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Abstract. For a moduli space M of stable sheaves over a K3 surface X, we
propose a series of conjectural identities in the Chow rings CH?(M×X`), ` ≥ 1,
generalizing the classic Beauville-Voisin identity for a K3 surface. We empha-
size consequences of the conjecture for the structure of the tautological subring
R?(M) ⊂ CH?(M). The conjecture places all tautological classes in the lowest
piece of a natural filtration emerging on CH?(M), which we also discuss. We
prove the proposed identities when M is the Hilbert scheme of points on a K3
surface.

1. Introduction

Understanding the Chow ring of irreducible holomorphic symplectic varieties is
a problem of considerable interest. In the case of a smooth projective K3 surface
X, an essential role in approaching the cycle structure is played by a distinguished
zero-cycle cX , first noted and studied in [BV]. The cycle cX has degree one and is
the Chow class of any point lying on a rational curve in X. The intersection of any
two divisors is a multiple of cX , while the second Chern class of the tangent bundle
satisfies

c2(TX) = 24 cX .

In higher dimensions, it is natural to consider moduli spaces of stable sheaves
on K3 surfaces. For a smooth projective K3 surface X, we let v ∈ H?(X, Z) be
a primitive Mukai vector, and let M be the moduli space of stable sheaves over X
with Mukai vector v, relative to a v-generic polarization. We note nevertheless that
all statements in this text apply more broadly to moduli spaces of Bridgeland-stable
sheaf complexes with respect to a v-generic stability condition σ. The moduli space
M is a smooth projective irreducible holomorphic symplectic variety of dimension

dimM = m = 〈v, v〉+ 2,

admitting a quasi-universal sheaf

F → M×X.
1
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To keep the exposition simple we assume in fact that M is a fine moduli space, so F
is a universal object. The restriction is not essential, as we later explain. We denote
the two projections by π : M×X → M and ρ : M×X → X.

In parallel with the K3 geometry, there is a distinguished zero-cycle

cM ∈ CH0(M)

of degree one: this is the class of any stable sheaf F such that

(1) c2(F ) = k cX in CH0(X),

where k is the degree of the second Chern class specified by the Mukai vector v.
Sheaves satisfying (1) exist in M (cf. [OG2]), and have the same Chow class as shown
in [MZ], following a conjecture of [SYZ]. In analogy with the surface situation,
one expects ([V1], [SYZ]) that the special cycle corresponds to the largest rational
equivalence orbit of points on M. The intersection-theoretic properties of cM are not
understood as well as those of its counterpart cX in the two-dimensional context.

We study the geometry of the universal sheaf and of the special cycles cX and cM
in two strands:

(1) We single out the tautological subring R?(M) ⊂ CH?(M), generated by the
classes

π? (M(ci(F)) · ρ?β) ,

with M any monomial in the Chern classes of F , and β any class in the
Beauville-Voisin subring

R?(X) = CH2(X) + CH1(X) + Z cX ⊂ CH?(X).

(2) We emphasize the rank zero virtual sheaf

F = F − ρ?F, with F ∈ M such that [F ] = cM ∈ CH0(M).

Intuitively, the second Chern class of F reflects to some extent the variation
of rational equivalence classes across points in M, relative to the special class.

These two strands come together naturally within the framework of the following,
which is the main conjecture of the paper.

Conjecture 1. Let α ∈ R?(M) be a tautological class of codimension d. Consider
the product M×X`, where d+` > dimM. Let F i denote the pullback to M×X` of the
virtual universal sheaf on M and the ith factor of X. Then for every i1, . . . , i` ≥ 0,

(2) α · chi1(F1) · · · chi`(F `) = 0 ∈ CH?(M×X`).

The Künneth components along M of the Chern classes ci(F) on M × X have
positive cohomological degrees for i > 0. Since M has no odd cohomology, the prod-
ucts (2) are thus homologically trivial for dimension reasons due to the inequality
d+ ` > dimM.
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Conjecture 1 yields a rich collection of interesting Chow identities and we highlight
some of them now. In case M = X, viewed trivially as the Hilbert scheme of one
point on itself, we have

F = I, where I = I∆ − IX×c on X ×X,

with c ∈ X a point of Chow class cX . Therefore

ch2(F) = ch2(I) = −∆,

where we have set

∆ = ∆−X × cX in CH2(X ×X).

Thus when M = X, for the tautological class α = 1, the identity

ch2(F1) · ch2(F2) · ch2(F3) = 0 in CH2(X ×X3)

predicted under (2) takes the form

(3) ∆01 ·∆02 ·∆03 = 0 in CH2(X ×X3),

while the K-theoretic identity

(4) I01 · I02 · I03 = 0 in K(X ×X3)

also holds. Here the index 0 is used to keep track of the first distinguished factor X
in the quadruple product X4, and ∆0i and I0i indicate pullbacks from the 0th and
ith factors.

Pushing forward to the product of the last three factors, equation (3) is easily
seen to be equivalent to the fundamental Beauville-Voisin identity [BV]

(5) ∆−∆c + ∆c,c = 0 in CH2(X ×X ×X).

Here c again denotes a fixed point of Chow class cX ; ∆ is the small diagonal of
points (x, x, x); ∆c consists of triples of the form (x, x, c), (c, x, x), (x, c, x); ∆c,c is
the set of triples of the form (c, c, x), (c, x, c), (x, c, c) for x ∈ X.

If we now take α = D, a divisor class on X, the vanishing

α · ch2(F1) · ch2(F2) = 0 in CH3(X ×X2)

predicted by Conjecture 1 becomes

(6) D(0) ·∆01 ·∆02 = 0 in CH3(X ×X2),

(with the divisor D pulled back from the 0th factor) which is known to hold. Indeed,
any divisor class D on X is a linear combination of classes of rational curves on X,
and the cycles ∆01, ∆02 restrict to zero for every point on a rational curve in the
0th factor X. The spreading principle (cf. [V2, Theorem 3.1]) implies (6). We also
note the trivial identity

(7) c
(0)
X ·∆01 = 0 in CH0(X ×X).
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Returning now to the case of a general moduli space M, we see that for α = 1,
the expected vanishing

(8) ch2(F1) · ch2(F2) · · · ch2(Fm+1) = 0 in CHm(M×Xm+1)

predicted by Conjecture 1 is the natural generalization of the Beauville-Voisin fun-
damental identity (5) in the triple product of a K3 surface. The beautiful identity

(9) F1 · F2 · · · Fm+1 = 0 in K(M×Xm+1)

is also predicted by Conjecture 1.
For tautological classes α ∈ R?(M) of positive codimension, the series of identities

predicted by Conjecture 1 should be viewed as generalizing (6) and (7) from the K3
context to a general moduli setup.

The identities of Conjecture 1 lead in turn to a large collection of conjectural
Chow vanishings in the self-products M×M× · · · ×M. We set

∆ = ∆−M× cM in CHm(M×M),

and observe

Theorem 1. The system of identities (2) of Conjecture 1 is equivalent to the van-
ishing

(10) α ·∆01 · · ·∆0,` = 0 in CH?(M× M`).

for any tautological class α ∈ R?(M) of codimension d and integer ` satisfying

d+ ` > dimM.

Here the first factor of M is labeled by 0, and α is pulled back from this factor.

Theorem 1 is immediately seen to have a few interesting consequences. At one
end, if we take α ∈ R?(M) to be a tautological zero-cycle, and pick ` = 1, we obtain
the vanishing

α ·∆01 = 0 in CH0(M × M).

Pushing forward to the second factor of M, this gives

α = n cM,

where n is the degree of α, and allows us to conclude

Corollary 1. Assuming Conjecture 1 holds, the tautological ring R?(M) has rank
one in dimension zero:

R0(M) = Q · cM.
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At the other end, taking α = 1 yields the vanishing

(11) ∆01 · · ·∆0,m+1 = 0 in CHm(M × Mm+1).

It is easy to see that the pushforward of this product cycle, via the projection
M ×Mm+1 → Mm+1 forgetting the first factor, is the modified diagonal cycle studied
in [OG3]. Conjecture 1 recovers in this case the vanishing of the modified diagonal
conjectured in [OG3].

Corollary 2. Assuming Conjecture 1 holds, the modified diagonal cycle

Γm+1(M, cM) = ∆−∆c + ∆c,c − · · ·+ ∆c,c,...,c

vanishes in CHm(Mm+1).

We also note

Corollary 3. Assuming Conjecture 1, for every codimension 0 ≤ d ≤ m there is a
filtration

S0 ⊂ S1 ⊂ · · · ⊂ Sd−1 ⊂ Sd = CHd(M).

For a fixed codimension d and 0 ≤ i ≤ d we set

Si(CH
d(M)) = {α with α ·∆01 · · ·∆0,m−d+i+1 = 0 ⊂ CH?(M× Mm−d+i+1)}.

Here α is pulled back to the product from the first factor.

Clearly, in view of the conjectured vanishing (11), we would have

Sd = {α with α ·∆01 · · ·∆0,m+1 = 0 ⊂ CH?(M× Mm+1)} = CHd(M).

Notice further that

S0 = {α with α ·∆01 · · ·∆0,m−d+1 = 0 ⊂ CH?(M× Mm−d+1)}.
Thus for every d, Conjecture 1 and Theorem 1 would place all codimension d tau-
tological classes in S0(CHd(M)). It is also known [SYZ] that M admits Lagrangian
constant-cycle subvarieties for the special cycle cM. The spreading principle then
places these subvarieties in S0(CHn(M)) for n = m/2. We conjecture in Section 2
that they are in fact tautological.

As evidence for Conjecture 1, we show:

Theorem 2. Let X be a smooth projective K3 surface. Conjecture 1 holds for
M = X [n], the Hilbert scheme of n points on X.

A richer version of Theorem 1 is proven in Section 2 as Theorem 1∗. Section 2
also discusses the tautological subring of the Chow ring in a broader context, for the
products M×X`, ` ≥ 0. This leads to generalizations of Conjecture 1 and Theorem
2 to the setting of a product M × X` which are needed in the inductive argument
of Section 3.
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Theorem 2 is argued in Section 3 inductively on the number of points, using
the geometry of the nested Hilbert scheme. The inductive technique, introduced
in [EGL], is well understood in the context of universality arguments for series of
intersection-theoretic invariants on the Hilbert scheme of a surface. In Theorem 2,
we pursue nevertheless Chow identities in a large range of codimensions. Beyond the
standard elements of the [EGL] mechanism, we accordingly make strong use of the
overhaul, on the level of Chow groups, of the Nakajima-Lehn commutator identities
previously known to hold in cohomology. This overhaul was recently completed in
[MN]. Finally, the base case of the induction beautifully comes down to the three
fundamental K3 identities (3), (6) and (7).

Together, Theorems 1 and 2 establish unconditionally a hierarchy of Chow identi-
ties involving the full tautological ring of the Hilbert scheme of a K3 surface, for all
codimensions. In this hierarchy, the “codimension-zero” identity is the vanishing of
the modified diagonal cycle first established in [V3] (conditional on the forthcoming
[V6]) which is thus placed in a vaster framework. The top codimension case is the
assertion that the special cycle spans the tautological ring in dimension zero.

In Section 4 we discuss the filtration on all Chow groups introduced in Corollary
3. For zero-cycles, we compare it to the filtrations on CH0(M) studied in [V1],
[SYZ]. In higher dimensions, the placement of constant-cycle subvarieties within
the filtration is investigated.

In the context of the tautological ring of the product M × X` it is natural to
formulate the stronger

Conjecture 2. The restriction of the cycle class map to the tautological subring,

τ : R?(M×X`)→ H?(M×X`),

is injective.

This statement follows the line of conjectures on the injectivity of the cycle class
map on suitable subrings of Chow initiated in [B2], [V4]. It completely subsumes
Conjecture 1, our main object in this paper. Indeed the identities (2) are among
tautological classes and hold in homology. The advantage of Conjecture 1 is that it
proposes a concrete set of relations in the Chow ring, and is thus easier to come to
grips with than the elusive Conjecture 2.

Finally, the interesting problem of understanding corrections of the identities (2)
in a relative setting over the moduli space of polarized K3 surfaces is left for future
exploration.

Addendum. We note that in hindsight Theorem 2 may also be argued from the
results of the contemporaneous paper [NOY], which also relies on the Nakajima-Lehn
identities established in [MN]. As shown in [NOY], the main operator h which gives
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the Chow decomposition on X [n] is a derivation, and its action on the universal
Chern character is explicitly determined. Together, these two ingredients can be
shown to yield the vanishing of the product cycles of Conjecture 1 in the Hilbert
scheme case.

The S• filtration discussed here was also recently studied in [Vi]. For zero-cycles,
[Vi] shows that it agrees with the filtration introduced in [SYZ], while only one
inclusion is pointed out in the present article. We thank Charles Vial for a useful
correspondence on this topic.
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2. Tautological rings and product cycles

2.1. Tautological rings. Let X be a smooth projective K3 surface, v ∈ H?(X, Z)
a primitive Mukai vector, and let M be the moduli space of stable sheaves with
Mukai vector v on X relative to a v-generic polarization. To ease the exposition, we
make the nonrestrictive assumption that M admits a universal family

F → M×X.

If this is not the case, we use instead the universal Chern character chF ∈ CH?(M×
X) discussed in [Ma1], [Ma2] to define the tautological ring, as well as to formulate
the identities (2) of Conjecture 1. The construction in Section 3 of [Ma1] and Section
3.1 of [Ma2] follows the original explanation of [Mu2], Appendix A.5. Specifically,
a universal sheaf can be glued together over P × X, where P → M is a suitable
projective bundle over M. After appropriate twisting, the universal Chern character
(but not the sheaf) is seen to descend as a rational class to the product M×X. When
available, the universal sheaf is defined up to tensoring by line bundles from M. If
a universal sheaf is not available, the universal Chern character is correspondingly
(cf. [Ma1], Section 3) defined up to multiplication by the Chern character of a line
bundle over the moduli space. We now recall from the introduction:
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Definition 1. The tautological ring

R?(M) ⊂ CH?(M)

is the subring of Chow generated by the following classes

• π?(M(ci(F))), M any monomial in the Chern classes of F ;
• π? (M(ci(F)) · ρ?D) , D ∈ CH1(X), M any monomial in the Chern classes

of F ;
• π? (M(ci(F)) · ρ?cX) , M any monomial in the Chern classes of F .

Thus R?(M) is generated by all classes of the form

π?(M(ci(F)) · ρ?β),

for an arbitrary monomial M in the Chern classes of F , and β ∈ R?(X) any class
in the Beauville-Voisin ring

R?(X) = Z cX + CH1(X) + CH2(X) ⊂ CH?(X).

As we repeatedly consider Chern characters, we will work throughout with Q coef-
ficients.

It is useful to extend Definition 1 to the arbitrary products

M×Xk, for k ≥ 0.

For 1 ≤ s ≤ k, let ρs : M × Xk → X be the map to the factor indexed by s, with
the accompanying projection ρs : M×Xk → M×X. Denote by

Fs = ρ?sF
the universal sheaf on M×Xk pulled back from M×X via the sth projection.

Definition 2. The tautological system of rings R?(M×Xk) ⊂ CH?(M×Xk), k ≥ 0
is the smallest system of Q-algebras satisfying the following three properties:

(i) R?(M × Xk) contains the Chern classes ci(Fs), 1 ≤ s ≤ k, as well as the
classes ρ∗sD, for D ∈ CH1(X).

(ii) The system is closed under pushforward via the natural projections π : M×
Xn → M×Xk forgetting factors of X, where n ≥ k.

(iii) The system is closed under pushforward via the natural inclusions ι : M ×
Xn → M × Xk for n ≤ k through diagonal embeddings of factors of X or
embeddings using the special cycle cX .

Concretely, this means that for each k ≥ 1, the subring R?(M×Xk) ⊂ CH?(M×
Xk) is generated by the following classes:

• the pullbacks π?α from M to the product M × Xk, where α ∈ CH?(M) is
tautological in the sense of Definition 1.
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• the Chern classes ci(Fs), 1 ≤ s ≤ k;

• the pullback classes ρ?sD, ρ
?
scX , 1 ≤ s ≤ k ;

• the diagonal classes ρ?rs∆, 1 ≤ r, s ≤ k.

(It is straightforward to check that each of the classes above is in R?(M × Xk),
and that any polynomial in these classes satisfies the three properties in Definition
2. Thus they generate R?(M×Xk).)

Remark 1. We note that the tautological ring R?(M) is independent of the modular
interpretation of the holomorphic symplectic manifold M. Suppose that

M = Mv ' Mv′ ,

where Mv′ is a moduli space of stable sheaves with Mukai vector v′ relative to a
polarization H ′ over a K3 surface X ′. There is then a derived (anti-)equivalence

Φ : Db(X) ' Db(X ′)

with kernel E ∈ Db(X ×X ′) inducing the isomorphism

Φ : Mv → Mv′ .

Let F → Mv×X, F ′ → Mv′×X ′ be the universal objects, and π : M×X → M, π′ :
M×X ′ → M the projections. Considering the extended equivalence induced by E ,

ΦM : Db(Mv ×X) ' Db(Mv ×X ′),

we have

F0 =def ΦM(F) = (Φ× idX′)?(F ′).
Let π′? (P (ci(F ′) · β′) be a class on M tautological in the sense of v′. Here P is a
polynomial in the Chern classes of the universal sheaf F ′ → Mv′×X ′ and β′ ∈ R?(X

′)
is in the Beauville-Voisin ring of X ′.

Under the identification Φ, we have

π′? (P (ci(F ′) · β′) = π′? (P (ci(F0) · β′) .

As

chF0 = ch ΦM(F) = (π × idX′)? (chF · ch E · tdX) ,

it is standard to write the pushforward π′? (P (ci(F0) · β′) from M × X ′ as a push-
forward π? (Q(ci(F) · β) from M × X, for some polynomial Q in the Chern classes
of the universal object F and a class β ∈ CH?(X). Importantly, β is in fact in the
Beauville-Voisin subring R?(X) ⊂ CH?(X): as discussed in [H], the derived equiva-
lence preserves Beauville-Voisin rings. Thus a tautological class in the sense of Mv′

is also tautological in the sense of Mv. �

2.2. Examples of tautological classes.
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2.2.1. Divisors. It is well-known (cf. [Mu1] , [Mu2], [OG1], [Y]) that the determi-
nant line bundle homomorphism

Θv : v⊥ → NS(M)

is an isomorphism for 〈v, v〉 > 0, and is in all cases surjective. Here

v⊥ ⊂ H?
alg(X, Z)

denotes the orthogonal complement of the Mukai vector v in the algebraic Mukai
lattice. Divisors on M are thus tautological, making Definition 1 independent of the
choice of universal family/universal Chern character.

2.2.2. Chern classes of the tangent bundle. We have

ch (TM) = 2− ch Ext•π(F , F) = 2− π?(chF∨ · chF · ρ?tdX),

therefore the Chern classes ci(TM) are tautological.

2.2.3. The special cycle cM. We show now that the distinguished zero-cycle cM is
tautological. Consider the product M×M×X, equipped with the universal sheaves
E , F which correspond to the two copies of M, and are pulled back to the product.
Let π : M×M×X → M×M be the projection. We form the natural relative Ext
complex (shifted for convenience),

W(E ,F) = Ext•π(E , F)[1] on M×M.

We further fix F0 → X a sheaf parameterized by M, and denote by

W(E , ρ?F0) = Ext•π(E , ρ?F0)[1] on M,

the pullback of W(E , F) under the inclusion M× [F0] ↪→ M×M.
As observed in [MZ], the complex W plays a role in understanding Chow classes

of points on M, since the middle Chern class of W is the class of the diagonal in the
product M×M. The formula

(12) cm (W(E ,F)) = [∆] in CHm(M×M)

was established in [Ma1], and is aligned with earlier work of Beauville [B1] and
Ellingsrud-Strømme [ES] on representing the diagonal in terms of the universal
Chern classes, in the context of moduli spaces of Gieseker-stable sheaves. By pull-
back, the diagonal formula (12) gives

(13) cm (W(E , ρ?F0)) = [F0] in CH0(M),

and by Grothendieck-Riemann-Roch we have

ch (W(E , ρ?F0)) = −π? [ch E∨ · ρ?(chF0 · (1 + 2cX))] .
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In particular, if F ∈ M is any sheaf such that c2(F ) ∈ CH0(X) is a multiple of cX ,
then

(14) cM = [F ] = cm (W(E , ρ?F ))

is manifestly tautological.

Remark 2. As shown in [SYZ], there exist Lagrangian constant-cycle subvarieties
for the special cycle cM. For any such subvariety V ⊂ M of dimension n = m/2, the
vanishing

[V ] ·∆01 ·∆02 · · ·∆0,n+1 = 0 in CH?(M×Mn+1),

holds by the spreading principle ([V2], Theorem 3.1). We conjecture

Conjecture 3. The class of any Lagrangian constant-cycle subvariety for cM is in
the tautological ring R?(M).

2.3. Vanishing of product cycles. We now show that the system of product
identities of Conjecture 1 leads in turn to a large collection of conjectural Chow
vanishings in the self-products M ×M × · · · ×M. Among them is the vanishing of
O’Grady’s modified diagonal cycle. Aligned with our point of view, the modified
diagonal cycle is also cast here in product form.

To start, let us single out the complex

(15) W(E ,F) = Ext•π(E , F − ρ?F )[1] on M×M,

where F represents the special zero-cycle, [F ] = cM, and F , E are the universal
objects on the first and second factors respectively.
We also set

∆ = ∆−M× cM = cm (W(E ,F))− cm (W(E , ρ?F )) in CHm(M×M).

Further, in the context of a product M×M`×X, we let E1, . . . , E`, F be the universal
sheaves corresponding to the last ` factors of M, respectively the first distinguished
factor. We label this factor by 0, and show

Theorem 1∗. For any class α ∈ CH?(M) of codimension d satisfying the inequality

d+ ` > dimM,

the following three vanishing statements are equivalent.

(i) α · chi1(F1) · · · chi`(F `) = 0 ∈ CH?(M × X`), for all i1, . . . , i` ≥ 0. Here
F s, 1 ≤ s ≤ `, is the normalized universal sheaf pulled back from M and the
sth factor in the product X`.
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(ii) α · ci1(W(E1,F)) · ci2(W(E2,F)) · · · · · ci`(W(E`,F)) = 0 ∈ CH?

(
M× M`

)
,

for all i1, . . . , i` > 0. Here the complex W(Es,F), 1 ≤ s ≤ `, is pulled back
from the distinguished factor M and the sth factor in the product M`.

(iii) α ·∆01 · · ·∆0,` = 0 ∈ CH?

(
M× M`

)
,

In all three cases, the class α is pulled back to the product from the first distin-
guished factor M.

Remark 3. Note that (i) is the vanishing predicted by Conjecture 1 in case α is
tautological. Theorem 1 is therefore the equivalence of (i) and (iii) for α ∈ R?(M)
and is completely subsumed by the statement above. The vanishing of the modified
diagonal cycle, corresponding to α = 1, is thus implied by Conjecture 1.

Proof. We show first that (i) implies (ii). To start, we note that for the complex

W(E ,F) on M×M,

each Chern class ck
(
W(E ,F)

)
for k > 0 is expressible in terms of pure-degree pieces

of the Chern character, and is therefore a sum of products of factors of type

αij = π?
[
chiE∨ · chjF · tdX

]
and βij = π?

[
chiE∨ · chjF

]
.

We consider now the larger product

M×M` ×X`

along with a class α ∈ CH?(M) pulled back from the distinguished first factor M,
satisfying

codimα + ` > dimM.

We let F1, . . .F` be the universal sheaves pulled back from M×X`, where M is the
distinguished first factor. We also consider the universal sheaves E1, . . . E` on the
new factors of M each paired with a factor of X.

By (i), the vanishing

α · chj1F1 · · · chj`F ` = 0

holds in CH?(M × M` × X`), pulled back from M × X`. This trivially implies the
vanishing of the larger product

α · chi1E∨1 · chj1F1 · (tdX1)a1 · · · chi`E∨` · chj`F ` · (tdX`)
a` = 0

in CH?(M×M`×X`), for i1, j1, . . . i`, j` ≥ 0. Here the exponents a1, . . . , a` are either
0 or 1. Pushing forward via the projection M×M` ×X` → M×M` gives

Lemma 1. Consider the product M × M` ×X and a cycle α on the distinguished
factor M, satisfying codimα+` > dimM. Denote by E1, . . . E`,F the universal sheaves
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associated with the last ` copies of M, respectively the first one, pulled back to the
product M× M` × X. Let π : M×M` ×X → M×M` be the projection. Then

(16) α ·
∏`

k=1
π?
[
chikE∨k · chjkF · (tdX)ak

]
= 0 in CH?(M× M`),

for any ik, jk ≥ 0, and ak taken either 0 or 1.

As observed earlier, each factor cik
(
W(Ek, F)

)
in the products (ii) of Theorem 1∗

is a sum of terms each containing a factor of type appearing in (16) of the lemma,
so the vanishings (ii) follow.

Notice next that (ii) implies (iii). Indeed, we have in K-theory,

W(E ,F) = W(E ,F) + W(E , ρ?F ) in K(M×M),

therefore

cm(W(E ,F)) =
m∑
i=0

ci(W(E ,F)) · cm−i(W(E , ρ?F )),

and

∆ = cm(W(E ,F))− cm(W(E , ρ?F )) =
m∑
i=1

ci(W(E ,F)) · cm−i(W(E , ρ?F )).

It is thus clear that any term in the expansion of the product ∆01 · · ·∆0,` contains
a product ci1(W(E1,F)) · ci2(W(E2,F)) · · · · · ci`(W(E`,F)) for some i1, . . . , i` > 0.
Accordingly, the vanishing (ii) implies (iii).

Finally, it is easy to see that (iii) implies (i). We start with the vanishing

α ·∆01 · · ·∆0,` = 0 ∈ CH?

(
M× M`

)
,

pulled back from M× M` to the larger product M× M`× X`. Trivally, we also have

α ·∆01 · · ·∆0,` · chi1 (F1) · · · chi` (F`) = 0 ∈ CH?

(
M× M` × X`

)
,

for any i1, . . . , i` ≥ 0. Here each Fs is pulled back from a factor M×X in the product
M` ×X`. Pushing forward under the projection M× M` × X` → M×X` gives

α · chi1 (F1) · · · chi` (F `) = 0 ∈ CH?

(
M× X`

)
,

for any i1, . . . , i` ≥ 0. This concludes the proof of the theorem. �

2.4. Extension of Conjecture 1. We end this section by formulating the following
natural extension of our main conjecture. In the context of the product M×Xk×X`,

let us index by {1, . . . , `} the individual factors in the product X` and by {1̂, . . . , k̂}
the factors in the product Xk. As usual, F t denotes the normalized universal sheaf
from the t-th factor.
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Conjecture 1∗. For any integers k ≥ 0 and ` > 0 consider the product M×Xk×X`

and a tautological class α ∈ Rd(M×Xk) satisfying

d+ ` > dim(M×Xk).

For any indices i1, . . . , i` ≥ 0, partition Ω t Θ = {1, . . . , `}, assignment s : Θ →
{1̂, . . . , k̂} we have

α ·
∏
t∈Ω

chit
(
F t
)
·
∏
t∈Θ

chit(O∆st,t
) = 0 in CH?

(
M× Xk × X`

)
.

Observe that Conjecture 1 is a special case of Conjecture 1∗, specifically the case
k = 0 and (necessarily) Θ = ∅. In K-theory, Conjecture 1∗ predicts the natural
generalization of (9), namely that for any 0 ≤ a ≤ ` = dimM+2k+1 and assignment

s : {a+ 1, . . . , `} → {1̂, . . . , k̂}, we have:

F1 · F2 · · · · · Fa · O∆sa+1,a+1
· O∆sa+2,a+2

· · · · · O∆s`,`
= 0.

In Section 3 we will prove the following, which implies Theorem 2 in the introduction.

Theorem 2∗. Conjecture 1∗ holds when M = X [n] is the Hilbert scheme of n points
on X.

3. The product identities for M = X [n]

The aim of this section is to prove Theorem 2∗. We let In denote the ideal sheaf
of the universal subscheme

Zn ⊂ X [n] ×X

and set

In := In − ρ∗In,

the rank zero virtual universal sheaf, where In is the ideal sheaf on X of any sub-
scheme of length n with c2(In) = n cX . We state the theorem explicitly. In the
context of the product X [n] × Xk × X`, let us index by {1, . . . , `} the individual

factors in the product X` and by {1̂, . . . , k̂} the factors in the product Xk. Further,

I(t)

n denotes the normalized universal sheaf from the t-th factor. We then restate:

Theorem 2∗. For any integers n ≥ 1, ` ≥ 1, k ≥ 0, consider the product X [n] ×
Xk × X` and a tautological class α ∈ Rd(X [n] ×Xk) satisfying

d+ ` > 2n+ 2k.
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For any indices i1, . . . , i` ≥ 0, partition Ω t Θ = {1, . . . , `}, assignment s : Θ →
{1̂, . . . , k̂} we have

α ·
∏
t∈Ω

chit

(
I(t)

n

)
·
∏
t∈Θ

chit(O∆st,t
) = 0 in CH?

(
X [n] × Xk × X`

)
.

3.1. Induction preliminaries. We argue inductively on the number of points us-
ing the geometry of the nested Hilbert scheme

X [n,n+1] ⊂ X [n] ×X [n+1]

parametrizing pairs (ξ, ξ′) ∈ X [n]×X [n+1] such that ξ ⊂ ξ′. The inductive technique
was first used in [EGL] to relate top intersections on X [n+1] and X [n] × X; we
now recall its main features. Each point (ξ, ξ′) ∈ X [n,n+1] corresponds to an exact
sequence

(17) 0→ Iξ′ → Iξ → Ox → 0,

leading to projection maps

(18)
X [n,n+1]

X [n] X X [n+1]

φ
p

ψ ,

and globally to an isomorphism

X [n,n+1] ∼= P(In)

of smooth projective varieties.
An important role for the geometry of X [n,n+1] is played by the hyperplane line

bundle

L = OP(In)(1)

with first Chern class c1(L) = λ. Letting

σ = φ× p : X [n,n+1] → X [n] ×X,

we have (cf. [EGL])

(19) σ?
(
λi
)

= (−1)ici(−In).

The following fundamental exact sequence on X [n,n+1] × X relates the universal
ideal sheaves and the exceptional line bundle L:

(20) 0→ ψ?XIn+1 → φ?XIn → π?L ⊗ σ?XO∆ → 0.

Here (and elsewhere in the paper) we use the notation fX = f × idX ; the map
π : P(In)×X → P(In) is the projection; ∆ denotes the diagonal in X ×X, pulled
back in (20) via σX : X [n,n+1] ×X → X [n] ×X ×X.
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Furthermore, for a vector bundle F → X, let F [n] denote the associated tautolog-
ical vector bundle on X [n],

F [n] = π? (OZn ⊗ ρ?(F )) .

As usual in this text, π and ρ are the projections from X [n] × X to the first and
second factors respectively. The K-theoretic equality

ψ?F [n+1] = φ?F [n] + L · p?F in K(X [n,n+1])

follows from (20). In particular,

(21) L = ψ?O[n+1] − φ?O[n] in K(X [n,n+1]).

The induction in [EGL] only tracks degrees of top codimension classes on the
Hilbert scheme X [n]. Since our argument involves Chow classes of arbitrary codi-
mension, we note the following

Lemma 2. Let α be a class in CH?(X
[n+1] ×Xk). Then

α = 0 ⇐⇒ σ?ψ
?α = σ?(λ · ψ?α) = 0 in CH?(X

[n] ×X ×Xk).

In the statement of the lemma and also onwards, we abuse notation and denote

ψ = ψ × idX[k] : X [n,n+1] ×Xk → X [n+1] ×Xk

σ = σ × idX[k] : X [n,n+1] ×Xk → X [n] ×X ×Xk,

Proof. We use the description of the Chow groups of

Hilb = qn≥0X
[n]

in [dCM], as well as an aspect of Lehn’s formulas in Chow recently established in
[MN]. Recall first the definition of the Nakajima operators qi, q−i, i > 0. For every
i > 0 consider the subscheme

X [n,n+i] = {(I ⊃ I ′) s.t. I/I ′ is supported at a single pointx ∈ X} ⊂ X [n] ×X [n+i],

with accompanying maps

X [n,n+i]

X [n] X X [n+i]

φ
p

ψ

This correspondence defines the operators:

q±i : CH?(Hilb)→ CH?(Hilb×X),

qi = (ψ × p)? ◦ φ?,
q−i = (φ× p)? ◦ ψ?,
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which satisfy the commutation relations in the Heisenberg algebra. By composition
one can form any string operator

qi1 · · · qi` : CH?(Hilb)→ CH?(Hilb×X`).

Any class Γ ∈ CH?(X
`) then defines an endomorphism of CH?(Hilb) via

qi1 · · · qi`(Γ) = π1∗(qi1 · · · qi` · π∗2(Γ)),

where π1, π2 : Hilb×X` → Hilb, X` are the standard projections.
The main theorem of [dCM] establishes that all Chow classes of the Hilbert scheme

arise from Chow classes of symmetric products X` through the Nakajima corre-
spondences. To state this precisely, let the vacuum vector v be the generator of
CH?(X

[0]) ' Q. Then

(22) CH?(Hilb) =
⊕

n1≥...≥n`>0
Γ∈CH?(X`)sym

Q · qn1 · · · qn`
(Γ) · v,

where CH?(X
`)sym ⊂ CH?(X

`) denotes the subring of classes invariant under trans-
positions (ij) for which ni = nj. The isomorphism (22) is induced by a correspon-
dence whose transpose gives the inverse map. It follows that for each n,⊕

n1+···+n`=n
n1≥...≥n`>0

q−n1 · · · q−n`
: CH?(X

[n]) −→
⊕

n1+···+n`=n
n1≥...≥n`>0

CH?(X
`)

is injective.
The Chow groups of the products Hilb×Xk, k > 0, admit a parallel description,

since the inverse of the isomorphism (22) is induced by the transpose correspondence.
We thus have

(23) CH?(Hilb×Xk) =
⊕

n1≥...≥n`>0
Γ∈CH?(X`+k)sym

Q · qn1 · · · qnl
(Γ) · v.

(Here CH?(X
`+k)sym ⊂ CH?(X

`+k) is the subring of classes invariant under trans-
positions on the first ` factors for which ni = nj.) Correspondingly, for every n and
k, the map⊕

n1+···+n`=n
n1≥...≥n`>0

q−n1 · · · q−n`
: CH?(X

[n] ×Xk) −→
⊕

n1+···+n`=n
n1≥...≥n`>0

CH?(X
`+k)

is injective.

For a class α ∈ CH?(X
[n+1] ×Xk) we thus have, relevant to the lemma:

q−i(α) = 0 for all i > 0 =⇒ α = 0.
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Assume now that σ?ψ
?α = σ?(λ · ψ?α) = 0. We note right away that

σ?ψ
? = q−1 : CH?

(
X [n+1] ×Xk

)
→ CH?

(
X [n] ×X ×Xk

)
.

Furthermore, recall from [L, Definition 3.8] that the boundary operator

δ : CH?(X
[n])→ CH?(X

[n])

represents multiplication by the divisor class c1(O[n]) on X [n]. Since via (21) we have

λ = ψ?c1(O[n+1])− φ?c1(O[n]),

the operation of pulling back via ψ, intersecting with the hyperplane λ, and pushing

forward by σ, is the commutator q
(1)
−1 of q−1 with the boundary δ,

σ?(λ · ψ?) = [δ, q−1] = q
(1)
−1 : CH?(X

[n+1] ×Xk)→ CH?(X
[n] ×X ×Xk).

It is known that the operators q−1 and q
(1)
−1 generate all Nakajima lowering operators

on the level of Chow, as explained in [MN]. To be precise (cf. [MN] equation (1.12)
in Theorem 1.7), we have

[q
(1)
−1, q−i] = i∆?(q−i−1).

The left and right side are homomorphisms CH?(Hilb×Xk)→ CH?(Hilb×X2×Xk)
where the last k factors of X are inert for the Chow action. Thus

q−1(α) = q
(1)
−1(α) = 0 =⇒ q−i(α) = 0 for all i > 0 =⇒ α = 0.

This ends the proof of the lemma. �

3.2. Proof of Theorem 2∗. We now complete the inductive argument giving the
theorem.

3.2.1. The base case n = 1. The proof of Theorem 2∗ follows in this case from the
three identities stated in the introduction,

(24) ∆01 ·∆02 ·∆03 = 0 in CH2(X ×X3)

(25) D(0) ·∆01 ·∆02 = 0 in CH3(X ×X2),

(26) c
(0)
X ·∆01 = 0 in CH0(X ×X),

of which the first one is the Beauville–Voisin identity.

We have X [1] = X and the universal ideal sheaf is

I1 = I∆ on X ×X.
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A tautological class α ∈ Rd(X × Xk) is a polynomial in pullbacks of diagonals,
divisors, and special cycles cX from various factors of the product Xk+1. Thus α is
necessarily a linear combination of subvarieties of Xk+1 of type

(27) c
(1)
X × · · · × c

(a)
X ×D

(a+1)
1 × · · · ×D(a+b)

b ×X(a+b+1) × · · · ×X(a+b+c) ⊂ Xk+1

where the embedding in Xk+1 is by diagonals (and up to ordering of the factors).
Here a+ b+ c ≤ k + 1 and

dimα = b+ 2c.

We now assume α is of the form (27). Indexing the first copy of X by 0, we have

I(t)

1 = −O∆0,t

in K-theory. We seek to establish the vanishing

α ·
∏
t∈Ω

chit

(
O∆0,t

)
·
∏
t∈Θ

chit(O∆st,t
) = 0 in CH?

(
X × Xk × X`

)
,

whenever ` > dimα. Here t runs through {1, . . . , `} and Ω t Θ = {1, . . . , `}. The
Chern character degrees it are arbitrary.

Noting now that in X ×X we have

ch(O∆) = ∆− 2 cX × cX

and the cycle cX×cX is a rational multiple of ∆
2
, it is enough to show the vanishing

(28) α ·
∏
t∈Ω

∆0,t ·
∏
t∈Θ

∆st,t = 0 in CH?

(
X × Xk × X`

)
,

whenever ` > dimα = b+ 2c. Since α is of the form (27), this inequality guarantees
that a factor of cX receives a matching normalized diagonal, or a factor of D re-
ceives two matching normalized diagonals, or a factor of X receives three matching
normalized diagonals. (Here ”matching” means that the normalized diagonal shares
an index with the class in question.) The fundamental identities (24), (25), (26)
therefore ensure that the product (28) vanishes. �

3.2.2. The induction step. Let α ∈ Rd(X [n+1]×Xk). We want to show that for every
` satisfying

` > dimα,

and any indices i1, . . . , i` ≥ 0, the class

(29) γ := α ·
∏
t∈Ω

chit(I
(t)

n+1) ·
∏
t∈Θ

chit(O∆st,t
) = 0 in CH?(X

[n+1] ×Xk ×X`).

According to Lemma 2 it suffices to show

σ?ψ
?γ = σ?(λ · ψ?γ) = 0 in CH?(X

[n] ×Xk+1 ×X`).
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To start, note that as a tautological class, α is a polynomial in classes

βj, ∆s,s′ , D(s), c
(s)
X , and chi(I(s)

n+1),

with βj ∈ R?(X [n+1]) and s ∈ {1̂, . . . , k̂}. Recalling the exact sequence (20),

0→ ψ?XIn+1 → φ?XIn → π?L ⊗ σ?XO∆ → 0 on X [n,n+1] ×X

it follows that the pullback ψ?α is of the form

(30) ψ?α =
d∑
j=0

αd−j · λj ∈ CH?(X
[n,n+1] ×Xk),

where

αd−j ∈ Rd−j(X [n] ×Xk+1)

are pulled back under σ× idXk : X [n,n+1]×Xk → X [n]×Xk+1. (Here we suppressed
the pullback from the notation.)

Furthermore, the fundamental exact sequence (20) gives immediately the K-
theoretic equality

I(t)

n+1 = I(t)

n − L · O∆0,t
− (L − 1) · O

c
(t)
X

in K(X [n,n+1] ×X`).

Here 0 denotes the factor of X which X [n,n+1] maps to under p : X [n,n+1] → X; we
suppressed the pullbacks from the notation; as usual t indexes the factors in X`.

Thus the class ψ?γ ∈ CH?(X
[n,n+1] ×Xk ×X`) is a linear combination of terms

of the form

(31) ψ?α ·
∏
t∈Ω1

chit(I
(t)

n )·
∏
t∈Ω2

chit(L⊗O∆0,t
)·
∏
t∈Ω3

chit((L−1)⊗O
c
(t)
X

)·
∏
t∈Θ

chit(O∆st,t
)

Here Ω1 t Ω2 t Ω3 t Θ = {1, . . . , `}, the indexing set for factors in the product
X`, and ψ?α is the codimension d class given by (30). The expression (31) is a
polynomial in λ with coefficients pulled back from R?(X

[n] × Xk+1 × X`). Noting
now that

ch((L − 1)⊗O
c
(t)
X

) = λ · p(λ) · c(t)
X for p ∈ Q[λ],

we conclude from (31) that the classes ψ?γ, λ · ψ?γ ∈ CH?(X
[n,n+1] ×Xk ×X`) are

linear combinations of terms of type

α̃ ·
∏
t∈Ω1

chit(I
(t)

n ) ·
∏
t∈Ω2

chit(O∆0,t
) ·
∏
t∈Ω3

c
(t)
X ·
∏
t∈Θ

chit(O∆st,t
),

where the quadruple product is now pulled back from R?(X
[n] ×Xk+1 ×X`). The

class α̃ is a polynomial in λ with coefficients in R?(X
[n] ×Xk+1), and

codim α̃ ≥ d+ ω, where ω = |Ω3|.
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Correspondingly, since powers of λ push forward to tautological classes (cf. (19)),
the pushforwards σ?ψ

?γ and σ?(λ ·ψ?γ) are linear combinations of terms of the form

β ·
∏
t∈Ω1

chit(I
(t)

n ) ·
∏
t∈Ω2

chit(O∆0,t
) ·
∏
t∈Ω3

c
(t)
X ·
∏
t∈Θ

chit(O∆st,t
),

for β ∈ R?(X
[n] ×Xk+1) satisfying

d′ := codim β ≥ d+ ω.

Setting `′ = `− ω and omitting the X factors which carry a class cX , we note that
the product

β ·
∏
t∈Ω1

chit(I
(t)

n ) ·
∏
t∈Ω2

chit(O∆0,t
) ·
∏
t∈Θ

chit(O∆st,t
) = 0 ∈ R?(X

[n] ×Xk+1 ×X`′)

by the induction hypothesis, since d′ + `′ ≥ d+ ` > 2n+ 2k + 2. �

4. The Chow filtration

In this section we examine the filtration on CH?(M) proposed in the introduction,
in Corollary 3. The filtration is natural to the product point of view of this paper.
Within its framework, all dimensions are treated uniformly. For a fixed codimension
d and 0 ≤ i ≤ d we set

(32) Si(CH
d(M)) = {α with α ·∆01 · · ·∆0,m−d+i+1 = 0 ⊂ CH?(M× Mm−d+i+1)}.

Here α is pulled back to the product from the first factor. We have

S0 ⊂ S1 ⊂ S2 ⊂ . . . .

On general grounds, the filtration terminates eventually. A precise bound is pre-
dicted by the conjectural vanishing (11),

∆01 · · ·∆0,m+1 = 0 in CHm(M × Mm+1),

which is the codimenson zero case of Conjecture 1. This identity would ensure that
Sd(CH

d(M)) = CHd(M). As we will see immediately however, for certain cases (e.g.,
dimension zero) one can establish the expected termination threshold directly.

Theorem 1∗ is a useful tool for analyzing S•: for a class α ∈ CH?(M), it asserts

α ·∆01 · · ·∆0,` = 0 ∈ CH?

(
M× M`

)
⇐⇒

α · chi1(F1) · · · chi`(F `) = 0 ∈ CH?(M×X`), for all i1, . . . , i` ≥ 0.



22 I. BARROS, L. FLAPAN, A. MARIAN, AND R. SILVERSMITH

4.1. The filtration for zero-cycles. We examine the filtration first for zero-cycles,
when d = m. In this case we simply have

(33) Si(CH0(M)) = {α with α ·∆01 · · ·∆0, i+1 = 0 ⊂ CH?(M× Mi+1)}.

For a cycle η ∈ CH?(M), we use the notation

η�` = p?1η · p?2η · · · p?`η ∈ CH∗(M`),

where pj : M` → M, 1 ≤ j ≤ `, is the projection on the jth factor. By definition
then, for a point class [F ] with F ∈ M, we have

[F ] ∈ Si ⇐⇒ ([F ]− cM)�(i+1) = 0 ∈ CH0(Mi+1).

For a zero-cycle α ∈ CH0(M), the vanishings

α · chi1(F1) · · · chi`(F `) = 0 ∈ CH?(M×X`) for i1, . . . , i` ≥ 0

hold trivially unless

i1 = i2 = · · · = i` = 2.

In the latter case, we can equivalently replace the second Chern character by the
second Chern class. We thus have, in consequence of Theorem 1∗,

[F ] ∈ Si(CH0(M)) ⇐⇒ ([F ]− cM)�(i+1) = 0 ∈ CH0(Mi+1)

⇐⇒ (c2(F )− kcX)�(i+1) = 0 ∈ CH0(X i+1).(34)

Here we set

k =

∫
X

c2(F ) ∈ Z, for F ∈ M,

the degree of the second Chern class for sheaves with Mukai vector v = v(F ).

4.2. A comparison with the Voisin and Shen-Yin-Zhao filtrations on CH0(M).
The filtration S• is closely related to the following two filtrations previously studied
in the context of zero-cycles on M. For the rest of the paper we set

m = dimM = 2n.

Following [V1], we let

(35) SVi = subgroup ofCH0(M) generated by point classes [F ], F ∈ M,

with dimOF ≥ n− i.

Here OF denotes the rational equivalence orbit of a point F ∈ M,

OF = {E ∈ M | [E] = [F ] in CH0(M)} ,

a countable union of subvarieties of M. The dimension of the orbit is the largest
occurring dimension among these subvarieties.
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A second filtration was introduced in a general moduli context in [SYZ], in relation
to O’Grady’s [OG2] classic filtration on CH0(X). We let:

(36) SSY Zi = subgroup ofCH0(M) generated by point classes [F ], F ∈ M,

with c2(F ) = Zi + (k − i)cX ∈ CH0(X), where Zi is effective of degree i.

It is known [V1] that these two filtrations agree for the Hilbert scheme of points,

SV• (CH0(X [n])) = SSY Z• (CH0(X [n])).

In a general setting, for a moduli space M with arbitrary primitive Mukai vector
and generic polarization, it is known [SYZ] that

SSY Z• (CH0(M)) ⊂ SV• (CH0(M)).

We record the following easy lemma, providing a connection with the filtration (33).

Lemma 3. We have SSY Zi (CH0(M)) ⊂ Si(CH0(M)), where M parametrizes stable
sheaves with an arbitrary primitive Mukai vector v.

Proof. The fundamental Beauville-Voisin identity

∆01 ·∆02 ·∆03 = 0 ∈ CH2(X4)

gives, for any point x ∈ X:

0 = p23?

(
∆01 ·∆02 ·∆03 · p?1[x]

)
= ([x]− cX)�2 ∈ CH0(X2).

For any collection of points x1, . . . , xi ∈ X we therefore have

([x1] + . . .+ [xi]− icX)�(i+1) = 0 ∈ CH0(X i+1).

Recall now that SSY Zi is generated by point classes [F ] for F ∈ M satisfying

c2(F )− kcX = [x1] + . . .+ [xi]− icX ∈ CH0(X),

for a collection of points x1, . . . , xi ∈ X. For any such F we thus have

(c2(F )− kcX)�(i+1) = 0 ∈ CH0(X i+1).

By (34), this means [F ] ∈ Si.
�

Remark 4. It is known (cf [SYZ], [OG2], [V5]) that the filtration SSY Z• terminates
after n steps, SSY Zn = CH0(M). By the lemma, so does the filtration S• on CH0(M),
and we have

(37) [F ] ·∆01 ·∆02 · · ·∆0,n+1 = 0 ∈ CH?(M×Mn+1), for all F ∈ M.

The subtler inclusion SVi (CH0(M)) ⊂ Si(CH0(M)) connects to properties of the
filtration for higher-dimensional cycles, as we note in the next subsection.
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Remark 5. It is useful to single out the subgroup

Ssmall
i (CH0(M)) ⊂ Si(CH0(M))

generated by point classes [F ] ∈ Si(CH0(M)), for F ∈ M. Via (34), the equality
SSY Zi (CH0(M)) = Ssmall

i (CH0(M)) is implied by the following conjectural equivalence
noted in [SYZ]: for a degree-zero cycle ξ ∈ CH0(X),

ξ = [x1]+· · ·+[xi]−icX for a collection x1, . . . , xi ∈ X ⇐⇒ ξ�(i+1) = 0 ∈ CH0(X i+1).

The obvious direction in this equivalence was already used in the lemma to show
SSY Zi (CH0(M)) ⊂ Ssmall

i (CH0(M)).

4.3. The filtration for higher-dimensional cycles. Understanding the filtration
S• in dimension zero is interestingly tied with properties of S• for cycles of higher
dimension. We propose here the following generalization of identity (37).

Conjecture 4. Let V ⊂ M be a constant-cycle subvariety. Then

(38) [V ] ·∆01 ·∆02 · · ·∆0,n+1 = 0 ∈ CH?(M×Mn+1).

Here [V ] is pulled back as usual from the first M factor.

The vanishing is conjectured to hold for a product of n+ 1 normalized diagonals
regardless of the dimension of the constant-cycle subvariety V . Thus when [V ] ∈
CHn+i(M), the conjecture positions the class of V in the ith piece of its Chow group,

[V ] ∈ Si(CH
n+i(M)).

This matches an expectation formulated in [V1] regarding the placement of constant-
cycle subvarieties in a hypothetical filtration on all of CH?(M) which would split
the Bloch-Beilinson filtration. Let us now observe

Lemma 4. The vanishing (38) holds if and only if SV• (CH0(M)) ⊂ S•(CH0(M)).

Proof. We assume first that SV• (CH0(M)) ⊂ S•(CH0(M)) and will deduce (38). Let
V = VF be a constant-cycle subvariety for F ∈ M of dimension n − i, so [F ] ∈ SVi .
By assumption we have

(39) ([F ]− cM)�(i+1) = 0 ∈ CH0(Mi+1),

since [F ] ∈ Si. We set

∆
F

= ∆−M× [F ] ∈ CHm(M×M),

thus

∆ = ∆
F

+ M× ([F ]− cM).

The spreading principle gives

(40) [VF ] ·∆F

01 ·∆
F

02 · · ·∆
F

0,n−i+1 = 0 ∈ CH?(M×Mn−i+1).
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Expanding, the two identities (39) and (40) now imply that

[VF ]·∆01 · · ·∆0,n+1 = [VF ]·
(

∆
F

01 + ([F ]− cM)(1)
)
· · ·
(

∆
F

0,n+1 + ([F ]− cM)(n+1)
)

= 0.

(Here η(i) denotes the pullback of η ∈ CH?(M) from the ith factor to the product
Mn+1.)

Conversely, let us assume identity (38) holds, and let [F ] ∈ SVi , for F ∈ M. Let
VF be a constant-cycle subvariety for F of dimension j ≥ n− i. Let D be an ample
divisor on M. We have

[VF ] ·Dj = a [F ] ∈ CH0(M),

for a positive number a. By assumption,

[VF ] ·∆01 ·∆02 · · ·∆0,n+1 ·D(1) ·D(2) · · ·D(j) = 0 ∈ CH0(M×Mn+1).

Pushing this cycle forward to the last n − j + 1 factors of the product Mn+1 we
obtain

a · ([F ]− cM)�(n−j+1) = 0 ∈ CH0(Mn−j+1).

As j ≥ n− i, we have n− j + 1 ≤ i+ 1, therefore

([F ]− cM)�(i+1) = 0 ∈ CH0(Mi+1)

and [F ] ∈ Si. �

Remark 6. Let us note that in turn, the inclusion Ssmall
• ⊂ SV• is equivalent to the

following statement: for any point F ∈ M and any constant-cycle subvariety VF of
maximal dimension in the orbit OF , we have

(41) [VF ] ·∆01 ·∆02 · · ·∆0,n 6= 0 ∈ CH?(M×Mn).

Proof. This can be seen immediately as in the proof of the lemma above. Assume
first that the inequality (41) holds as specified, and let [F ] ∈ Si. We thus have
([F ] − cM)�(i+1) = 0 ∈ CH0(Mi+1). Let VF be a maximal constant-cycle subvariety

for F . Writing ∆0i = ∆
F

0i + ([F ]− cM)(i) and expanding the product, we get

[VF ] ·∆01 ·∆02 · · ·∆0,n 6= 0 =⇒ [VF ] ·∆F

01 ·∆
F

02 · · ·∆
F

0,n−i 6= 0 ∈ CH?(M×Mn−i)

=⇒ dimVF ≥ n− i =⇒ [F ] ∈ SVi .

Conversely, assume Ssmall
• ⊂ SV• . Let F ∈ M satisfy ([F ] − cM)�(i+1) = 0 but ([F ] −

cM)�i 6= 0. By assumption then, a maximal constant-cycle subvariety VF satisfies
dimVF = j ≥ n− i. For an ample divisor D on M we therefore have

[VF ] ·Dj = a [F ] ∈ CH0(M)

for a positive constant a. We consider the product

[VF ] ·∆01 ·∆02 · · ·∆0,n ·D(1) ·D(2) · · ·D(j) ∈ CH0(M×Mn)
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and note that its projection to the last n− j factors in the product Mn is

a · ([F ]− cM)�(n−j) 6= 0.

We have used n− j ≤ i. We conclude [VF ] ·∆01 ·∆02 · · ·∆0,n 6= 0. �
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