupling constants

of the fiberwise perturbative field theories. Thus we can compute it by fiberwise quantizing the

family of free theories over X, scaling the interactions to zero. In other words, one simply keeps

the Hessian of the action functional at each point x ∈ X ⊂ Maps(Σ, X). The free theory at each

x corresponds to some elliptic complex on Σ. Now, it is standard to identify the one-dimensional

vector space at x ∈ X with the determinant line of the cohomology of this elliptic complex. (This

identification can be recovered as a consequence of BV quantization, as shown in [GH].) Hence,

one can use a families index theorem to compute the Chern class of the determinant line bundle.
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In the case of the βγ system, this amounts to considering the trivial fiber bundle π : Σ×X → X

and letting the elliptic complex at a point x ∈ X be Ω0,∗(Σ) ⊗ TxX. In other words, we are

considering F = OΣ ⊗ TX as a sheaf on Σ×X. We wish to understand the pushforward π∗F on

X or, more accurately, the determinant line of its derived pushforward.

We assume now that Σ is closed. The first Chern class of the determinant line agrees with

the first Chern class of the derived pushforward. The Grothendieck-Riemann-Roch theorem then

implies that the Chern character of the derived pushforward is given by

π∗(ch(F)Td(Tπ)) = π∗((1 + c1(F) +
1

2
(c1(F)2 − 2c2(F)) + · · · )(1 +

1

2
c1(TΣ)))

= π∗((1 + π∗c1(TX) + π∗ch2(TX) + · · · )(1 +
1

2
c1(TΣ)))

and the first Chern class is the component of cohomological degree 2, namely

(1− g)c1(TX) + ch2(TX)

where g denotes the genus of Σ. In short, one finds that the determinant line is trivial if and only

if both ch2(TX) = 0 and either c1(TX) = 0 or Σ is genus one.

These results correspond to ours, although our approach is, on its face, rather different. We

choose to work with the formal n-disk as target and then apply Gelfand-Kazhdan descent to obtain

(the perturbative sector of) the theory with any complex n-manifold X as target. Our obstruction

cocycle (or anomaly) thus lives in Gelfand-Fuks cohomology and maps to de Rham cohomology of

some X by descent. As we have seen in 9, the obstruction to BV quantization descends to ch2(TX)

when the source is C and we require equivariance with respect to

• translation and dilation on the source (which ensures we can descend to genus one curves)

and

• holomorphic diffeomorphisms of the formal n-disk as target.

It is a consequence of the calculations of Section 9.5 combined with Gelfand-Kazhdan descent that

requiring equivariance under all holomorphic diffeomorphisms of a source disk requires c1(TX) = 0.

Such equivariance ensures one can descend to higher genus curves by considering them as quotients

of the disk by Fuchsian groups.

Remark 20.2. On the other hand, Witten’s global argument using Grothendieck-Riemann-Roch

applies in the BV context as well, because BV quantization of the free βγ system on a Riemann

surface Σ but twisted by TX recovers the same determinant line, up to some cohomological shift.

A benefit of our approach here is that we actually construct the BV quantization for the full βγ

system rather than merely identifying the obstruction cohomologically.

As a further point of comparison, note that the obstruction-deformation complex we compute in

Section 8.4.4 recovers precisely the same information that Witten and Nekrasov find. For instance,

they find that first-order deformations of the theory are given by H1(X,Ω2
cl). (See Section 2.2

of [Wit07] or Section 2.6.3 of [Nek], although Nekrasov keeps track of deformations of complex

structure of the target too.) Similarly, one can see that the local symmetries of the theory are

H0(X,Ω2
cl), as Nekrasov notes in Section 2.6.6. In other words, the BV formalism provides a

systematic mechanism for answering the questions that Witten and Nekrasov address.

20.3. Chiral algebras and observables. In Section 3 on [Wit07], Witten explains how one can

recover the sheaf of chiral differential operators by physical arguments. His approach might be

summarized as follows:
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(1) since the perturbative theory is local on the target X, we fix a good cover {Ui} of X and

try to patch the quantizations;

(2) a coordinatization φi : Ui ↪→ Cn allows one to view the field theory as a restriction of the

βγ system with target Cn to the open φi(Ui);

(3) one then constructs the chiral algebra of operators for the open φi(Ui) as target by re-

stricting the chiral algebra for the free βγ system of rank n;

(4) one tries to patch the chiral algebras on overlaps Ui ∩ Uj .

The first two steps are built into this perturbative approach to general σ-models. The third

step depends on two things: first, knowing the chiral algebra of the free βγ system (which is a

standard computation in physics and which we formalized in Part I), and second, knowing the chiral

algebra can be localized to smaller opens. (We remark that chiral algebra here is synonymous with

vertex algebra in the mathematics literature, although physicists often (though not here) presume

that a chiral algebra is invariant under holomorphic changes of coordinates and hence what a

mathematician might call a vertex operator algebra.) This second result is a computation done

in [MSV99, GMS00], and it requires one to show that the OPE for the free βγ system can be

localized from polynomials in the coordinates on the target Cn to holomorphic functions in those

coordinates.

The final step is a bit involved, and Witten explains it in Section 3.4 of [Wit07]. He wants to

patch the chiral algebras for small opens in Cn, so he needs to identify the automorphism group of

the chiral algebra. In practice, he instead computes the Lie algebra of this automorphism group

or, more accurately, the infinitesimal automorphisms arising from the chiral algebra itself. Witten

wants to find those elements of the chiral algebra whose zeroth Fourier mode acts on the chiral

algebra as a derivation that preserves conformal dimension. In his terminology, such an element is

a “dimension one current” and its zeroth Fourier mode is called its “charge,” which is the integral

of the current along a loop around the origin in the source manifold. Witten uses g to denote the

Lie algebra given by integrals of dimension one currents modulo total derivatives.

Witten provides two natural types of symmetries. A holomorphic vector field V = V i∂i on the

target determines the current JV = −V iβi, viewed as an element of the chiral algebra. Similarly,

a holomorphic 1-form B = Bidz
i determines a current JB = Bi∂γ

i. The charge of a 1-form B

vanishes if and only if it is exact (i.e., B = ∂H), so that the collection of such charges is isomorphic

to closed 2-forms (as a vector space). The charges of distinct vector field are, by contrast, distinct.

Let v denote the Lie algebra formed by the charges for vector fields V and let c denote the Lie

algebra formed by the charges for one-forms B. Together they span g, according to Witten.

A direct computation with the charges (or using OPE with these currents) shows that there is

an exact sequence of Lie algebras

0→ c→ g→ v→ 0,

and this Lie algebra corresponds to the extension W̃n that we construct.

In our setting, a current can be defined as a local functional I such that {I,−} is a cocycle

in derivations of the observables. As discussed in Section 18, such a functional I determines

an element Idisk in the observables on the disk and hence an element of the vertex algebra. The

associated charge is the element Icirc, which is an observable on the annulus and hence corresponds

to the zeroth Fourier mode of the element in the vertex algebra.

Witten chooses to find the infinitesimal symmetries of the βγ system by doing explicit compu-

tations in the chiral algebra after obtaining it from the free theory. By contrast, we use the BV

formalism to determine how to lift the classical symmetries to quantum symmetries (at the cost
131



of a Lie algebra extension) and then extract the chiral algebra statements. In a sense, we do path

integral manipulations to recover chiral algebra, and Witten follows the reverse logic. The results

naturally agree.

Remark 20.3. Recent work of Si Li [Li] provides another useful perspective on this relationship. He

considers free holomorphic BV theories on the complex line, and he produces an identification be-

tween the obstruction-deformation complex of the BV theory and the mode Lie algebra of its vertex

algebra. His result, extended to our equivariant context, then recovers Witten’s computation.

After determining the appropriate symmetries of the chiral algebra, Witten tries to lift the

patching of coordinates on the good cover to patching of the chiral algebras. The coordinate

patching can be seen as living in the Lie algebra v (or rather its assciated group), so the challenge

is to lift to g, which involves choices. Any choice determines a Čech 2-cocycle with values in Ω2
cl,

and if the cocycle vanishes, the choices determine a patching of the chiral algebras. The work of

[GMS00] showed that this cocycle is indeed ch2(TX). Our method provides another perspective.

Appendix

21. The βγ system as an infinite-volume limit

21.1. Introduction. This appendix gives an explanation for where the curved βγ system comes

from. The idea is to approach the usual two-dimensional sigma model with Hermitian target in

two steps:

(1) we scale the metric on the target manifold until it becomes “infinitely big” (this drastically

simplifies the problem, as we’ll show), and

(2) we show that this infinite-volume theory “splits” into a holomorphic and antiholomorphic

theory (physicists use “chiral and antichiral splitting”).

The chiral part is the curved βγ system.

The core aspects of this construction can be seen by having a complex vector space (or formal

disk) as the target manifold. After introducing the ingredients of our theory, we rework the usual

action functional into a form better suited to our purposes. This first-order formulation of the

theory makes the infinite-volume limit easy to understand and motivate. Finally, we exploit a

special property of the theory — arising from the interplay between the differential geometry of

the source 2-manifold and the target Hermitian manifold — to obtain the splitting.

Remark 21.1. This approach is well-known to physicists. Essentially the same construction is given

in [Zei08, LMZ06, Nek], and a closely related argument for the half-twisted σ-model is given in

[Kap]. Perhaps the main contribution here is the explicit discussion of how to understand various

manipulations within the BV formalism. The version presented here unpacks and elaborates upon

on a lecture by Kevin Costello at the Northwestern CDO workshop in summer 2011.

21.2. The ingredients. The input data of our classical field theory is the following.

• Let S be an oriented real 2-manifold with a metric g. (We will indicate as we go along why

everything only depends on the conformal class of g.) We denote the associated volume

form by dvolg and the dual inner product on Ω1
S by g∨.

• Let V be an even-dimensional real vector space, equipped with a complex structure by

J (so we can view V as complex, when needed). It is equipped with a hermitian inner

product h, also written (−,−)V . (Recall this means that h is a an ordinary inner product

on the real vector space V and that J is an isometry.)
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• Let V ∨ denote the dual real vector space. We denote its dual complex structure by J∨.

There is a canonical evaluation pairing ev : V ⊗ V ∨ → R, and we have

ev(Jv, λ) = λ(Jv) = ev(v, J∨λ)

by definition.

• Let ΩkS(V ) denote the V -valued k-forms, i.e., ΩkS ⊗R V .

Consider the Hodge star operator ∗ on Ω1
S arising from g. A computation in local coordinates

shows that ∫
S

h⊗ g∨(α, β)dvolg =

∫
S

h(∗α ∧ β),

where the right hand side means “apply h to the V -component but simply wedge the 1-form

components.”

21.3. The first-order formulation of the sigma model. Let f : S → V be a smooth map.

The usual action functional for the sigma model is

SSO(f) =

∫
S

h⊗ g∨(df, df)dvolg.

The subscript SO stands for “second-order.”

There is an equivalent description of the same classical field theory where the fields are f ∈
Maps(S,V) and A ∈ Ω1

S(V ∨) and the action functional is

SFO(f,A) =

∫
S

ev(df ∧A)− 1

2

∫
S

h∨(∗A ∧A).

The subscript FO stands for “first-order.” This first-order action functional motivates the action

functional we finally work with.

Lemma 21.2. The equations of motion for SFO are

df = ∗h∨A and dA = 0,

and so solutions are given by all f such that d(∗df) = 0. This space of solutions is exactly the

same as solutions to the equation of motion

4gf = (∗d∗)df = 0

for SSO.

Proof. We obtain the equations of motion for SSO first. We have

SSO(f) =

∫
S

h(∗df ∧ df) = −
∫
S

h((d ∗ df) ∧ f) = −
∫
S

h(4gf, f)dvolg,

where we use integration by parts in the second step and the fact that ∗ preserves inner products

in the last step. The usual variational procedure then recovers the equation of motion.

Now we treat SFO. We obtain the equation dA = 0 by considering a variation f → f + δf . On

the other hand, a variation A→ A+ δA has the following consequences for the second term,

1

2

∫
S

h∨(∗δA ∧A) +
1

2

∫
S

h∨(∗A ∧ δA) =

∫
S

h∨(∗A ∧ δA),

and so we need df − h∨ ∗A = 0.

Now observe that

df = ∗h∨A⇔ ∗df = −h∨A,
so we need

d(∗df) = 0,
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to satisfy the equations of motion for SSO. �

21.4. An involution on the space of fields. We now explore a special property of the fields,

arising from the fact that the source is 2-dimensional and the target is Hermitian. Because ∗2 = −1,

it provides a natural complex structure on Ω1
S . Thus, we obtain two involutions:

• on Ω1
S(V ), there is σ := ∗ ⊗ J , and

• on Ω1
S(V ∨), there is σ∨ := ∗ ⊗ J∨.

By using this polarization of the fields, we will obtain eventually the desired chiral decomposition.

Lemma 21.3. The operator σ gives an eigenspace decomposition

Ω1
S(V ) = Ω1

S(V )+ ⊕ Ω1
S(V )−

where Ω1
S(V )± denotes the ±1-eigenspace of σ, and likewise for Ω1

S(V ∨).

Proof. Let Π± denote the endomorphism 1
2 (1± σ) on Ω1

S(V ). Then

Π2
+ =

1

4
(1 + 2σ + σ2) = Π+,

so Π+ is a projection operator (and likewise for Π−). As 1 = Π++Π−, we obtain the decomposition.

�

Definition 21.4. We define d± : Ω0
S(V )→ Ω1

S(V )± as Π± ◦ d.

Consider the natural evaluation pairing

evS : Ω1
S(V )⊗ Ω1

S(V ∨) → R
v ⊗ λ 7→

∫
S
ev(v ∧ λ)

.

Observe that

evS(σv, σ∨λ) =

∫
S

ev(∗Jv ∧ ∗J∨λ)

=

∫
S

ev(Jv, J∨λ)

=

∫
S

ev(J2v, λ)

= −evS(v, λ),

where in the second line we used the fact that ∗α∧∗β = α∧β for any α, β in Ω1
S . Thus we obtain

the following.

Lemma 21.5. With respect to the pairing evS, Ω1
S(V )+ is orthogonal to Ω1

S(V ∨)+, and Ω1
S(V )−

is orthogonal to Ω1
S(V ∨)−.

21.5. Replacing the first-order action functional. We introduce a new theory whose fields

are f ∈ C∞S (V ) and B ∈ Ω1
S(V ∨)−. The action functional is

S+(f,B) =

∫
S

ev(d+f ∧B)− 1

2

∫
S

h∨(∗B ∧B).

It might seem like this action only sees half the information of SSO or SFO, but it is actually

equivalent. We begin with the heuristic argument before delving into a careful proof in the BV

formalism.
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21.6. The heuristic argument. There is an illuminating “completing the square” maneuver.

Consider the following automorphism on the space of fields:

f 7→ f and B 7→ B + h(d+f).

(For v ∈ V , hv denotes the element h(v,−) ∈ V ∨.) When we apply S+ after this transformation,

our integrand is a sum of six terms:

ev(d+f ∧B) + ev(d+f ∧ h(d+f))− 1

2
h∨(∗B ∧B)

− 1

2
(h∨(∗h(d+f) ∧B) + h∨(∗B ∧ h(d+f)))− 1

2
h∨(∗h(d+f) ∧ h(d+f)).

We can simplify this sum.

First, note that the fourth and fifth terms (which are grouped together already) are equivalent

to

−1

2
(ev(∗d+f ∧B) + ev(∗B ∧ d+f)) ,

and thus together cancel the first term.

Second, note that the second term is equivalent to h(d+f ∧ d+f). This term vanishes because

for any one-form α, α ∧ α = 0.

The last term is the most interesting: the last term recovers the usual sigma model action.

Lemma 21.6. The last term

−1

2
h∨(∗h(d+f) ∧ h(d+f))

is equivalent to −h(∗df ∧ df)/4.

Proof. Recall d+ = Π+d = (1/2)(1 + σ)d. Thus

4h(∗d+f ∧ d+f) = h(∗(1 + σ)df ∧ (1 + σ)df)

= h(∗df ∧ df) + h(∗σdf ∧ df) + h(∗df ∧ σdf) + h(∗σdf ∧ σdf)

= h(∗df ∧ df)− ih(df ∧ df) + ih(∗df ∧ ∗df) + h(df ∧ ∗df)

= 2h(∗df ∧ df).

The initial term arises just by canceling out the excess copies of h and h∨. �

All that remains to understand is the third term − 1
2h
∨(∗B ∧B). From a heuristic perspective,

it’s irrelevant: for the classical theory, the only critical point is B = 0, and for the quantum theory,

it contributes nothing of interest (just an extra space of fields equipped with a Gaussian measure

centered at zero).

To summarize, we have made an “upper-triangular” change of coordinates on the space of

fields. At the classical level, we recover the same equations of motion. At the quantum level,

the nonexistent Lebesgue measure is preserved and the weight e−S+ factors into e−SSO times a

Gaussian.

21.7. The BV argument. In fact, it is fairly straightforward to rephrase this heuristic argument

into a rigorous statement in the BV formalism. Our model throughout is the case of pure Yang-

Mills theory (for which see Chapter 6, Section 3 of [Cos11] or [CCRF+98]).
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21.7.1. The ingredients. Our fields are f ∈ C∞S (V ) and B ∈ Ω1
S(V ∨)−, so we introduce “antifields”

f∨ ∈ Ω2
S(V ∨) and B∨ ∈ Ω1

S(V )+. As usual, the fields have cohomological degree 0 and the

antifields have cohomological degree 1, as below.

0 1

C∞S (V ) Ω2
S(V ∨)

⊕ ⊕
Ω1
S(V ∨)− Ω1

S(V )+

(fields) (antifields)

We equip this graded vector space E with the following symplectic pairing of cohomological degree

−1:

〈f, f∨〉 =

∫
S

ev(f, f∨),

〈f, f∨〉 = −〈f∨, f〉,

〈B,B∨〉 = −
∫
S

ev(B∨ ∧B),

〈B,B∨〉 = −〈B∨, B〉,

with all other pairings automatically zero (e.g., 〈f,B〉 = 0). This is simply the shifted antisym-

metrization of evS .

We thus obtain a free BV theory (in the sense of Costello) as the following elliptic complex,

C∞S (V )
d+→ Ω1

S(V )+

Ω1
S(V ∨)−

d→ Ω2
S(V ∨)

,

where we simply extracted the quadratic part of S+.

In particular, let Φ = (f, f∨, B,B∨) denote an element of E . Then the free BV theory has

action functional

Sfree(Φ) = −1

2
〈Φ, QΦ〉

= −1

2
〈(f, f∨, B,B∨), (0, dB, 0, d+f)〉

= −1

2
(〈f, dB〉+ 〈B, d+f〉)

= −1

2

(∫
S

ev(f, dB)−
∫
S

ev(d+f ∧B)

)
=

∫
S

ev(d+f ∧B).

Thus we recover the free part of S+.

In full, we have

S+(Φ) = −1

2
〈Φ, QΦ〉+

1

2
〈B, h∨(∗B)〉.

21.7.2. Equivalence at the classical level. In the classical BV formalism, two different action func-

tionals S and S′ give equivalent classical theories if they are cohomologous in the cochain complex

(Oloc(E ), {S,−}). (Here we assume S satisfies the classical master equation {S, S} = 0.) Using

more geometric language, we say that S and S′ live in the same orbit of the gauge group of sym-

plectomorphisms acting on the space of fields E (and hence on the space of action functionals

Oloc(E )).
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Remark 21.7. To relate these two assertions, note that the cochain complex, once shifted, is a

dg Lie algebra that describes the formal neighborhood of S in the moduli space of classical field

theories on E . Thus, if they are cohomologous, we can construct a Hamiltonian flow moving from

S to S′.

In fact, this setting lets us dress up the heuristic picture, as follows. We replace the change of

coordinates by modifying S+ by a boundary in (Oloc, {S+,−}).

Lemma 21.8. Let H denote the local functional of cohomological degree −1 where

H(Φ) = 〈∗h(d+f), B∨〉.

Then

{S+, H} = SSO − Sfree,
so S+ is cohomologous to

SSO −
1

2
〈B, h∨(∗B)〉

in (Oloc, {S+,−}).

Proof. Observe

{Sfree, H} = ±〈∗h(d+f), d+f〉 = ±SSO.
In the first equality, we use that the shifted Poisson bracket {−,−} is dual to 〈−,−〉. In the second

equality, we use lemma 21.6.

A parallel computation shows that {I,H}, where I denotes the “interaction term” of S+, re-

covers ±Sfree. �

The action functional SSO ± I thus defines a classical BV theory equivalent to S+. Note,

however, that this action functional completely decouples f and B. The term SSO only depends

on f , and the term I only depends on B. Moreover, the critical point of I is {B = 0}, so the

equations of motion pick out the same solutions as SSO on its own.

21.7.3. Equivalence at the quantum level. In our setting of a linear target with linear metric, we

have shown that the classical BV theory specified by S+ is equivalent to a free BV theory, given

by the elliptic complex

C∞S (V )
4gdvolg−→ Ω2(V )

Ω1
S(V ∨)−

Id−→ Ω1
S(V ∨)−

,

once one writes down a suitable pairing 〈−,−〉. (We chose to change the pairing so that the

elliptic complex is simple. Alternatively, we could have retained the same pairing but written

a complicated-looking elliptic complex.) As the second line is acyclic, we see it is irrelevant to

both the classical and quantum theories. In particular, as the theory is free, we can quantize

immediately and show that the quantum observables are homotopy-equivalent to the quantum

observables constructed just from the first line.

This argument is another way of saying “we can integrate out the B fields and they do not

affect any observables” (cf. the discussion of Yang-Mills theory in Chapter 6 of [Cos11]).

Remark 21.9. This argument is the only piece that does not port immediately to the case of a

curved target. In that case, we need to verify we can construct a quantization. Nonetheless, it is

plausible that we could quantize while maintaining the complete decoupling of the f and B fields,

in which case we could work with just the subcomplex depending on the f fields.
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21.8. The infinite volume limit. As S+ is equivalent to SSO, we hereafter focus on S+. Our

goal is to study a degenerate limit of S+ where the situation drastically simplifies.

The idea is quite simple: if we scale the metric h∨ to th∨, then as t goes to zero, we scale away

the dependence on h∨ in S+. The limit theory is then independent of the hermitian inner product

on V . Note that on V , the limit t→ 0 is equivalent to scaling h to h/t, so that the volume of any

cube grows toward infinity.

Definition 21.10. The infinite volume limit is the action functional

SIV L(f,B) =

∫
S

ev(d+f ∧B),

with f ∈ C∞S (V ) and B ∈ Ω1
S(V )−.

The equations of motion are d+f = 0 and dB = 0.

21.9. The chiral splitting. The operator d+ interacts nicely with the complexifications of our

spaces of fields, and thus we will be able to massage our theory into another, appealing form.

Consider the decompositions

Ω1
S ⊗R C = Ω1,0

S ⊕ Ω0,1
S

and

V ⊗R C = V 1,0 ⊕ V 0,1.

We have the respective projection operators

p1,0
S =

1

2
(1− i∗),

p0,1
S =

1

2
(1 + i∗),

p1,0
V =

1

2
(1− iJ),

p1,0
V =

1

2
(1 + iJ).

By an explicit computation, we see

p0,1
S ⊗ p

1,0
V =

1

4
(1 + i ∗ −iJ + ∗J)

and

p1,0
S ⊗ p

0,1
V =

1

4
(1− i ∗+iJ + ∗J),

so

p0,1
S ⊗ p

1,0
V + p1,0

S ⊗ p
0,1
V =

1

2
(1 + ∗J) = Π+,

where we’ve extended scalars on Π+ so that it works on the complexified Ω1
S(V )C.

The following result is an immediate consequence.

Lemma 21.11. On Ω∗S(V )C, we have

d+ = ∂V 1,0 + ∂V 0,1 .

Proof. Note that

Ω1
S(V )C ∼= (Ω1

S)C ⊗C V
C

∼= Ω1,0(V 1,0)⊕ Ω1,0(V 0,1)⊕ Ω0,1(V 1,0)⊕ Ω0,1(V 0,1).

We thus need simply to unravel the relevant projections.
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Recall that ∂ means “project the image of d onto the −i-eigenspace of (Ω1)C.” Hence, as an

example, ∂V 1,0 : Ω0
S(V 1,0)→ Ω0,1

S (V 1,0) is precisely the operator

(p0,1
S ◦ d)⊗ 1V 1,0 .

Plugging in all the relevant operators, we obtain the desired result. �

We write the elliptic complex of fields, once the fields are complexified, using the decomposition

of d+ given above. This specifies a free BV theory:

Ω0,0
S (V 1,0)

∂V 1,0−→ Ω0,1
S (V 1,0)

⊕ ⊕

Ω0,0
S (V 0,1)

∂V 0,1−→ Ω1,0
S (V 0,1)

⊕ ⊕

Ω1,0
S (V ∨ 0,1)

∂V∨ 0,1−→ Ω1,1
S (V ∨ 0,1)

⊕ ⊕

Ω0,1
S (V ∨ 1,0)

∂V∨ 1,0−→ Ω1,1
S (V ∨ 1,0)

.

We can separate this into a direct sum of two theories, one holomorphic (the pieces involving ∂)

and one antiholomorphic (the pieces involving ∂). Equivalently, we view this as working with one

complex structure and its conjugate.

Lemma 21.12. On the complexified fields,

SIV L(f, wf,B,wB) =

∫
S

ev(∂f ∧B) +

∫
S

ev(∂wf ∧ wB).

When restricted to the real points, it recovers the infinite volume limit action.
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