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Abstract

A variational method for many-electron system is applied to momentum distribution calculations. The method uses a
generating two-electron geminal and the amplitudes of the occupancies of one particle natural orbitals as variational para-
meters. It introduces correlation effects beyond the free fermion nodal structure.q 2000 Elsevier Science Ltd. All rights
reserved.
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The characteristics of condensed matter systems are due
to the motion and correlation of the electrons [1]. The elec-
tron motion can be observed by Compton scattering with
photons or by positron annihilation. Recent experiments
[2,3] indicate that the momentum density even in simple
metals cannot be well represented by a single Slater deter-
minant state. Instead, the momentum density has to be
constructed from a correlated state with average occupan-
cies ni of single particle states in between 0 and 1 [4]. In
other words, at the independent particle level there are only
N occupancies different from zero, and these are equal to
one. When correlation is introduced, we have an infinite
number of occupancies different from zero, even though
most of them will presumably be very close to zero. The
sum rule

N � 2
X

i

ni �1�

remains always true (the factor 2 is due to the spin). The
purpose of the present work is to give a simple and efficient
calculation method to estimate the occupanciesni : To
simplify the problem, we will consider approximations
which neglect the spin. Therefore, the present discussion
applies to non-magnetic systems.

If the many-body state is given by the wave functionC ,

the first-order density matrixr is defined by

r�r ; r 0� � N
Z

djCp�r ; j�C�r 0; j�: �2�

The eigenfunctionsci of r , introduced by Lo¨wdin as
natural orbitals[5] are the most suitable set of one-particle
functions to use in this discussion

r � 2
X

i

ni ucilkci u: �3�

The natural orbitals form an orthonormal basis set. Another
set of orbitals that are naturally associated with many-body
functions are thegeneralized overlap amplitudes[6]. These
orbitals are, however, linearly dependent and a canonical
orthonormalization of them yields the natural orbitals.

The range of the first-order density matrixr�r ; r 0� in real
space is a fundamental property of quantum mechanical
systems since it determines the degree of locality of the
bonding properties [7].

The two-particle reduced density matrixs contains all
the information to discuss two-particle interactionsV2

[8,9], and the total energy can be expressed as

E�s� � �N=2�Tr�Ks�; �4�

K�r1; r2� � H1�r1�1 H1�r2�1 �N 2 1�V2�r1; r2�; �5�
whereH1 is the one-body part of the hamiltonian. IfC is
given by single Slater determinant, as in the Hartree–Fock
approximation or in the density functional theory [7], then
the energy is even determined by a one-particle density
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matrix r , such as r � r2 (idempotency). Recently,
Goedecker and Umrigar (GU) [10] proposed to relax ther
idempotency and to use a natural orbital functional fors .
The GU functional gives still a particular importance to the
individual electron picture.

In the present work, an alternative method is explored.
One considers the ansatz proposed by Blatt [11–13],

C � const�
X

i

gia
1�cp

i �a1�ci��N=2u0l: �6�

wherea1�ci� are creation operators of an electron in the
stateci : In coordinates space,C is an Antisymmetrized
Geminal Product (AGP)

C � const Detuf�r i"; r j#�u; �7�
wheref is single pair wave function," is a label for a
particle with spin up and# for a particle with spin down.
The size of the determinant is thereforeN=2 × N=2: The
generating geminalf has a diagonal expansion in the
natural orbitals

f�r1; r2� �
����
2
N

r X
i

gic
p
i �r1�ci�r2�: �8�

In practice, the total energy becomes a functional
E�gi ;ci�: Thus, gi and ci are determined by minimizing
this functional. Such calculations have been done for some
molecules [14]. The Stochastic Gradient Approximation
(SGA) optimization [15] is particularly appropriate for the
present problem since the variational parameters can be
determined avoiding the explicit determination of the total
energy.

The AGP is theN particle component of the BCS state
[16]. In the limit ofN large, the AGP and BCS states become
identical. If one setgi � vi =ui with uui u

2
1 uvi u

2 � 1; then
ni � uvi u

2
: Therefore, the electron momentum distribution

n(p) is given by the simple formula [17]

n�p� � 2
X

i

uvi u
2ukpucilu

2
: �9�

The expectation value in the AGP of two-particle operators
can be found in Ref. [13].

For a two-electron system, the present scheme is equiva-
lent to a configuration interaction calculation and the two-
particle reduced density matrixs is given by a pure stateufl

s � uflkfu; �10�
thuss � s2

:

The hydrogen molecule is a good example to illustrate the
method. The bonding and antibonding orbitals are

c0�r � � 1
�2�1 1 S��1=2 �fR�r �1 fL�r ��; �11�

c1�r � � 1
�2�1 2 S��1=2 �fR�r �2 fL�r ��; �12�

wherefR;L �
������
a3=p
p

e2aur2RR;L u are 1s atomic orbitals,Sis the

overlap integral (varying from 0 to 1) anda is a variational
parameter (varying from 1 to 1.66). The two-body wave
functionf can be approximately given by

f�r ; r 0� � g0c0�r �c0�r 0�1 g1c1�r �c1�r 0�: �13�
Then

g0 � 1��
2
p 1 1

k���������
1 1 k2
p

� �1=2

; �14�

g1 � 2
1��
2
p 1 2

k���������
1 1 k2
p

� �1=2

; �15�

wherek is a function ofSand of the integrals

U � kfL fL
1

r12

���� ����fL fLl; �16�

V � kfL fR
1

r12

���� ����fL fRl; �17�

t � kfL fL
1

r12

���� ����fL fRl; �18�

J � kfL fL
1

r12

���� ����fRfRl: �19�

For large d, S< 0, k � 2t=�U 2 V�: Therefore, when
d!∞, g0 � 2g1 � 1=

��
2
p

and

f�r ; r 0� � g0�fR�r �fL�r 0�1 fL�r �fR�r 0��: �20�
This means that the correlation effects derive the electrons
back on their own atoms like in the Heitler-London ansatz.

For the linear chain molecule H4, the ucil�i � 0; 1; 2; 3�;
havei nodes. In momentum space,kpuc0l is peaked atp� 0;
but the kpucil . (for i � 1; 2; 3� are peaked at higher
momenta. Whend is small, onlyuc0l anduc1l are occupied,
while, in the limit d!∞, the SGA method yieldsg0 �
g1 � 2g2 � 2g3: In the Hartree–Fock approximation
[18], the momentum densityn(p) of the chain H32 is more
similar to that of a free-electron gas, with a given Fermi
momentum pF, rather than that of the hydrogen atom.
However, when the occupation number can vary, one
expects n�p� to develop high momentum tails. Recent
experiments probing the electron momentum distribution
in simple metals [2,3] have observed similar tails.

The Homogeneous Electron Gas (HEG) is another inter-
esting limit for solids. In this system, the plane waves are the
natural orbitals and the total energy per particle1 � E=N is a
function of the density parameterrs (i.e. the radius of the
volume taken by one electron). The difference between the
interacting and free HEG momentum densities for different
rs yields the Lam–Platzman correction [20] within the
density functional theory.

Csányi and Arias [21] computed the GU energy func-
tional in the HEG and minimized the result with respect to
the occupancyn�k�: At high density (smallrs), the result
seems to reproduce the correct RPA limit andn�k� has a
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Daniel–Vosko like momentum dependence [22].
However, whenrs� 1, one findse � 0:546�a:u:�; while
the Diffusion Quantum Monte Carlo givese �
0:596�a:u:� [19]. This is quite a surprising result, since
a variational result should be always greater than the exact
energy. The reason is that the two-particle reduced density
matrix s has been varied over too large class of functions:
the restriction toN-representables has not been imposed. In
other words, one cannot find a many-body state yielding this
s . The AGP is by definitionN-representable. Therefore, it
provides a general variational scheme for many-electron
system. When the AGP is applied to the interacting (with
Coulomb repulsion) HEG, one finds the independent parti-
cle occupation [23]. However, correlation effects in the
particle occupation may appear in a more realistic inhomo-
geneous electron system.

Recently, the electron momentum density of Li has
attracted a particular attention since an experimental work
by Schükle et al. [24] suggests an anomalously small Fermi
break. However, Quantum Monte Carlo simulations [25],
GW calculations by Eguiluz et al. [26] and the density func-
tional theory with the Lam–Platzman correction (shown in
Fig. 1) do not support this anomaly at the FS. One possible
reason is that all these methods use many-body wave func-
tions within the free fermion nodal structure.

It is therefore worthwhile to investigate schemes beyond
the free fermion nodal structure like the AGP. In solid Li
one can approximate the natural orbitals by the Kohn–Sham
orbitals [4] and do the following BCS ansatz for the

occupation amplitudes [27,28]

g�k� � D�k�
1�k�1

������������������
12�k�1 D2�k�

p : �21�

The band energye�k� is zero at the Fermi level andD(k) can
be either calculated variational or fitted to the experiment.
Fig. 1 shows that important correlation effects can be
observed in the Li Compton profile ifuD�k�u is about
0.1 a.u. Strikingly these effects appear to be in good agree-
ment with the difference LDA-experiment shown in the
paper by Schu¨kle et al. [24, Fig. 3]. One important message
to be drawn from this example is that the momentum distri-
bution is much more sensitive to the nodes of the many-body
function than the electron density in real space.

In conclusion, the present paper presents a total energy
functional of natural orbitals. The method goes beyond the
Slater determinant nodal structure. For two-electron
systems, it is equivalent to a configuration interaction calcu-
lation. It can capture important correlation effects in the
electron momentum density calculation. The knowledge of
these effects is crucial for a proper interpretation of the
experimental spectra.
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Fig. 1. Total valence-electron Compton profiles of Li along (1 0 0). The solid line is the LDA calculation, the dotted line is the LDA with Lam–
Platzman corrections and the dashed line is the AGP withuD�k�u � 0:1 a:u:
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[21] Gábor Csányi, T.A. Arias, cond-mat/9805388.
[22] E. Daniel, S.H. Vosko, Phys. Rev. 120 (1960) 2041.
[23] A.S. Alexandrov, A.A. Golubov, Phys. Rev. B 45 (1992)

4769.
[24] W. Schülke, G. Stutz, F. Wohlert, A. Kaprolat, Phys. Rev. B

54 (1996) 14381.
[25] C. Filippi, D.M. Ceperley, Phys. Rev. B 59 (1999) 7907.
[26] A.G. Eguiluz, W. Ku, J.M. Sullivan, cond-mat/9811282 and

these proceedings.
[27] C. Gros, Phys. Rev. B 38 (1988) 931.
[28] S.E. Barnes, J. Phys. Chem. Solids 52 (1991) 1525.

B. Barbiellini / Journal of Physics and Chemistry of Solids 61 (2000) 341–344344


