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ABSTRACT We present a protein fold-recogni-
tion method that uses a comprehensive statistical
interpretation of structural Hidden Markov Models
(HMMs). The structure/fold recognition is done by
summing the probabilities of all sequence-to-struc-
ture alignments. The optimal alignment can be de-
fined as the most probable, but suboptimal align-
ments may have comparable probabilities. These
suboptimal alignments can be interpreted as opti-
mal alignments to the “other” structures from the
ensemble or optimal alignments under minor fluc-
tuations in the scoring function. Summing probabili-
ties for all alignments gives a complete estimate of
sequence-model compatibility. In the case of HMMs
that produce a sequence, this reflects the fact that
due to our indifference to exactly how the HMM
produced the sequence, we should sum over all
possibilities. We have built a set of structural HMMs
for 188 protein structures and have compared two
methods for identifying the structure compatible
with a sequence: by the optimal alignment probabil-
ity and by the total probability. Fold recognition by
total probability was 40% more accurate than fold
recognition by the optimal alignment probability.
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INTRODUCTION

Protein fold-recognition methods have evolved into vi-
able tools that help to deduce protein structure and
function.1 The ultimate goal of fold recognition is to predict
protein structure by identifying the correct fold (structural
template) among already-solved protein structures or mod-
els and correctly aligning the protein sequence onto the
structural model. Most fold-recognition methods use Boltz-
mann statistics to interpret probabilistic scoring func-
tions.2–12 Sequence-to-structure alignments are evaluated
in terms of a scoring function and the score of the
alignment is interpreted as a “free energy” of the sequence
in the conformation imposed by the alignment. This inter-
pretation dictates that the most probable sequence-to-
structure alignment is the one with the lowest “free
energy.” If one assumes that most structural models used
for fold recognition represent an ensemble of similar
structures, then the most probable (or lowest free energy)
alignment represents only one of the fold variants. Thus,
we investigated a fold-recognition procedure that evalu-

ates the sequence-model compatibility by using the sum of
the probabilities of all sequence-to-structure alignments.
The mathematical justification for such a method was
discussed previously for HMMs13 and in general terms for
a threading approach to protein structure prediction.14,15

From the probabilistic viewpoint, the first approach at-
tempts to maximize P(seq|Model,optimal-alignment) as a
function of the alignment, while the second approach sums
over all alignments.

The optimal sequence-to-structure alignment is rarely
the correct one.2,16,18 This situation reflects two facts
about mathematical models of protein structure and struc-
ture prediction by threading. First, scoring functions that
are used to evaluate sequence-to-structure alignments are
statistical approximations of the “true” scoring function or
“free energy.” In consequence, the set of suboptimal align-
ments should be seen as a set of optimal alignments under
expected minor fluctuations in the scoring function. Sec-
ond, a structure model should be seen as a statistical
representation of an ensemble of similar structures or
expected variations about a unique fold topology. A set of
suboptimal alignments can be interpreted as optimal
alignments to structural variants of the same fold. Accord-
ing to the theory of Hidden Markov Models (HMMs),
summing probabilities for all sequence-to-structure-model
alignments gives the rigorous probability of observing the
sequence given the structure model P(seq|Model).13

In our approach, the structure is modeled as a Discrete
State Model (DSM)13,19, which is mathematically repre-
sented as an HMM. This is a linear representation of the
3D protein structure that is essentially equivalent to a set
of structural profiles.20 The distinction between a DSM
and an HMM is that HMMs are traditionally trained by an
automated analysis of historical data. DSMs, in contrast,
are physically-based probabilistic models. DSMs are built
by using physically motivated structural building blocks.
Other Hidden Markov Models for protein structure predic-
tion or fold recognition have been proposed recently.21

These HMMs are constructed from a generic HMM mod-
ule. Subsequently, the generic HMM is trained, using a set
of protein sequences that adopt similar 3D structures, to
represent a structural fold. The potential problem with
trained HMMs is that only the type of fold variation seen
in the training set will be encoded in the model. For
example, if only two surface loops are observed to vary in
length in the training set, then other surface loops will be
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TABLE I. Results of the Fold-Recognition Experiments for 188 SCOP Superfamily Representatives†

Sequence
PDB code
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1531 0.83 1531 1 0.99 1531 1 1a17 0.94 1a17 1 0.99 1a17 1
1a1x 0.63 1cmcA 18 0.50 1nsgB 26 1a32 0.89 1a32 1 0.99 1a32 1
1a62 0.93 1a62 1 0.61 2mhr 4 1a68 0.77 1a68 1 0.44 1nsgB 7
1a6jA 0.98 1a6jA 1 0.62 1flp 2 1a9t 0.99 1a9t 1 0.99 1a9t 1
1aa7B 0.98 1aa7B 1 0.62 1aa7B 1 1aazA 0.72 1aazA 1 0.50 1cmcA 4
1ab8B 0.85 1ab8B 1 0.51 1nfn 2 1acx 0.37 1acx 1 0.42 11kkA 29
1add 0.99 1add 1 0.98 1add 1 1ae9B 0.98 1ae9B 1 0.64 1nfn 2
1aep 0.88 1aep 1 0.99 1aep 1 1aerB 0.99 1aerB 1 0.89 1aerB 1
1af5 0.37 1af5 1 0.81 256bA 10 1ahq 0.46 1ravA 7 0.37 1flp 8
1air 0.99 1air 1 0.77 1cem 4 1aj2 0.99 1aj2 1 0.54 1ribA 2
1ako 0.99 1ako 1 0.99 1ako 1 1alkA 0.99 1alkA 1 0.77 1ft1A 2
1am2 0.99 1am2 1 0.99 1am2 1 1amk 0.87 1gky 7 0.99 21bd 17
1amp 0.99 1amp 1 1.00 1amp 1 1amx 0.94 1amx 1 0.95 1amx 1
1an7A 0.95 1an7A 1 0.98 2asr 3 1aol 0.99 1aol 1 0.99 1aol 1
1apa 0.99 1apa 1 1.00 1apa 1 1av6A 0.99 1av6A 1 0.98 1av6A 1
1awd 0.99 1awd 1 0.96 1awd 1 1axn 0.99 1axn 1 1.00 1axn 1
1ay9B 0.76 1ay9B 1 0.45 1cewI 4 1ayi 0.98 1ayi 1 0.99 1ayi 1
1ba7A 0.37 1cghA 4 0.82 1nfn 65 1bam 0.92 1bam 1 0.73 1nfn 2
1bgc 0.99 1bgc 1 0.99 1bgc 1 1bkrA 0.91 1bkrA 1 0.70 1bkrA 1
1ble 0.65 1cyw 2 0.79 1aep 7 1bme 0.99 1bme 1 0.55 1cby 2
1btn 0.82 1btn 1 0.86 256bA 8 1bv1 0.99 1bv1 1 0.59 1flp 2
1c52 0.99 1c52 1 0.95 1c52 1 1cby 0.99 1cby 1 0.99 1cby 1
1cem 1.00 1cem 1 1.00 1cem 1 1cewI 0.97 1cewI 1 0.90 1cewI 1
1cex 0.99 1cex 1 0.99 1cex 1 1cghA 0.56 1cghA 1 0.80 1nfn 22
1cgmE 0.67 6fd1 18 0.60 2asr 5 1chd 0.99 1chd 1 0.88 1chd 1
1cmcA 0.60 1cmcA 1 0.76 256bA 3 1cpt 1.00 1cpt 1 0.99 1cpt 1
1cyw 0.99 1cyw 1 0.83 1nfn 2 1deaB 0.99 1deaB 1 0.99 1deaB 1
1dhpA 1.00 1dhpA 1 1.00 1dhpA 1 1div 0.99 1div 1 0.70 1lis 2
1dosA 0.89 1dosA 1 0.99 1dosA 1 1ecmB 0.98 1ecmB 1 0.93 1ecmB 1
1ema 0.99 1ema 1 0.99 1ema 1 1exnB 0.99 1exnB 1 0.99 1exnB 1
1fiaB 0.98 1fiaB 1 0.99 1fiaB 1 1fkd 0.98 1fkd 1 0.89 2mhr 2
1flp 0.48 256bA 2 0.98 1flp 1 1fmb 0.41 1fmb 1 0.30 1tu1 2
1fmcA 1.00 1fmcA 1 1.00 1fmcA 1 1fna 0.99 1fna 1 0.95 1fna 1
1fps 0.99 1fps 1 1.00 1fps 1 1frb 0.99 1frb 1 0.99 1frb 1
1ft1A 1.00 1ft1A 1 1.00 1ft1A 1 1fua 1.00 1fua 1 0.99 1fua 1
1garB 0.97 1garB 1 0.96 1garB 1 1gen 0.99 1gen 1 0.98 1gen 1
1gky 0.97 1gky 1 0.55 1nfn 2 1gox 0.98 1gox 1 1.00 1ribA 9
1gpr 0.82 1gpr 1 0.87 1gtqA 50 1gtqA 0.99 1gtqA 1 0.99 1gtqA 1
1hfc 0.65 1hfc 1 0.84 153l 5 1htp 0.70 1jpc 2 0.72 1htp 1
1hus 0.99 1hus 1 0.94 256bA 4 1ido 0.99 1ido 1 0.99 1ido 1
1ifc 0.99 1ifc 1 0.99 1ifc 1 1iibA 0.24 1ycqA 27 0.50 1nsgB 15
1ipsA 0.99 1ipsA 1 0.99 1ipsA 1 1jdw 0.99 1jdw 1 0.99 1jdw 1
1jpc 0.95 1jpc 1 0.56 1xsoB 5 1knb 0.45 1amx 3 0.68 1ema 6
1kpf 0.47 1jpc 2 0.43 256bA 9 1ksaA 0.99 1ksaA 1 0.99 1cem 3
1lba 0.99 1lba 1 0.56 1lba 1 1lfb 0.22 1fiaB 4 0.22 1lfb 1
1lis 0.44 1pdo 2 0.99 1lis 1 1lkkA 0.98 1lkkA 1 0.98 1lkkA 1
1lrv 0.82 1rgp 2 0.92 1rgp 3 1lxa 0.42 2prk 5 0.97 1lxa 1
1mkaB 0.99 1mkaB 1 0.99 1mkaB 1 1msk 0.99 1msk 1 0.99 1msk 1
1mspB 0.37 1ravA 2 0.91 1ravA 10 1mugA 0.90 1mugA 1 0.92 1aep 5
1nar 0.99 1nar 1 0.99 1nar 1 1nbcB 0.64 1nbcB 1 0.86 1nbcB 1
1nfn 0.97 1nfn 1 0.99 1nfn 1 1nfp 0.99 1nfp 1 0.99 1nfp 1
1nls 0.99 1nls 1 0.99 1ema 4 1npk 0.27 1c52 26 0.34 1cex 26
1nsgB 0.59 2mhr 2 0.98 1nsgB 1 1nsj 0.78 1nsj 1 0.86 1nsj 1
1nsyA 0.99 1nsyA 1 1.00 1nsyA 1 1opy 0.37 2msbA 2 0.77 1opy 1
1oroA 0.99 1oroA 1 0.99 1oroA 1 1osa 0.99 1osa 1 0.79 1osa 1
1pdo 0.99 1pdo 1 0.94 1pdo 1 1phr 0.57 1bv1 3 0.97 1cgmE 6
1pmi 1.00 1pmi 1 0.99 1pmi 1 1pne 0.23 2rhe 25 0.42 1bkrA 12
1poh 0.99 1poh 1 0.99 1poh 1 1pud 1.00 1pud 1 1.00 1pud 1
1ravA 0.22 1fmb 3 0.85 1ris 22 1regY 0.53 1a62 2 0.78 2spcB 16
1rgeA 0.39 1acx 9 0.72 1lfb 17 1rgp 0.99 1rgp 1 0.92 1rgp 1
1rhs 1.00 1rhs 1 0.99 1rhs 1 1ribA 0.99 1ribA 1 1.00 1ribA 1
1rie 0.94 1rie 1 0.40 2mbA 16 1ris 0.81 1ris 1 0.99 1ris 1
1rkd 0.99 1rkd 1 0.73 1rkd 1 1rpa 1.00 1rpa 1 1.00 1rpa 1
1rsy 0.85 1rsy 1 0.42 1rsy 1 1sfp 0.85 1alx 4 0.97 1alx 5
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either fixed in length or will be assigned very low length
variation probabilities. On the other hand, one can design
a DSM to have similar length variations in all surface
loops. The DSMs that we propose here are not trained but
are built directly from the 3D protein structures deposited
in the PDB22 in such a way as to allow for possible
variations. Hidden states of the DSM represent states of
structural positions. These states encode the secondary
structure and the level of solvent exposure of a structural
position. Each hidden (structural) state in the model is
characterized by the amino acid preferences for this state:
a structural profile. The advantage of the DSM representa-
tion over the structural profile representation20 is the
simple encoding of the structural variations possible among
structures with the same fold. These variations are usu-
ally the variable length of the secondary structure ele-
ments and alternative loop types (tight turn, turn, or coil)
or loops with variable lengths connecting the secondary-
structure elements.

Since the structure models that are derived from deter-
mined protein structures are not independent, a large
fold-model library requires a method that systematically
addresses the problem of hierarchical classification of

protein structures (structure models). Thus when calculat-
ing the posterior probabilities, P(Model|seq), which in-
volves the normalization over all models from the library,
one needs to account for the similarities among models at
each level of the hierarchy. Here we adopt the SCOP
structural hierarchy. For example, for a fold represented
by two superfamilies, each populated by four structural
families, the prior probability for each family model would
be P(Model) 5 1/2 3 1/4. The posterior probability of
observing a particular structure model, given the se-
quence, is defined according to Bayes’ rule: P(Model|seq) 5
P(Model) 3 P(seq|Model)/P(seq). In fold-recognition meth-
ods, the posterior normalization of the structure-model
probabilities avoids overestimating the probability of ob-
serving a structural fold that is represented by many
structures when compared to the probability of the fold
that is represented by only one structure.

In a set of experiments we compared the performance of
two fold-recognition methods. The first method identifies
the best structure model for a sequence by using the
probability of the optimal sequence-to-structure align-
ment. The second method identifies the best structure
model for a sequence by using the total sequence-to-

Sequence
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Filtering Viterbi
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probability

Top family
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rank
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family
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code
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rank
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probability
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Top family
probability

Top
family
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Native
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1smnB 0.82 1smnB 1 0.76 2cyp 2 1snc 0.39 1snc 1 0.99 2asr 12
1tig 0.99 1tig 1 0.45 1a32 2 1tlcB 0.99 1tlcB 1 0.99 1tlcB 1
1tm1 1.00 1tm1 1 1.00 1tm1 1 1tmy 0.98 1tmy 1 0.70 1tmy 1
1toh 0.99 1toh 1 0.60 1fps 2 1ttaB 0.58 1ttaB 1 0.99 1lis 5
1tul 0.40 1tu1 1 0.65 1ecmB 9 1uch 1.00 1uch 1 1.00 1uch 1
1udiI 0.82 1ycqA 4 0.70 1a32 12 1vhh 0.36 1pdo 9 0.24 1flp 8
1wab 0.99 1wab 1 0.99 1wab 1 1wgjB 0.99 1wgjB 1 0.96 1wgjB 1
1whi 0.61 1af5 2 0.38 1hus 11 1who 0.44 1fna 3 0.45 2end 3
1wpoB 0.99 1wpoB 1 0.71 1lxa 5 1xaa 0.99 1xaa 1 0.89 1cem 2
1xsoB 0.99 1xsoB 1 0.99 1xsoB 1 1ycqA 0.22 1aazA 3 0.97 1ecmB 10
1ycsA 0.96 1ycsA 1 0.42 1amx 17 1yer 0.99 1yer 1 0.99 1yer 1
1ygs 0.99 1ygs 1 0.82 1ygs 1 1ytw 1.00 1ytw 1 1.00 1ytw 1
256bA 0.99 256bA 1 0.99 256bA 1 2a0b 0.83 2a0b 1 0.99 2a0b 1
2aacA 0.99 2aacA 1 0.99 2aacA 1 2aak 0.99 2aak 1 0.99 2aak 1
2acy 0.48 2acy 1 0.66 1bkrA 5 2asr 0.99 2asr 1 0.99 2asr 1
2bopA 0.78 2bopA 1 0.68 1fiaB 2 2cba 0.97 2cba 1 0.83 1lrv 2
2cpl 0.99 2cp1 1 0.99 2cp1 1 2cyp 0.99 2cyp 1 1.00 2cyp 1
2dkb 0.99 2dkb 1 0.99 2dkb 1 2dri 0.48 1nsj 8 0.99 2dri 1
2end 0.97 2end 1 0.95 2end 1 2hts 0.33 2hts 1 0.26 2end 4
2lbd 1.00 2lbd 1 1.00 2lbd 1 2mhr 0.65 2hts 2 0.91 2mhr 1
2msbA 0.85 2msbA 1 0.66 1lfb 3 2phy 0.39 1opy 3 0.93 1opy 4
2plc 0.99 2plc 1 0.85 1rgp 3 2prk 0.99 2prk 1 0.64 1cem 2
2pth 0.55 1npk 2 0.93 2pth 1 2rhe 0.66 2rhe 1 0.23 1cmcA 10
2rn2 0.99 2rn2 1 0.99 2rn2 1 2sak 0.91 2sak 1 0.99 2sak 1
2sicI 0.91 2sicI 1 0.88 2sicI 1 2sil 0.99 2sil 1 0.91 2sil 1
2sniI 0.82 2sniI 1 0.96 2sniI 1 2spcB 0.99 2spcB 1 0.99 2spcB 1
2stv 0.97 2stv 1 0.48 2stv 1 3b5c 0.68 1fkd 6 0.64 1a32 22
3bct 0.99 3bct 1 0.99 3bct 1 3cla 0.99 3cla 1 0.37 1aep 4
3lip 0.65 1ako 9 0.99 1cem 5 4fgf 0.97 4fgf 1 0.75 1vhh 6
4xis 1.00 4xis 1 0.99 4xis 1 6fd1 0.77 6fd1 1 0.76 6fd1 1

†The structure prediction was done at the structural family level. For this structure-model library it is the same as SCOP structural superfamily
prediction since only one family represents each superfamily. Top family indicates the most probable family according to the posterior probability
value.
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structure alignment probability. Our results demonstrate
that the total probability method predicts the structure
model compatible with a sequence 40% more accurately
than the optimal alignment probability method. For both
methods we used the hierarchical posterior normalization
of probabilities of structure models.

MATERIALS AND METHODS
DSM Structure Models

We constructed our DSM library by selecting 188 pro-
tein structures from the SCOP database.23 These proteins
were selected from SCOP (release pdb40d_1.38) represen-
tatives that have less than 40% sequence identity among
themselves. We eliminated structures classified as irregu-
lar, engineered, or membrane-protein from the original set
of proteins provided by SCOP. We additionally restricted
proteins to one representative per SCOP structural super-
family and to single structural domains. The PDB identifi-
ers for all the structures are given in Table I.

Each DSM is represented by three matrices: F, H, and
x1. The transition matrix F holds the conditional transi-
tion probabilities f(s|s9) of passing from each structural
state s9 to state s. The matrix H holds the conditional
probabilities h(a|s) of amino acid residue a being observed
in (or emitted by) a structural state s. The initial state-
distribution matrix x1 is a vector holding the probabilities
x1(s) that the Markov chain starts in any state s at the
beginning of the sequence.

Our structure models comprise positions that have the
secondary structure (SS) assigned by DSSP24 as helix or
strand. One-residue kinks in helices are smoothed over
and assigned helix secondary structure. The distance
between the end positions of consecutive secondary struc-
ture elements is recorded and used to determine if tight
turn or beta-turn loops are geometrically possible connec-
tions between consecutive elements. Structural positions
are constructed from the backbone atoms and the beta
carbon (Cb) or modeled Cb for the positions occupied by
glycine in the native structure. Each structural-position
environment is described by its secondary structure and
Eisenberg-like solvent exposure of the position.25 Solvent
exposure is calculated for the poly-alanine chain and is
independent of amino acids present in the native struc-
ture. By using the solvent exposure value, we define three
solvent-exposure states: buried, partially buried, and ex-
posed. Thus we have six types of structural states in all,
counting positions in helix or strand. The possible loop
states are tight turn (two-residue loops), beta turn (four
residue loops), and coil loops longer than four residues.

An additional complication for the model building is
posed by the fact that many protein structures are solved
as a complex of a protein bound to a cofactor or other
protein. Cofactors are often bulky and the solvent expo-
sure pattern of a protein structure differs substantially,
depending upon whether it is considered alone or with the
cofactor bound. Thus for some of the 188 single-domain
proteins, we built more than one structural DSM. If the
protein structure is present in the PDB as a dimer then
two models were built: one with the solvent exposure

calculated for a dimeric structure and the second with the
solvent exposure calculated for a monomeric structure.
The number of constructed models exceeded two when
there was more than one cofactor bound to the protein.
Using this procedure we generated 350 DSMs from 188
protein structures.

These DSMs are built directly from protein structures
deposited in the PDB by representing the structural
positions as hidden states. An encoding of structural
elements onto a DSM is shown in Figure 1. The secondary
structure element, a b-strand or an a-helix, with n struc-
tural positions is represented as a strand or helix module.
Each module of this top-level DSM is itself a DSM that
starts and ends with a junction. The junctions do not emit
amino acids. The observed variations among homologous
structures are encoded by allowing an extension/deletion
of the secondary structure by one position. An example of a
strand module is shown in Figure 2. A helix module is
constructed in a similar manner. The allowed loop-length
variations are encoded in a generic loop module. A priori,
three loop types are equally likely to connect any two
consecutive SS elements: a tight turn, a beta turn, and a
random coil. However, the analysis of observed loops
indicates that if the distance between the end of the first
SS element and the beginning of the following one is
greater than 4.3 Å, no tight turn is possible. When the
distance is greater than 10.5 Å, no beta turn is possible.
Thus relative geometry of neighboring SS elements deter-
mines the possible loop types for a particular structure
model. The loop module is shown in Figure 3.

The conditional probabilities of observing different amino
acids given the structural state of the residue position are
obtained from statistics on a large set of representative
structures (unpublished data). These probabilities are
independent of the particular structure being modeled.
The transition probabilities from one structural state to
another are selected to span or cover the expected varia-
tions in the homologous structures. Thus the probability of
the SS element having the same length as the native
structure is modeled by a transition probability of 1/3, the
shortening of an SS element by one position has a probabil-
ity of 1/3, and the extension of an SS element by any one of
three solvent-exposure states has a probability of 1/9 (see
Fig. 2). This a priori assignment of the transition probabili-
ties differs from the usual HMM-building approach where
the transition probabilities are trained by using a set of
representative structures and proteins. Training of such
HMMs is not feasible for folds having only one representa-
tive structure.

Posterior Probabilities of Models

The fold-recognition problem can be simply formulated
as finding the posterior probabilities of different structure
models given the query sequence: P(Model|seq). All avail-
able structure models define a model library. Two probabili-
ties for observing a sequence, given a model, can be
calculated using well-known algorithms.19,26 First, the
P(seq|Model,optimal-alignment) is the probability of ob-
serving a sequence, given a model and an optimal sequence-
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Fig. 2. A DSM strand module created from a strand of length n.
Structural hidden states for strand residues are represented as triangles.
“Si” denotes the solvent exposure state of the i-th strand position in the
native structure. “Se” denotes an extension of the strand by an exposed
strand position. “Sb” denotes a buried strand position and “Spb” denotes a

partially buried strand position. Arrows connecting states represent the
nonzero transition-matrix elements and numbers assigned to each line
represent the transition probabilities. The arrows with no numbers
associated with them have a transition probability equal to one.

Fig. 1. Encoding of a structure from the PDB into DSM modules. Each structural element is represented by a
building module: strand, helix, or loop. The internal parameters of each module, such as the number and type of
hidden states and transition-matrix probabilities, are derived from the structural information as described in
text.
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to-structure-model alignment (optimal path through the
HMM). In HMM terminology, the algorithm that finds the
optimal alignment (the most probable path) is called the
Viterbi algorithm.27 For all practical purposes, the Viterbi
algorithm is equivalent to dynamic programming align-
ment algorithms.28 The optimal alignment probability can
be interpreted as the minimal “free energy” of the se-
quence in the conformation that is defined by the optimal
alignment or path through the model. Second, the
P(seq|Model) is the total probability of observing a se-
quence, given all possible alignments or paths through the
model. In HMM terminology, the algorithm that calculates
the probability summed over all sequence-to-structure-
model alignment is called the Filtering algorithm.19,26

Mathematically the P(seq|Model) gives a rigorous probabil-
ity of observing a sequence, given the structure model.13

We use the implementations of the Viterbi and the Filter-
ing algorithms as described in references 13,19.

The posterior probabilities of observing a model given
the sequence are calculated according to the Bayesian
formula:

P~Modeluseq! 5
P*~sequModel! z P~Model!

P~seq!
(1)

P(seq) 5 P(ai), where P(ai) is the probability of observing
the amino acid ai in soluble proteins. P*(seq|Model)

indicates that we may use either the optimal-alignment
probability or the total alignment probability. P(Model) is
a prior probability of observing the Model. The probabili-
ties are normalized according to the equation:

O
Models[Library

P~Modeluseq! 5 1 (2)

The prior probabilities for each structure model in the
library are assigned following a structural classification
hierarchy. In our library we have models belonging to one
of four structural classes: a, b, a/b, or a 1 b. Each class is
assigned a prior probability of 0.25. Each class is repre-
sented by a number of SCOP structural folds 5 # folds/
class. Each fold is represented by a number of SCOP
structural superfamilies 5 # superfamilies/fold. Each su-
perfamily is represented by a number of SCOP structural
families 5 # families/superfamilies. Each family is repre-
sented by a number of Discrete Space Models that belong
to the family 5 # models/family. Our library contains
multiple models that were constructed from the same PDB
entry with differences between DSMs that result from
alternative solvent exposure estimates, as described above.
Thus even if there is only one PDB entry that represents a
SCOP superfamily, a structural superfamily may be repre-
sented by more than one DSM. The prior probability of a
DSM classified by its class, fold, superfamily and family is

P~Model! 5 0.25 3
1

#folds/class 3
1

#superfamilies/folds

3
1

#families/superfamily 3
1

#models/family (3)

By using the hierarchically-assigned model priors, we
can rigorously answer the question: what is the probability
of observing a unique structural superfamily given a
sequence? The posterior probability of observing a unique
structural superfamily given a sequence is

P~superfamilyuseq! 5 O
Model[family[superfamily

P~Modeluseq! (4)

Analogous equations apply for the posterior probabili-
ties calculated for any level of the structural hierarchy:
class, fold, superfamily, or family.

We use a simple binary decision rule: either one model is
preferred in comparison to all others or not. Thus we
accept only the top folds/models with the posterior probabil-
ity greater than 0.5.

RESULTS AND DISCUSSION

We compared two alternative methods of fold recogni-
tion. In the first, the Viterbi method, we used the value of
the optimal sequence-to-model alignment probability as
calculated by the Viterbi algorithm. In the second, the
Filtering method, we used the value of the total probability
as calculated by the Filtering algorithm. For both meth-
ods, we used the hierarchical prior model probabilities to
calculate the normalized posterior probability values and
to make a fold prediction.

Fig. 3. A generic DSM loop module. Three types of loops connecting the
secondary structure elements are possible: tight turn (Tt), beta turn (Tb),
and coil or irregular loop (C). Arrows connecting states represent the
nonzero transition-matrix elements and numbers assigned to each arrow
represent the transition probabilities. The arrows with no numbers
associated with them have a transition probability equal to one. The
transition probabilities P(Tt), the probability of a tight turn, P(Tb), probabil-
ity of a beta turn, or P(C), probability of coil are determined from the
geometry of consecutive SS elements. If all three loops are possible
P(Tt) 5 P(Tb) 5 P(C) 5 1/3. If a tight turn is not allowed, P(Tb) 5 P(C) 5
1/2 and P(Tt) 5 0. The transition probabilities PN, 1-PN for coil loop states
are set to represent a uniform loop-length distribution between minimal
loop length Lmin and maximal loop length Lmax. For loop lengths greater
than maximum (Lmax , N) the loop-length distribution drops off exponen-
tially. When only a coil is allowed, the minimal loop length is determined by
the distance between the ends of consecutive SS elements; otherwise it is
set to four when additionally a beta turn is allowed and it is set to two when
a tight turn is also allowed. When the native-structure loop is shorter than
ten residues Lmax is set to ten. Otherwise Lmax is equal to the length of the
native-structure loop. The N- and C-terminal loop modules have the
P(Tt) 5 P(Tb ) 5 0 and the loop can have zero length. The loop module
does not contain any information about the solvent exposure of loop
positions.
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In the first set of experiments, we calculated
P(family|seq), the posterior probability for each structural
family, for 188 native sequences on 350 DSMs from our
library. The fold prediction results for the Viterbi and for
the Filtering method are presented in Table I. The poste-
rior probabilities of observing a structural family given the
sequence were normalized according to Eqs. 1, 2, and 3.
With the Filtering fold-recognition method, 152 out of 188
sequences ranked the native structural family with the
highest probability. With the Viterbi fold-recognition
method, 110 out of 188 sequences ranked the native
structural family with the highest probability. The “accept-
able” predictions with the top structural family that had a
probability of at least 0.5 had the following results. For the
Filtering fold-recognition method, there were 161 predic-
tions and 145 were correct: a 90% success rate. For the
Viterbi fold-recognition method, there were 188 predic-
tions and 107 were correct: a 64% success rate. These
results demonstrate that the Filtering fold-recognition
method is 40% more accurate than the Viterbi fold-
recognition method.

In the second set of experiments, we tested performance of
the fold-recognition methods in recognizing the structures of
proteins that do not necessarily share sequence similarity
with the proteins used to generate our set of 350 DSMs but
nevertheless have similar structural folds. For testing, we
used a set of proteins classified into ten SCOP structural
folds that were recently used for testing the Recursive
Dynamic Programming (RDP) threading fold-recognition
method.11 We removed the cysteine-knot cytokines fold be-
cause it is an irregular fold with very few secondary-
structure elements. Our DSMs are based primarily on second-
ary-structure and solvent-exposure preferences and such
irregular structures do not produce specific DSMs. In these
experiments, we calculated the posterior probability
P(fold|seq) for each structural fold for 71 sequences listed
Table II on our library of 350 DSMs. The fold-recognition
results for the Viterbi and for the Filtering method are
presented in Table II. With the Filtering fold-recognition
method, 33 out of 71 sequences ranked the correct structural
fold with the highest probability. With the Viterbi method,
only 31 out of 71 sequences ranked the correct structural fold
with the highest probability.

When prediction is restricted to a posterior probability of
at least 0.5, the Filtering method predicted 32 of 53
correctly: a 60% success rate. The Viterbi method pre-
dicted only 29 of 66 correctly: a 44% success rate. These
results confirm that the Filtering fold-recognition method
is 40% more accurate than the Viterbi fold recognition. The
Filtering fold-recognition rate of 60% is slightly better
than the 57% reported for RDP threading.11

The worst fold-recognition rate by the Filtering method
was obtained for the a/b hydrolases (a 0% fold-recognition
rate), represented in our library by only one model struc-
ture (3lip) and for the viral coat and capsid protein fold
(17% correct) represented in our library by only one model
structure (2stv). Both of these folds are adopted by pro-
teins with highly variable sequence lengths as reported by
Thiele et al.11 The length of a/b hydrolases varies from 265

to 534 amino acids and the length of viral coat proteins
varies from 175 to 548 amino acids. Our DSM variations in
the secondary-structure segment and loop lengths are not
large enough to accommodate such differences. Thus it is
not surprising that having only one representative struc-
ture for such diverse folds limits the fold-recognition
method severely. These results call for the expansion of
our model library to include more nonhomologous represen-
tatives for each structural family.

The most frequently used test set for the fold-recognition
methods is the UCLA1 benchmark proposed by Fischer
and Eisenberg.29 We compared our fold-recognition method
with the results of the GenTHREADER reported recently
by Jones in reference 12. The GenTHREADER was one of
three top-ranked methods during the recent CASP3 fold-
recognition contest.1 It thus appears to be a very good
representative of other fold-recognition methods. The
UCLA1 benchmark comprises a library of 296 representa-
tive structures and a set of 68 pairs of proteins with low
sequence similarity, which are supposed to be identified by
fold recognition. Of these 68 pairs, only 44 have a target
structure classified by both SCOP and CATH as a single
structural domain. It should be noted that many of the
benchmark pairs represent functionally related proteins,
since with significant sequence similarity, they share at
least one functional domain.

Like most fold-recognition methods, GenTHREADER
includes a sequence similarity measure between the tem-
plate structure and the query sequence. Such methods use
a dynamic programming algorithm to align a query se-
quence to a structural template and do not require that
every amino acid in the sequence be represented by a state
from a structural template. Thus a very short sequence,
representing a single domain protein can be aligned to a
model of a very long multidomain protein and vice versa.
In contrast, the DSMs that we propose here require that
every amino acid from the query sequence is emitted by (or
aligned to) some modeled structural state. The structure of
the DSMs permits threading of a sequence onto a model of
comparable length. In particular, sequences or partial
sequences that are shorter than the minimum length path
through the model have a prior probability set to zero. To
be consistent with this framework, we examined only
those protein pairs from the UCLA1 benchmark that
represent single-domain structures. This leaves for consid-
eration 44 pairs with PDB structure codes: 1bovA, 1cauA,
1ede, 1ego, 1hbg, 1ifc, 1lfb, 1molA, 1nsbA, 1paz, 1rbp,
1rnh, 1shaA, 1tca, 1ubq, 1ycc, 256bA, 2ayh, 2ccyA, 2cpp,
2fox, 2fxb, 2gmfA, 2hipA, 2plv1, 2rhe, 2scpA, 2tbvA, 2trxA,
3hlaB, 4cla, 7rsa, and 9rnt (few target structures occur
more than once in the benchmark). From those 44 query
sequence-target structure pairs, 6 (3cd4-2rhe, 1dsbA-
2trxA, 1cid-2rhe, 1crl-1ede, 1bgeB-2gmfA, and 1gp1A-
2trxA) had query sequences too long to fit onto the
assigned target model. Three of those query sequences are
two-domain proteins and the last three represent the
SCOP superfamily member with a sequence too long for
the target protein model. We were forced to limit the set of
68 protein pairs to the 38 listed Table III. For those pairs,
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TABLE II. Results of the Fold-Recognition Experiments for Ten SCOP Structural Folds†

Sequence
PDB
code

Correct fold
PDB code

Fold-recognition method

Filtering Viterbi

Top fold
probability

Top fold PDB
codes

Correct
fold
rank

Top fold
probability

Top fold PDB
codes

Correct
fold
rank

SCOP fold classification: OB fold
1gpc 1a62 0.34 1aerB 14 0.97 1lxa 39
1snc 1a62 0.39 1gpr 1htp 2 0.94 4-helix bundle 10
1prtF 1a62 0.42 1lfb 2hts 40 0.78 4-helix bundle 32
1prtD 1a62 0.47 2sicI 38 0.39 2end 13
1a62 1a62 0.77 1a62 1snc 1wgjB 1 0.69 1cis 5
1pyp 1a62 0.99 1a62 1snc 1wgjB 1 0.84 1a62 1snc 1wgjB 1
1wgjA 1a62 0.99 1a62 1snc 1wgjB 1 0.94 1a62 1snc 1wgjB 1
2prd 1a62 0.99 1lxa 20 0.63 a/a superhelix 34
SCOP fold classification: four-helical cytokines
1lki 1bgc 0.71 1bgc 1 1.00 1bgc 1
1ilk 1bgc 0.96 4-helix bundle 23 1.00 4-helix bundle 4
1huw 1bgc 0.97 1ahq 21 0.77 1flp 3
1bgc 1bgc 0.99 1bgc 1 1.00 1bgc 1
SCOP fold classification: globin-like
1eca 1flp 0.35 1ahq 36 0.54 1flp 1
1cpcA 1flp 0.39 1hfc 41 0.70 4-helix bundle 2
1pbxA 1flp 0.45 1cewI 1opy

1udiI
10 0.94 1flp 1

2gdm 1flp 0.50 1flp 1 0.85 4-helix bundle 2
2fal 1flp 0.66 1flp 1 0.91 1flp 1
2hbg 1flp 0.67 1ae9B 23 0.45 1flp 1
1flp 1flp 0.75 1flp 1 0.99 1flp 1
1hlb 1flp 0.85 1flp 1 0.51 1flp 1
1hrm 1flp 0.96 1flp 1 0.99 1flp 1
1ash 1flp 0.97 1flp 1 0.99 1flp 1
3sdhA 1flp 0.99 1a62 1snc 1wgjB 57 0.92 1flp 1
1cpcB 1flp 0.99 1flp 1 1.00 1flp 1
SCOP fold classification: lipocalins
1mup 1ifc 0.30 1ifc 1 0.61 1aep 31
1bbpA 1ifc 0.38 1knb 2 0.22 1cex 1tmy 1wab 17
1epaA 1ifc 0.92 1ifc 1 0.80 1aep 17
1hbq 1ifc 0.96 1ble 3 0.85 1aep 39
1ifc 1ifc 0.99 1ifc 1 1.00 1ifc 1
1hmt 1ifc 0.99 1ifc 1 1.00 1ifc 1
SCOP fold classification: a/b TIM-barrel
1ubsA 1nar 0.24 1rhs 8 0.95 2cyp 19
1fbaA 1nar 0.41 2dri 2 1.00 1fps 7
5tima 1nar 0.49 1chd 3 0.68 1cem 2
1pbgA 1nar 0.49 1jdw 4 0.65 1ribA 5
1xyzA 1nar 0.53 a/b TIM-barrel 1 1.00 1ribA 9
1oyc 1nar 0.64 1rpa 2 0.62 1fps 7
1byb 1nar 0.92 1alkA 6 1.00 a/a superhelix 5
1nar 1nar 0.99 a/b TIM-barrel 1 1.00 a/b TIM-barrel 1
1nfp 1nar 0.99 a/b TIM-barrel 1 1.00 a/b TIM-barrel 1
2ebn 1nar 0.99 a/b TIM-barrel 1 0.99 a/b TIM-barrel 1
2acq 1nar 1.00 a/b TIM-barrel 1 1.00 a/b TIM-barrel 1
SCOP fold classification: four-helical up-and-down bundle
2hmzA 1nfn 0.53 4-helix bundle 1 1.00 4-helix bundle 1
2tmvP 1nfn 0.76 1gpr 1htp 9 0.58 4-helix bundle 1
1was 1nfn 0.99 4-helix bundle 1 1.00 4-helix bundle 1
2ccyA 1nfn 0.99 4-helix bundle 1 0.87 2spcB 2
11pe 1nfn 0.99 4-helix bundle 1 1.00 4-helix bundle 1
1nfn 1nfn 0.99 4-helix bundle 1 1.00 4-helix bundle 1
256bA 1nfn 0.99 4-helix bundle 1 1.00 4-helix bundle 1
SCOP fold classification: flavodoxin-like
3tmy 1tmy 0.94 1cex 1tmy 1wab 1 0.68 1cex 1tmy 1wab 1
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the query sequence can be threaded onto the “correct”
DSM that represents a single structural domain.

By using the software described in Methods, we have
built a DSM library from the benchmark library of struc-
tures. Since most of the benchmark pairs represent pro-
teins from the same functional family, the sequence simi-
larity between the query and the target could play a
crucial role in fold recognition. Thus for each target
protein, we have created additional DSMs with an embed-
ded minimal pattern of residues conserved within the
functional family. Pattern embedding in a structural DSM
was described previously.30 In each model, a structural
state of the position occupied by the strictly-conserved
residue was replaced by a state that represented the
conserved amino acid. The probability of emitting any
other amino acid from the conserved position was set to
zero. Only the structural positions that were located in a
strand or a helix or at the start/end position of a strand or
helix had the conserved-residue state embedded. Here, we
did not design a separate model for the conserved residues
embedded in a loop DSM module. Thus, functionally
conserved residues in loop positions were not included.

Different target protein families have different numbers
of conserved positions. Thus for each structure, we built a
number of minimal-pattern-embedded DSMs. Such a pro-
cedure creates many models for some PDB structures and
very few for others. Additionally, the UCLA1 benchmark
library consists of proteins that are either single- or
multi-domain proteins. Thus the task of assigning the
model priors for the UCLA1 benchmark is not as straight-
forward as for our standard DSM library that represents
only single structural domains. To avoid bias between the
underrepresented and overrepresented structural do-
mains and folds, each sequence-to-PDB-structure score
was selected as the best score among DSMs made from
that PDB structure. This method of scoring is equivalent
to the scoring method used by GenTHREADER and other
fold-recognition methods where no prior information about
the fold or superfamily representation is included.

In Table III we present detailed results of the Filtering
fold-recognition experiment done for the 38 protein pairs
threaded through the library of structural and minimal-
pattern-embedded DSMs created from the benchmark
library of structures. For each query sequence, we report

Sequence
PDB
code

Correct fold
PDB code

Fold-recognition method

Filtering Viterbi

Top fold
probability

Top fold PDB
codes

Correct
fold
rank

Top fold
probability

Top fold PDB
codes

Correct
fold
rank

3chy 1tmy 0.99 1cex 1tmy 1wab 1 0.92 1cex 1tmy 1wab 1
2fox 1tmy 0.99 1cex 1tmy 1wab 1 0.74 1cex 1tmy 1wab 1
1cus 1tmy 0.99 1cex 1tmy 1wab 1 1.00 1cex 1tmy 1wab 1
1rcf 1tmy 0.99 1mugA 4 0.80 1bgc 12
SCOP fold classification: viral coat and capsid proteins
4rhv3 2stv 0.45 3cla 4 0.88 1ema 5
1bbt3 2stv 0.48 1cghA 29 0.75 1531 21
2bpa2 2stv 0.54 1ba7A 4fgf 21 0.78 1ema 17
1bbt1 2stv 0.63 1gky 38 0.96 4-helix bundle 42
1bbt2 2stv 0.84 1am2 5 1.00 1ema 5
2stv 2stv 0.97 2stv 1 0.54 2stv 1
SCOP fold classification: a/b hydrolases
3tg1 3lip 0.28 1wpoB 48 0.68 ferredoxin-like 49
1ede 3lip 0.42 1tm1 22 1.00 21bd 24
1thtA 3lip 0.62 a/b TIM-barrel 8 0.45 1cem 16
1tahB 3lip 0.63 1av6A 5 0.85 a/a superhelix 4
3lip 3lip 0.66 1ako 6 1.00 1cem 5
1tca 3lip 0.82 2prk 18 0.91 1cby 18
SCOP fold classification: ferrodoxin-like
1regX 6fd1 0.29 1a62 1snc 1wgjB 7 0.93 2spcB 9
1aps 6fd1 0.50 b sandwich 3 0.69 1fiaB 4
2bopA 6fd1 0.61 Ferrodoxin-like 1 0.85 1fiaB 2
6fd1 6fd1 0.62 1kpf 2 0.45 Ferredoxin-like 1
1nhkR 6fd1 0.74 1pdo 8 0.94 1aep 32
1pba 6fd1 0.79 1a68 13 0.72 1a32 3
†The structure prediction was done at the structural fold level. Top fold indicates the most probable structural fold according to the posterior
probability value. For folds represented by more than three PDB entries, we used the SCOP names as follows: a/b TIM-barrel: 1add, 1aj2, 1amk,
1dhpA, 1dosA, 1frb, 1gox, 1nar, 1nfp, 1nsj, 1pud, 2plc and 4xis. 4-helix bundle. 1cgmE, 1nfn, 1nsgB, 256bA, 2a0b, 2asr and 2mhr. Ferredoxin-like:
1ab8B, 1npk, 1regY, 1ris, 2acy, 2bopA and 6fd1. b sandwich (Immunoglobuline-like): 1acx, 1fna, 1mspB, 1xsoB and 2rhe. a/a superhelix: 1a17,
1ft1A, 1lrv and 3bct.
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the rank of the benchmark target structure. We report in
Table IV the highest rank of the structure with the CATH
fold assignment (first three numbers) identical to that of
the query sequence, the CATH rank. Out of 38 query
sequences, 28 recognized the correct target structure at
rank 1 as defined by the benchmark and by CATH. The
GenTHREADER procedure for this set (see Table IV)
reported the following results: 26 out of 38 sequences have
a benchmark target at rank 1 and 28 sequences had a
CATH rank 1. Out of ten benchmark pairs that are
classified by SCOP as members of a different functional
family, the Filtering fold-recognition method identified

seven with CATH rank 1, while GenTHREADER identi-
fied five with CATH rank 1. The Filtering fold-recognition
method with the library of the minimal-pattern-embedded
DSMs made 28 predictions (the probability of the top
structure was greater than 0.5) and 24 of those predictions
were correct.

Table IV compares the benchmark target rank obtained
by different fold-recognition methods. In addition to the
results reported for GenTHREADER in reference 12, we
present the results for the Viterbi fold-recognition method.
The Viterbi fold-recognition method was half as successful
as the Filtering fold-recognition method. For the same

TABLE III. Results of the Filtering Fold-Recognition Method for the UCLA1 Benchmark
and the Library of the Minimal Pattern Embedded DSMs†

Query sequence Target structure Top ranked structure

PDB Length PDB Length Prob Rank Patt PDB Length Prob

1aaj 105 1paz 123 0.117 3 3 1fkf 107 0.330
1aba 87 1ego 85 0.972 1 2 1ego 85 0.972
1aepb 161 256ba 106 0.000 2 1 2cy3 118 0.999
1bbha 131 2ccya 128 0.999 1 3 2ccyA 128 0.999
1bbt1 213 2plv1 302 0.987 1 5 2plv1 302 0.987
1c2ra 116 1ycc 108 0.299 2 1 1ego 85 0.311
1caub 184 1caua 181 0.586 1 3 1cauA 181 0.586
1cewia 108 1mola 94 0.578 1 0 1molA 94 0.578
1dxtb 147 1hbg 147 0.692 1 2 1hbg 147 0.692
1eaf 243 4cla 213 0.999 1 2 4cla 213 0.999
1fxia 96 1ubq 76 0.340 1 2 1ubq 76 0.340
1hip 85 2hipa 72 0.036 7 3 1ubq 76 0.270
1hom 68 1lfb 99 0.963 1 2 11fb 99 0.963
1hrha 136 1rnh 155 0.766 1 9 1rnh 155 0.766
1isua 62 2hipa 72 0.739 1 3 2hipA 72 0.739
1ltsd 103 1bova 69 0.795 1 0 1bovA 69 0.795
1mdc 132 1ifc 132 0.999 1 0 1ifc 132 0.999
1mup 166 1rbp 182 0.984 1 4 1rbp 182 0.984
1onc 104 7rsa 124 0.934 1 3 7rsa 124 0.934
1pfc 113 3hlab 99 0.973 1 2 3hlaB 99 0.973
1rcb 129 2gmfa 127 0.285 2 2 2end 138 0.634
1sacaa 204 2ayh 214 0.054 2 0 5ptp 223 0.877
1stfia 98 1mola 94 0.442 1 0 1molA 94 0.442
1tahaa 318 1tca 317 0.713 1 7 1tca 317 0.713
1tiea 172 4fgf 146 0.947 1 6 4fgf 146 0.947
1tlka 154 2rhe 114 0.926 1 3 2rhe 114 0.926
2azaa 129 1paz 123 0.253 1 3 1paz 123 0.253
2hpda 471 2cpp 414 1.000 1 1 2cpp 414 1.000
2mtac 147 1ycc 108 0.000 24 1 1lz1 130 0.801
2pna 104 1shaa 104 0.963 1 2 1shaA 104 0.963
2sara 96 9rnt 104 0.232 1 3 9rnt 104 0.232
2sas 185 2scpa 174 0.999 1 2 2scpA 174 0.999
2sim 381 1nsba 390 0.712 1 6 1nsbA 390 0.712
3chya 128 2fox 138 0.000 16 1 2gmfA 127 0.426
3hlaba 99 2rhe 114 0.860 1 3 2rhe 114 0.860
4sbva 261 2tbva 387 0.009 13 5 1tfd 304 0.324
5fd1 106 2fxb 81 0.717 1 3 2fxb 81 0.717
8i1b 152 4fgf 146 0.334 2 6 1ptsA 121 0.376
†Columns report: the benchmark query sequence PDB code and its length (as listed the SEQRES records in the corresponding PDB file). For the
target structure assigned by the benchmark the columns report: the PDB code, the sequence length, the probability of the corresponding DSM, the
rank of the target structure and the number of conserved residues in the minimal pattern embedded in the DSM (column label “patt”). For the
top-ranked structure columns report: the PDB code, the sequence length, and the probability of the corresponding DSM.
aThe query sequences for which the benchmark target structure is the member of the same SCOP fold or SCOP superfamily but is the member of
different functional family.
bThe benchmark pair that has been assigned different SCOP fold but the same CATH fold.
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library of minimal-pattern-embedded DSMs, the Viterbi
method recognized at first rank only 14 benchmark tar-
gets. Conserved pattern embedding in the DSM greatly
improved recognition of the UCLA1 benchmark targets,
which should not be surprising since the benchmark was
constructed to test a fold-recognition method that relied on
sequence similarity.29 Out of 38 benchmark pairs, 28 are
members of the same functional family. When the library
is restricted to structural DSMs, the Filtering fold-
recognition method gives a prediction for 19 sequences (top
probability greater than 0.5) and only 6 are correct targets

according to the benchmark and 7 according to CATH fold
assignment. We also note that the minimal pattern embed-
ding helped in recognizing the correct benchmark target
even when the original structural DSM contains very few
secondary structure elements. For example, the 2hipA
structure is classified as small irregular fold by SCOP, and
the automatically constructed structural DSM contains
only two beta strands. We exclude such models from our
standard library, since they mostly comprise loop states
that are amino acid non-specific. Nevertheless, including a
pattern of only three conserved residues allowed one of the

TABLE IV. Comparison of UCLA1 Benchmark Fold-Recognition Results†

PDB

DSMs

GenTHREADER with
sequence similarity

with embedded minimal pattern Structural only

Filtering Viterbi Filtering

Query Target Top prob Rank
CATH
rank

Top
prob Rank

CATH
rank

Top
prob Rank

CATH
rank Net Rank

CATH
rank

1aaj 1paz 0.330 3 3 0.525 6 6 0.426 70 4 1.000 1 1
1aba 1ego 0.972 1 1 0.585 2 2 0.969 40 40 1.000 1 1
1aep 256ba 0.999 2 2 0.936 4 4 0.999 3 3 0.802 4 4
1bbha 2ccya 0.999 1 1 1.000 1 1 0.780 5 4 1.000 1 1
1bbt1 2plv1 0.987 1 1 0.761 1 1 0.902 39 15 1.000 1 1
1c2ra 1ycc 0.311 2 2 0.487 3 3 0.436 10 10 1.000 1 1
1caub 1caua 0.586 1 1 0.579 33 33 0.372 14 14 1.000 1 1
1cewi 1mola 0.578 1 1 0.494 1 1 0.588 1 1 0.023 .100 .100
1dxtb 1hbg 0.692 1 1 0.999 1 1 0.225 17 17 1.000 1 1
1eaf 4cla 0.999 1 1 0.493 8 8 0.999 1 1 0.787 1 1
1fxia 1ubq 0.340 1 1 0.536 15 15 0.385 14 14 0.958 1 1
1hip 2hipa 0.270 7 3 0.955 9 9 0.199 24 24 1.000 1 1
1hom 1lfb 0.963 1 1 0.939 1 1 0.474 2 2 0.109 1 1
1hrha 1rnh 0.766 1 1 0.999 1 1 0.620 117 117 1.000 1 1
1isua 2hipa 0.739 1 1 0.971 1 1 0.477 12 12 0.928 1 1
1ltsd 1bova 0.795 1 1 0.542 24 24 0.826 1 1 0.130 6 6
1mdc 1ifc 0.999 1 1 0.999 1 1 0.999 1 1 1.000 1 1
1mup 1rbp 0.984 1 1 0.999 1 1 0.430 12 12 1.000 1 1
1onc 7rsa 0.934 1 1 0.996 1 1 0.271 29 29 1.000 1 1
1pfc 3hlab 0.973 1 1 0.981 2 2 0.791 5 1 1.000 1 1
1rcb 2gmfa 0.634 2 2 0.566 3 3 0.783 2 2 0.084 5 5
1saca 2ayh 0.877 2 2 0.608 36 2 0.948 2 2 0.224 98 5
1stfi 1mola 0.442 1 1 0.768 3 3 0.442 1 1 0.065 .100 .100
1taha 1tca 0.713 1 1 0.707 3 3 0.833 23 4 1.000 3 1
1tie 4fgf 0.947 1 1 0.650 6 6 0.383 6 6 0.019 .100 .100
1tlk 2rhe 0.926 1 1 0.804 19 19 0.327 18 13 0.217 1 1
2azaa 1paz 0.253 1 1 0.975 12 4 0.329 29 1 0.677 1 1
2hpda 2cpp 1.000 1 1 1.000 1 1 1.000 1 1 1.000 1 1
2mtac 1ycc 0.801 24 24 0.947 6 6 0.801 33 33 0.943 2 1
2pna 1shaa 0.963 1 1 0.802 7 7 0.312 3 3 1.000 1 1
2sara 9rnt 0.232 1 1 0.968 6 6 0.256 42 31 0.015 5 5
2sas 2scpa 0.999 1 1 0.869 1 1 0.999 1 1 1.000 1 1
2sim 1nsba 0.712 1 1 0.999 2 2 0.884 8 8 0.019 .100 .100
3chy 2fox 0.426 16 16 0.570 24 24 0.426 20 20 0.742 14 14
3hlab 2rhe 0.860 1 1 0.990 2 2 0.405 30 22 0.994 1 1
4sbva 2tbva 0.324 13 2 0.999 1 1 0.332 18 2 0.218 1 1
5fd1 2fxb 0.717 1 1 0.480 1 1 0.548 2 2 1.000 1 1
8ilb 4fgf 0.376 2 2 0.997 45 45 0.565 24 24 0.634 1 1
†For each query sequence, target structure we report in the column “rank,” the rank of the benchmark assigned target. In the column “CATH
rank,” we report the rank of the highest ranking structure with the same CATH fold assignment as the query sequence. In the column “top prob,”
we report the probability of the top ranking structure. The column “Net” lists the network output confidence as reported for the GenTHREADER.
Columns labeled “Filtering” correspond to the results of the Filtering fold-recognition method. Columns labeled “Viterbi” correspond to the results
of the Viterbi fold-recognition method. For the GenTHREADER the rank of the structures ranking higher than 100 was reported only as .100.
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query sequences (1isuA) to recognize the correct bench-
mark target with the highest probability.

The results of this comparison demonstrate that the
calculation of proper P(Model|seq) DSM posterior prob-
abilities by Filtering competes with other top ranking
fold-recognition methods when a minimal sequence pat-
tern of conserved residues is embedded in the DSM. Here,
we embedded only a minimal pattern of strictly conserved
residues that belong to secondary-structure positions as-
signed as strand or helix. From the success of the fold
recognition that includes an amino acid similarity mea-
sure over the whole sequence-to-structure alignment,1,12 it
is apparent that combining the full-length positional amino
acid profile of the structure with the DSM representation
should further improve the performance of our fold-
recognition method. Work on embedding the full-length
positional profiles in DSMs is in progress.

CONCLUSION

In our fold-recognition method, we have incorporated
the hierarchical structure classification scheme that al-
lows a rigorous assignment of posterior fold/model prob-
abilities. Each unique structural class represented by
different DSMs has assigned a posterior probability for
that particular class. The Bayesian assignment of the
posterior probabilities systematically addresses the prob-
lem of interpreting fold-recognition results that use a
library of diverse and interdependent models.

We have presented here a class of relatively simple
structural Hidden Markov Models, i.e., the Discrete State
Models. These models are built automatically from the
protein structures deposited in the PDB. The DSMs repre-
sent amino acid preferences for a small set of structural
states. Our DSMs encode only six SS/solvent-exposure
structural states and three loop states. As such these
models can be seen as an alternative and very simple
representation of a structural profile. The HMM represen-
tation has two advantages over the structural profile
representation used previously by many fold-recognition
methods.2,11 The first advantage of the HMM representa-
tion is the incorporation in those models of structural
variations such as variable secondary-structure element
length and variable loop states that connect the secondary-
structure elements. The second advantage comes directly
from HMM theory. The compatibility of the query se-
quence with a model can be rigorously calculated as the
total (summed over all sequence-to-structure alignments)
probability of the model. We have demonstrated that the
fold-recognition method that uses the total probability is
40% more accurate than the “standard” fold-recognition
method that uses the probability of the optimal sequence-
to-structure alignment.
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