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ABSTRACT 

 

   We present a 'random ray' model to describe Yes/No reaction times (RTs) and errors.  

The ray model is analogous to the random walk but it is computationally simpler, 

requiring only  elementary geometry. Ray parameters control the drift rates to the Yes and 

No decision boundaries, prior bias, and a termination or ‘time-out’ rule. Rays are 

normally distributed, but predicted RT distributions are skewed by projection onto the 

boundaries. Model parameters can be estimated directly from the 16th, 50th, and 84th 

percentiles of the RT distributions on hit, correct rejection, false alarm, and miss trials, if 

the data satisfy three easily testable constraints.  Examples are given from visual search 

and object recognition. 
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  Random walk models provide a compelling account of observer's speed and 

accuracy on signal-present and signal-absent trials (Stone, 1960; Laming, 1968).  The 

observer is assumed to initiate a 'walk' from an origin at the start of each trial. Each step 

of the walk is directed towards either a Yes boundary or a No boundary.  The walk is 

governed by the drift rate, or speed at which evidence towards the signal is accumulated, 

and the bias, or start position relative to the two boundaries. Hits and false alarms occur 

when the walk crosses the 'Yes' boundary; misses and correct rejections occur when the 

walk crosses the 'No' boundary.  In the discrete walk, one parameter determines both the 

mean and variance of the drift, but in a continuous random walk, the mean and variance 

can be controlled by different parameters, making this model flexible enough to fit real 

data remarkably well (e.g.,  Ratcliff, 1978, 2002; Ratcliff & Rouder, 1998). However, this 

leads to fairly complex and unintuitive equations. We therefore investigated a simpler 

model which we call the 'random ray', which retains the start point and boundary concepts 

from the walk, but not the diffusion. We do not regard the loss of diffusion as critical, as 

the actual diffusion of an entity such as a gas is at best a mere analogy.    

Like the random walk, the random ray can account for joint variations in speed 

and accuracy and can handle entire distributions of RTs, not just means and variances. Hit 

and false alarm rates determine the criterion (xc) and sensitivity (d'), as in signal-detection 

theory, after compensation for the fraction of "time-out" trials in which a boundary is not 

reached within a pre-set period. The ray model is limited to data which satisfy three 

constraints, concerning bias, slow errors, and skew.  The bias constraint is that bias, or a-

priori information at the start of a trial, is constant in any set of trials (FOOTNOTE 1). 

The slow error constraint (errors are slower than corrects) and skew constraint (that each 

RT distribution is sufficiently skewed) are detailed below.  

In the discrete random walk illustrated in Fig. 1, the 'Yes' boundary is reached in 

the presence of a signal (a 'hit').  At each moment in time the evidence towards the signal 

increases by one upwards step, with probability P, or decreases (step down). The steps are 

random fluctuations on a steady drift (determined by P) towards the boundary. In the ray 

model, we simplify this picture by representing the various steps on this trial by a single 

ray, the dotted line from the origin (A) to the point R on the boundary. The decision 
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("Yes") is made at time T= y = distance OR. The corresponding RT or reaction time is 

RT=T+RTo, where RTo represents the sensory plus motor or "residual" latency (Laming, 

1968; Ratcliff, 1978).  The distance from the origin to the Yes boundary is denoted c, and 

the distance to the No boundary is c1.  

   

            INSERT FIG.s 1,2 ABOUT HERE 

 

Hits 

 In the ray model the variation of ray angle β over trials is assumed to be Gaussian 

with mean α and standard deviation s, with the tails truncated so that 0<β<180 deg. 

Gaussian variation will arise if β (processing efficiency) is proportional to the sum of a 

large number of independent random effects.  Fig. 2 illustrates the Gaussian distribution 

of rays on the slanted x-axis, not on the vertical axis as would be the case for a 

continuous random walk. The heavy up-sloping line towards the "Yes" boundary 

indicates the mean ray (m) and the dotted lines show rays at x = m-σ and x = m+σ  on the 

x-axis. The angle made with the vertical by the mean ray is α = mean(β).  The skewed 

distribution on the upper ("Yes") boundary represents the predicted distribution of the 

decision times (T) on hit trials. The skew, which is typical of choice RT distributions, is a 

consequence of a symmetrical (Gaussian) ray-generating process being projected through 

an angle.  

Trigonometry (see Fig. 2) shows that y is a function of x and β, as follows: 

y = OQ + QR = c cos(α) + h tan(α) = x {cos(α) + sin(α)tan(β) },  and   

c = OA = OB + BA = x cos(α)/tan(β) + x sin(α).      Eliminating tan(β),    

y = x cos(α) c / {c - x sin(α) }      Eq 1 

Re-arranging, one can estimate the x corresponding to a crossing time, y; 

x = yx / {cos(α) + yx sin(α) tan(α) / y50}                

where yx is the x-th percentile of the y distribution. 

 The 16th, 50th, and 84th  percentiles of the underlying Gaussian on the x-axis  

are x = m-σ, m, and m+σ, with m denoting the mean ray. These project to the 

corresponding percentiles y16, y50, and y84 on the upper horizontal axis. Thus 
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 m-σ   = y16 / {cos(α) + y16 sin(α) tan(α) / y50}      

 m       = y50 / {cos(α) + sin(α) tan(α) }          Eq 2 

 m+σ  = y84 / {cos(α) + y84 sin(α) tan (α) / y50} 

 

Consider the points P,   Pm-σ , and Pm+σ  on the x-axis in Fig. 2. Because the Gaussian is 

symmetrical the distances (P-Pm-σ ) and (Pm+σ -P) on the x-axis must be equal, so  

y16 / {cos(α) + y16 sin(α) tan(α) / y50} - y50 / {cos(α) + sin(α) tan(α) }  

        =   y50 / {cos(α) + sin(α) tan(α) } -  y84 / {cos(α) + y84 sin(α) tan (α) / y50 }.   

Solving for α,  

tan(α) = sqrt{ (y84  + y16  -2y50) / (y84  + y16 - 2y84y16/y50   )}        Eq 3. 

 

Eq. 3 provides the constraint on skew. For the square root to be real, its argument 

must be positive, so if the numerator and denominator of Eq. 3 differ in sign, the ray 

model is ruled out.  The term inside the square-root is independent of scale and origin, so 

RTo and σ need not be known to apply this check. 

We developed the ray model using percentiles, rather than moments, as the 

higher-order moments of RT distributions tend to be unstable (Luce, 1986). Thus the 

underlying Gaussian is characterized parametrically, by its mean and variance, whereas 

the RTs are treated as if they were distribution free. This is a common approach in 

random walk modeling. Ratcliff (2002) fit five, rather than three, percentiles, and if the 

data warrant it, this improvement can be made by calculating m+2σ and m-2σ  from y05  

and   y95 in Equ. 2.   

  

 

INSERT FIG. 3 ABOUT HERE 

 

Misses, Correct rejections, and False Alarms. 

 Misses occur when the random ray reaches the No boundary when the target is 

present. The geometry involves the distance to the No boundary, c1. Fig. 3 diagrams this 
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case. The distance from the lower left corner (point Q at time zero) to the ray which 

intersects the No boundary at point R is w, and  

         w = c1. cot(β-90)     Eq 3. 

The probability p(w) that a ray intersects the No boundary between w and w+δw, 

is determined from the part of the Normal distribution that projects below the horizontal 

line through the start point. Then p(w) = N(x1) - N(x), where δx = x1-x is the step along 

the x-axis which includes all rays contributing to p(w), and N(x) is the cumulative 

Normal from -Inf to x.  To obtain p(w) as a function of  β, one steps β along in small 

increments from 90 deg to 180 deg and obtains x1  and x from c/(sin(α)+cos(α).cot(β))  

(Eq.1.) 

Because the x-axis is slanted, each percentile of the miss distribution must be 

slower than the corresponding percentile of the hit distribution. This constraint (slow 

errors) on the ray model is independent of the start point (c1), RTo, and σ, and therefore 

can also be checked directly from the raw RT distributions.  

 To treat correct rejections and false alarms we  invert the preceding diagrams. The 

values of c and c1 are reversed, so (e.g.) the distance to the upper ('No') boundary is now 

c1. Correct rejections and false alarms take the places of hits and misses respectively. The 

mean rate is αN, the mean ray direction in the absence of the target stimulus or signal. The 

slow-errors constraint  implies that each percentile of the false alarm RTs must be slower 

than the corresponding percentile of the correct rejection RTs. 

 

The effect of the projection on skew 

Figure 4 shows the effect of the projection of the normal curve (upper left plot) 

onto the upper (Yes) boundary (upper right plot) through an angle α = 62 deg. The 

projected distributions are plotted both on linear and log axes. The skew is very evident 

on the linear time axis. Applying a log transform reduces the skew, making the 

distribution seem more bell-shaped (lower right plot), as is often the case for empirical 

RT distributions (e.g. DeCaro & Reeves, 2002). Such log-time symmetry can be expected 

for all drift angles from 10 to 80 deg, as indicated in the lower left plot, since log(tan(α)) 
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is almost exactly proportional to α in this range. This is a nice property of the model, 

although hardly unique. 

 

INSERT Fig. 4 ABOUT HERE 

 

The cut-off, or time-out, parameter Zc. 

The distribution of w includes cases with near-horizontal projections which can 

make w enormous, generating -violently skewed latency distributions. Estimating the 

expected value w.p(w) numerically, we found that for a moderate miss rate of 5%, and an 

unbiased observer (c=c1), the mean miss RT should be 35 times longer than mean hit RT 

!    Since observers do not wait for such long times to emit a response, we assume they 

employ a  ‘cut-off’ beyond which they guess entirely at random. In this case a cut-off at 

Zc = 3.5  standard deviations, which eliminates the few very long predicted T's, suffices 

to bring the means into line. As long as the cut-off is late, i.e. delayed enough not to 

affect the 84th percentile, it will not disturb the latency predictions (FOOTNOTE 2).  

However, estimates of d' and the response criterion must still be corrected for the fraction 

of cut-off trials, since error trials in which the observer actually reaches the wrong 

boundary are now mixed in with error trials in which he or she times out and guesses 

incorrectly.  

 

Data fitting: visual search and object recognition 

We fit data from a visual search experiment that involved the search for an odd-

colored target presented among 11, 15 or 20 heterogeneous (multicolored) distractors 

(Santhi, 2000).  Participants were three highly-trained undergraduates who were not 

aware of the hypotheses of the study.  In this experiment, set-size had almost no effect, so 

we collapsed the data to obtain 1200 target present and 1200 target absent trials for each 

participant.  Data for two participants, HF and MS, satisfied all three constraints of the 

ray model.  There are six model parameters, α, αN, σ, c1, Zc, and RTo; parameter c is 

equated to 1 without loss of generality. There are 14 data points to fit per condition; the 

miss and false alarm rates, and the 12 actual Ts, i.e. the three percentiles from each of the 
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four types of RT trial, corrected for RTo. We estimated RTo from the participant's  

median simple RT obtained to the same target but no distractors, on the assumption that 

the decision components involved in the latency of interest (T) were not present in the 

simple RT (FOOTNOTE 3). 

 In "bias-symmetric" experiments in which signal and noise trials occur equally 

often and Yes and No responses are equally rewarded, there should be no a-priori  bias 

towards one or other response. In this case c=c1, and the ray model can be solved directly 

as one can now obtain α and αN  from Eq.s 1 and 2, the parameter σ is estimated by the 

slope of the linear regression between the predicted and actual RT's, and Zc can be found 

from the error rates as explained below.  Fig.5 plots MS's predicted RT's against her 

observed RTs.  The predicted RTs equal RTo plus the Ts predicted from the model with 

c=c1. Three  RT percentiles are shown for each type of trial (hit, fa, cr, miss), yielding 12 

points.  The mean ray angles calculated from Equ 2 were α=77 (upward, as in Fig. 2) and 

αN=120 deg (downward).  Had these angles summed to 180, the ray-generating processes 

would have been "process-symmetric", i.e. the information for a correct Yes being 

identical to the information for a correct No. For what it is worth, we had expected 

process symmetry in the oddity experiment from the way the stimuli were generated, but 

MS's median correct Yes RT (544 msec) was slightly faster than her median correct No 

RT (553 msec), suggesting that her processing (unlike her bias) was not quite 

symmetrical. Indeed, forcing process-symmetry lowered the goodness of fit by 11%. We 

conclude that the unsymmetrical ray model is descriptively adequate, but that our 

expectation of complete symmetry was not met. 

 We now show how the cut-off, Zc, can be estimated. The main body of the 

Gaussian shown in Fig. 2 projects up to generate hits, but the right tail dips below the 

horizontal and this will generate some misses. With α =77 deg (as in MS's case), the right 

tail dips below the horizontal at a z-score of 1.28, predicting 10.0% misses.  The 

complementary downward-facing Gaussian with αN = 120 deg, whose main body 

accounts for correct rejections, cuts the horizontal at a z-score of 1.71, predicting 4.3% 

false alarms.  In fact MS produced 11.0% misses and 4.0% false alarms, which differ by 

an average of 0.65% from the predictions. In an experiment with a guessing rate of one 
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half, Zc is estimated as the z-score corresponding to twice this difference. In MS's case, a 

Zc of 2.49 would time-out 1.3% of trials, and as half of these (0.65%) will become errors 

this harmonizes the predicted and obtained error rates. 

 For the entire set of 12 percentiles shown in Fig. 5 and given in Table 1, the 

averaged absolute error of prediction is 58 msec. The discrepancies are systematic; to 

predict a large enough inter-quartile range on the error trials, the model over-predicts the 

inter-quartile range on the correct ones. However, the discrepancies are not large and the 

correlation between predicted and actual RTs is r=0.90. Given that there were no free 

parameters in the fit, we regard this as a good example of the utility of the ray model. 

  If bias-symmetry cannot be assumed, a fitting procedure may be used. We chose 

to minimize the sum of squared errors between the 12 predicted and actual T’s, measured 

in seconds, plus 6 times the sum of squared errors between the predicted and actual error 

rates, measured as proportions. The factor of 6 gives the error rates about the same weight 

as the latencies. We developed a MATLAB program which best-fits any sub-set, or all, of 

the parameters, starting with the initial solutions from Eq.s 1 and 2.  In the case of MS  it 

was possible to improve the predictions with all parameters free, but r improved only to 

0.94, a marginal gain over the 0.90 obtained with no free parameters. 

These results for MS were representative of those for HF in the visual search 

experiment.  We also fit RT and accuracy data from an object recognition study  (DeCaro 

and Reeves, 2002). In this experiment the participant had to decide if a masked picture 

matched a word or not. We ran two long-term subjects, one of whose data fit well, and 

the other's (BA) did not.  BA's data are interesting in that they illustrate one way in which 

the ray model can fail.  The skew constraint was met, so the mean up ray (26 deg) and 

down ray (141 deg) could be calculated.  However, BA's median error RTs (miss 507 ms, 

fa 544 ms) were faster than her median correct RTs (hit 553 ms, cr 608 ms), violating the 

slow error constraint.  Her 16th and 84th percentile error RTs were slower than the correct 

RTs, so only the medians violated the constraint (Table 1; BS). Applying the model 

anyway, the r for RTs was only 0.65 (Figure 6, lower panel). The error rates were 0.053 

(fa's) and 0.064 (misses), which could be matched by the model with a cut-off at Zcut = 

1.76. However, imposing this cut-off hardly improved matters, and indeed freeing all the 
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parameters and using the MATLAB program to best-fit the data only improved r to 0.71, 

so at least in this case the slow error constraint was a useful one. Note that one obvious 

reason for the ray model to fail, namely the occurrence of fast guesses, cannot be invoked 

in this case because BA's 16th percentiles did not violate the slow error constraint.  

 

Practiced vs. naïve subjects: the use of Perf. 

The ray model requires data which are sufficiently rich to estimate RT percentiles 

on error trials as well as on correct ones.  For short-term participants, it would be nice to 

have a metric compatible with the ray model from which one could ascertain their 

performance from sparser data, especially if results from long-term participants already 

supported the ray model.  The median correct RT and the d' can be obtained from 

relatively few trials.   We therefore chose a performance metric we call Perf, with the 

units of information (d’)2  per processing time,  

Perf = (d’)2 /T        Eq. 6. 

where T  is the estimated processing time, i.e. Median(RT) - RTo.  This metric, (d’)2 /T , 

is a bias-free measure which arises in several signal-processing models in which 

information accumulates over time (Swensson and Thomas, 1974).  We will relate Perf to 

the ray model, but first we briefly illustrate just how useful it can be. We were able to 

derive it from basic signal-to-noise considerations in visual search (Santhi & Reeves, 

2003), which postulate that  

d' = signal/noise = T.cs / v(T (mσ2 
E + σ2 

I).               Eq. 7.  

The signal (T.cs) equals the signal contrast cs multiplied by observation time T. 

The noise terms are m, the number of noise sources (distractors in visual search), σ2 
E, the 

noise per distractor, and σ2 
I , the stimulus-independent noise produced by the rest of the 

visual system. All sources of noise are uncorrelated, noise is additive, and the noise is 

observed for the same length of time, T, as the signal.   

Squaring Eq. 7 and bringing the response measures d' and T together yields the 

performance index (Perf) and leaves the search model terms behind on the right: 

Perf   =  cs
2  /  (mσ2 

E + σ2 
I ).          Eq. 8. 

  Equation 8  predicted naïve subjects' search performance (Perf) for a wide variety 
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of set sizes(m) , stimulus contrasts (c), and variations in distractor noise ( σ2 
E ) (Santhi & 

Reeves, 2003), so we have particular confidence in Perf as a measure of performance. 

To relate Perf to the ray model, we calculated Perf from the model's predicted 

error rates and median RTs, assuming symmetry ( c=c1 and αn = 180 - α) and a late cut-

off (Zc = 3.0). Perf was proportional to drift rate (α)  in the ray model, as shown in Fig. 8 

(lower left), for 15 < α < 85 deg.  This linear relation does break down if the predicted d' 

is very high (>3.5) and the drift angle is small (<15 deg), but since angles close to 0 

(instant processing) and 90 (infinite slowness) are not of practical interest, and since some 

errors are virtually inevitable, this result provides a useful link between Perf and the ray 

model.  Indeed, MS's Perf in the oddity data, for which α was in the safe zone at 77 deg, 

was actually 29.1 and was predicted to be 30.0 by the ray model, an error of only 3%. 

Thus less-than extreme variations in the drift rate of the ray model can be estimated fairly 

well from variations in Perf.   

 In conclusion, we have presented a simple method for ascertaining the parameters 

of a random ray model from error rates and percentile RTs in Yes/No experiments. We 

derived three necessary constraints which data must meet in order for the model to apply. 

The ray model is like a random walk in that information is accumulated up to a boundary 

(for Yes, No, or time-out), but it sacrifices the hypothetical diffusion process for relative 

simplicity. We illustrated the model calculations with data which fit fairly well (MS's) 

and with data which did not (BA's).  We also showed that if processing is known to obey 

the ray model, variations in ray angle may be tracked by variations in Perf, a useful metric 

which collapses speed and accuracy into one unique bias-free index (FOOTNOTE 4).  

What we have not yet done is to apply the ray model to a wide range of experimental data 

and find out where and when it succeeds. 



 12

FOOTNOTE 1.  The constant-bias constraint may be violated if temporary shifts in bias 

generate sequential effects between trials (Laming, 1968).  Fortunately  systematic shifts 

in bias can be handled by data sorting. For example, if the walk typically starts closer to 

the Yes boundary after a signal trial than after a noise trial, the data can be conditioned on 

the previous trial and the ray model applied separately to each partition. 

 

FOOTNOTE 2.  Assuming Zc is late and constant implies an abrupt end to the tail of the 

RT distribution and thus unrealistic predictions of the highest percentiles.  Making Zc a 

random variable might handle this problem, but complicates matters greatly, and to little 

purpose since few observations are involved and the predicted error rates and RT 

percentiles are not affected. 

 

FOOTNOTE 3.  Since simple RTs vary from trial to trial, it is better to deconvolve the 

simple RT distribution from the RT distributions to obtain the T distributions.  This 

requires that the RT moments are larger than the corresponding simple RT  moments, and 

as this was not always so in our data (see Laming,1968), we took RTo to be constant. 

 

FOOTNOTE 4.  Many RT papers ignore infrequent errors, but this may be dangerous. 

Variations in error rates may appear insignificant only because the assumptions of 

ANOVA are violated. To make this less likely, percentages or frequencies should be 

converted to proportions of trials, P, and arc-sine transformed to  2.sin-1(sqrt(P)), when 

0<P<1. (If P=0 or P=1, substitute1/(2n) or 1-1/(2n), for n trials.)  Also, since using RT 

exclusively is only justified if errors are constant over conditions, the null hypothesis (that 

errors are constant) is favored by using a nominally 'conservative' alpha level such as 5% 

or 1%; a higher alpha level such as 10% actually provides a more stringent test. Finally, 

we note that small variations in error rates have large effects on d' if the error rates are 

low, so when errors are infrequent, ignoring variations in them is particularly dangerous. 
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Table 1: Percentiles (%) of the RT distributions in signal-present (S) and absent (N) trials. 

Values in parentheses are predicted.  Participants: MS and BA 

 
 Participant           Correct trials                  Error trials 
            16%             50%                84%                     16%           50%            84% 
 
 MS   hit 479 (521)   544 (529)     659 (589)    miss  448 (545)    603 (579)    796 (726)                 
 MS   cr  479 (522)   553 (532)    672 (567)      fa     461 (586)    714 (669)    976 (1020) 
 
 BA   hit 408 (522)   553 (527)    748 (536)      miss  361 (618)    507 (727)   1001 (1032)                 
 BA   cr  453 (522)   608 (526)    898 (535)       fa     404 (570)    544 (632)   1149 (886) 
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                                 Figure 5: top, participant MS; below; BA. 
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Figure 6  Participant MS (left) and ray model (right).   Plots show frequency versus log 

time for  hit RTs and correct rejection RTs. The model predicts some deviation which is 

not present in the data, but the overall shape and placement of the curves is about right. 
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