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SUMMARY
Animalsmust rapidly respond to threats to survive. In rodents, threat-related signals are processed through a
subcortical pathway from the superior colliculus to the amygdala, a putative ‘‘low road’’ to affective behavior.
This pathway has not been well characterized in humans. We developed a novel pathway identification
framework that uses pattern recognition to identify connected neural populations and optimizemeasurement
of inter-region connectivity. We first verified that the model identifies known thalamocortical pathways with
high sensitivity and specificity in 7 T (n = 56) and 3 T (n = 48) fMRI experiments. Then we identified a human
functional superior colliculus-pulvinar-amygdala pathway. Activity in this pathway encodes the intensity of
normative emotional responses to negative images and sounds but not pleasant images or painful stimuli.
These results provide a functional description of a human ‘‘low road’’ pathway selective for negative extero-
ceptive events and demonstrate a promising method for characterizing human functional brain pathways.
INTRODUCTION

Rapidly detecting threats in the environment is crucial for sur-

vival. In rodents, behavioral responses to visual danger signals

are mediated by neural pathways from the superior colliculus

to the pulvinar (Zhou et al., 2017) and from the pulvinar to the

amygdala (Wei et al., 2015). This pathway, sometimes referred

to as the ‘‘low road’’ to amygdala-mediated threat (de Gelder

et al., 2011; Ledoux, 1998; Pessoa and Adolphs, 2010), enables

reflexive behavioral responses (e.g., orienting) via collicular pro-

jections (Schneider, 1969) and interfaces withmechanisms in the

amygdala that shape current and future defensive behaviors (Ta-

mietto and de Gelder, 2010). The targets of this pathway, neu-

rons in the basolateral amygdala (Wei et al., 2015), comprise

one of many interdigitated neural populations involved in pain-

related affect (Corder et al., 2019), anxiety (Tye et al., 2011),

and reward and punishment (Burgos-Robles et al., 2017), among

other behaviors (Janak and Tye, 2015). In humans, this pathway

is thought to mediate unconscious processing of affective visual

stimuli (Morris et al., 1999; Tamietto and de Gelder, 2010; Vuil-

leumier et al., 2003; Whalen et al., 2004). However, the pathways
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identified in animal research reflect communication among spe-

cific neural ensembles (Janak and Tye, 2015; Kyriazi et al., 2018)

that are not clearly resolved with human neuroimaging. Although

structural connections consistent with the colliculus-pulvinar-

amygdala pathway have been identified (Abivardi and Bach,

2017; McFadyen et al., 2019; Rafal et al., 2015; Tamietto et al.,

2012), its precise location and functions in humans require

further study. In particular, it has not been functionally distin-

guished from other amygdalar circuits, and there is so far no

defined measure of functional connectivity in this pathway.

More precise identification of the pathway would allow more ac-

curate characterization of its relationships with human affect and

behavior.

Adoption of pattern recognition techniques has moved fMRI

closer to the level of neural representation in humans (Kragel

et al., 2018; Norman et al., 2006; Poldrack and Farah, 2015),

potentially even uncovering information coded by cortical col-

umns (Haynes and Rees, 2005; Kamitani and Tong, 2005), but

the mainstay of connectivity research in humans examines rela-

tionships between coarse anatomical regions, not neural popu-

lations. As a result, there are ongoing debates about the
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colliculus-pulvinar-amygdala pathway, including whether it ex-

ists in primates (Pessoa and Adolphs, 2010). If so, it is unclear

whether it selectively responds to emotional events (as opposed

to attentionally demanding or behaviorally relevant events more

generally) and whether it relates to human subjective emotional

experience (LeDoux, 2014). We addressed these questions by

extending pattern recognition approaches in fMRI (Haxby

et al., 2001; Kriegeskorte et al., 2006; Poldrack and Farah,

2015) to modeling multivariate brain pathways in humans. We

sought to identify a human colliculus-pulvinar-amygdala

pathway and characterize its relationships with human emotion

and pain.

Recent advances in connectivity models using multivariate

fMRI patterns have the potential to identify human pathways

connecting specific neural populations with increased precision

(Anzellotti and Coutanche, 2018; Anzellotti et al., 2017; Cou-

tanche and Thompson-Schill, 2013; Woo et al., 2014). Conven-

tional approaches focus on connectivity among anatomical re-

gions or large functional parcels (Friston, 1994), which

averages over many off-target signals. Multivariate pattern anal-

ysis can help by identifying signals that are more sensitive to

particular subsets of neural populations (Haxby et al., 2001; Ka-

mitani and Tong, 2005). For example, distinct multivariate pat-

terns within the same brain region can exhibit unique profiles

of connectivity and differential associations across varieties of

affect (Anzellotti et al., 2017; Anzellotti and Coutanche, 2018;

Basti et al., 2019; Coutanche and Thompson-Schill, 2013; Woo

et al., 2014).

The approach we developed, multivariate pathway identifica-

tion (MPathI), was designed specifically to model connections

between distinct populations located in different brain regions,

as demonstrated frequently in contemporary animal studies (De-

isseroth, 2011). MPathI accomplishes this goal using an exten-

sion of partial least-squares to optimize the covariance between

twomultivariate patterns (latent sources reflective of neural pop-

ulations) and estimate the strength of functional correlations be-

tween them. Training the model to identify a population-level

(group) pattern and testing on independent participants (Kragel

et al., 2018;Woo et al., 2017) stabilizesmodel weights, prioritizes

generalizability, and provides unbiased estimates of (1) connec-

tivity measured by the pathway model, (2) prediction of subjec-

tive emotion, and (3) differences from standard connectivity

measures. Unlike similar measures (e.g., canonical correlation;

Hardoon et al., 2007)), optimizing covariance prioritizes identifi-

cation of larger, more robust signals in each region (STAR

Methods). In addition to testing whether particular pathways

can be identified in humans with the assistance of pattern recog-

nition algorithms, MPathI and related techniques provide opti-

mizedmeasures of pathways that can be tested for relationships

with behavior, psychopathology, and treatments.

RESULTS

We first evaluated whether MPathI can be used to identify thala-

mocortical pathways with high sensitivity and specificity. This is

important because fMRI-based measures of functional correla-

tions may be driven by signals other than direct connections

(e.g., by global signals or indirect connections). To this end, we
acquired high-resolution (1.1 mm isotropic) fMRI at 7 T with

whole-brain coverage (n = 56; STAR Methods). We estimated

the strength of connectivity in monosynaptic pathways from

the lateral geniculate nucleus (LGN) to the primary visual cortex

(V1) and from themedial geniculate nucleus (MGN) to the primary

auditory cortex (A1). Pathway models produced multivoxel pat-

terns in each pair of regions that maximally covary (i.e., LGNV1-

V1LGN and MGNA1-A1MGN). We compared the strength of these

connections against crossed (off-target) connections (i.e.,

LGNV1-V1MGN and MGNA1-A1LGN), which served as negative

controls. Connectivity in target pathways (i.e., LGNV1-V1MGN

and MGNA1-A1LGN) was strong and positive (Pearson’s r =

0.3891 ± 0.0167 SEM, p < 0.0001), whereas ‘‘crossed’’ connec-

tions were nonsignificant (r = 0.0359 ± 0.0205 SEM). The direct

comparison was highly significant (Dr = 0.353 ± 0.024 SEM,

t55 = 13.83, p < 0.0001; Figure 1B). Connectivity strength

discriminated between target and off-target pathways with

85% ± 2.4% accuracy (sensitivity = 95%, 95% confidence inter-

val [CI] = [90% 98%]; specificity = 76% [68% 84%]; area under

the receiver operating characteristic curve [AUROC] = 0.92).

These findings were replicated in a separate fMRI study at

conventional 3 T field strength (experiment 2, n = 48), with

some loss of precision but good sensitivity and specificity.

Experiment 2 differed in other important ways as well; it included

stimulation with affective visual, auditory, mechanical, and ther-

mal stimuli, and the MPathI model was estimated at the popula-

tion (group) level, allowing correlation between pathway

response and affective experience (see below and STAR

Methods). MPathI demonstrated positive cross-validated con-

nectivity estimates for target pathways (r = 0.547 ± 0.031 SEM,

p < 0.0001) that were stronger than estimates for off-target con-

nections (r = 0.492 ± 0.027 SEM; Dr = 0.055 ± 0.016 SEM, t47 =

3.86, p < 0.0001; accuracy = 76.0%; AUROC= 0.783). These ob-

servations suggest that MPathI is sensitive to connections in

known thalamocortical pathways and shows regional specificity

across nearby regions of the thalamus. Such specificity would

not be expected if pathway connectivity estimates were driven

by global signals shared across multiple brain regions.

Given evidence that MPathI can accurately identify known

pathways, we next examined whether it could be used to detect

a superior colliculus-pulvinar-amygdala pathway in humans at 7

T. This pathway is quiescent at rest in non-human animals (Ram-

charan et al., 2005; Zhou et al., 2018), making it difficult to isolate

in the absence of behavior (e.g., during resting-state fMRI). To

induce relevant activity, we scanned participants during tasks

involving visual manipulation of negative emotion and painful

mechanical stimulation (STAR Methods). Despite evidence of

anatomical connectivity in humans (Abivardi and Bach, 2017;

Rafal et al., 2015) the colliculus and amygdala connect to poten-

tially different pulvinar populations (Pessoa and Adolphs, 2010),

making it unclear whether the pathway is conserved across spe-

cies, and if it is, how best to optimize a measure that captures its

connectivity. To accommodate the possibility of direct andmulti-

synaptic pathways through the pulvinar (Pessoa and Adolphs,

2010), we fit separate models for the superior colliculus-pulvinar

and pulvinar-amygdala segments of the pathway (Figure 2B). In

experiment 1, MPathI revealed patterns of activity in the superior

colliculus optimized to covary with activity in the pulvinar (which
Neuron 109, 2404–2412, August 4, 2021 2405



Figure 1. Multivariate pathway identifica-

tion (MPathI) discriminates direct from indi-

rect thalamocortical sensory pathways

(A) Visual (LGN-V1, red) and auditory (MGN-A1,

green) regions of interest used to evaluate the

sensitivity and specificity of MPathI.

(B) Axial views of patterns in the primary auditory

cortex (A1), medial geniculate nucleus (MGN),

lateral geniculate nucleus (LGN), and primary vi-

sual cortex (V1) that exhibit maximal functional

connectivity with one another. Patterns were

identified using partial least-squares to maximize

connectivity between the MGN and A1 (i.e., pat-

terns MGNA1 and A1MGN) in one model and LGN

and V1 in another (i.e., patterns LGNV1 and V1LGN).

Unthresholded patterns that exhibit maximal

connectivity are shown for display purposes. Cool

colors correspond to negative model weights,

whereas positive colors indicate positive weights.

(C) Correlations for direct (LGNV1-V1LGN and

MGNA1-A1MGN) and indirect (LGNV1-V1MGN and

MGNA1-A1LGN) pathways fit on preprocessed

BOLD time series from experiment 1 (n = 56). Each

circle corresponds to one participant, solid black

lines indicate mean, light gray regions indicate one

standard deviation, and dark gray areas indicate

95% CIs. ***p < 0.0001.
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we denote SCPulv) and patterns of activity in the pulvinar and

amygdala optimized to covary with one another (i.e., PulvAmy

and AmyPulv; Figure 2B). The pulvinar-amygdala model (r =

0.7071 ± 0.0179 SEM, t55 = 39.588, p < 0.0001; Figure 2C) and

superior colliculus-pulvinar model (r = 0.7652 ± 0.0128 SEM,

t55 = 59.683, p < 0.0001) revealed strong connectivity. Connec-

tivity was substantially stronger andmore consistent across indi-

viduals than estimates from standard approaches based on re-

gion-average signals (pulvinar-amygdala: correlation difference

Dr = 0.402 ± 0.032 SEM, t55 = 12.766, p < 0.0001; superior colli-

culus-pulvinar:Dr = 0.328 ± 0.026 SEM, t55 = 12.618, p < 0.0001).

These observations demonstrate that our approach captures in-

formation conveyed by fine-scale patterns of fMRI activity that

are not captured by standard connectivity measures.

In animal models, the superior colliculus-pulvinar-amygdala

pathway is selectively activated by threat cues, particularly vi-

sual cues (Wei et al., 2015). In experiment 2 (n = 48), we evalu-

ated whether human MPathI connectivity estimates are consis-

tent with this pattern of selectivity. We scanned participants at

3 T during a multi-modal affect induction task designed to test
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the selectivity of affective responses.

The task included five different types of

stimuli assessed across two separate

scanning sessions: negative images,

negative sounds, mechanical pain, ther-

mal pain, and positive images, with 4 in-

tensity levels per stimulus type (20 event

types). We estimated blood-oxygen-

level-dependent (BOLD) responses to

each stimulus presentation (6 trials 3 4

intensity levels 3 5 stimulus types 3 48
participants, totaling 5,760 single-trial images). We fit pathway

models using data aggregated across multiple subjects and

evaluated their performance using cross-validation in indepen-

dent subjects with 48-fold cross-validation. As in experiment 1,

the pulvinar-amygdala model (r = 0.683 ± 0.017 SEM, t47 =

25.83, p < 0.0001) and superior colliculus-pulvinar model (r =

0.859 ± 0.010 SEM, t47 = 35.50, p < 0.0001) revealed strong con-

nectivity (Figure 2C) at levels greater than those estimated using

standard approaches based on region-average signals (pulvi-

nar-amygdala: Dr = 0.151 ± 0.021 SEM, t47 = 8.22, p < 0.0001;

superior colliculus-pulvinar: Dr = 0.177 ± 0.012 SEM, t47 =

16.97, p < 0.0001).

We next tested the colliculus-pulvinar-amygdala pathway’s

sensitivity and selectivity for negative emotional stimuli

compared with salient painful and positive emotional stimuli.

The colliculus-pulvinar-amygdala pathway in rodents conveys

information about threats, whereas reward and pain signals

reach the amygdala through different pathways; e.g., via other

thalamic nuclei or parabrachial projections (Doron and Ledoux,

1999; Han et al., 2015; Palmiter, 2018; Tye et al., 2008).



Figure 2. A colliculus-pulvinar-amygdala pathway selective for negative emotion in humans

(A) Hypothesized pathway and anatomical regions of interest rendered in MNI space.

(B) Axial views of patterns in the amygdala (Amy, top; peak t55 = 3.36, p = 0.0014), pulvinar (Pulv, center; peak t55 = 4.00, p = 0.0001), and superior colliculus (SC,

bottom; peak t55 = 3.32, p = .0016) that exhibit maximal functional connectivity with one another (target regions are denoted in subscript). Patterns that maximize

connectivity between the Pulv and Amywere identified in onemodel and the SC and Pulv in another. Unthresholded patterns that exhibit maximal connectivity are

shown for display purposes. Cool colors correspond to negative model weights, whereas positive colors indicate positive weights.

(C) Pathway models are more sensitive than conventional measures based on the mean signal of each region. Plots depict functional correlations estimated with

multivariate pathway models (yellow circles) and mean signal in each region (gray circles). Each point corresponds to a single subject. The left panels depict data

from experiment 1 (n = 56) and the right panels from experiment 2 (n = 48). Solid lines depict mean connectivity estimates, and boxes indicate standard deviation

and 95% CIs.

(D) Activation of the PulvAmy pattern mediates the relationship between SCPulv activity and negative emotion for images (top row) and sounds (bottom row).

Scatterplots show the relationship between SCPulv activity and PulvAmy activity (path a, left) and between PulvAmy activity and negative emotion (path b, right).

Lines show the least-squares fit between variables for each subject (n = 48). *p < 0.05, **p < 0.01, ***p < 0.001.
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Therefore, we expected the pulvinar-amygdala pathway to

selectively track the aversiveness of negative images (and

possibly sounds) but not painful heat, painful pressure, or posi-

tive images. To test this prediction, we regressed PulvAmy re-

sponses on normative rankings of aversiveness and pleasant-

ness (see STAR Methods for details). PulvAmy responses

increased linearly with the subjective aversiveness of pictures

(b = 0.0011 ± 0.00026 SEM, t47 = 4.363, p < 0.0001) and sounds
(b = 0.0019 ± 0.00026 SEM, t47 = 4.363, p < 0.0001), showing that

the pathway tracks negative emotion in humans across multiple

sensory modalities. However, PulvAmy responses showed little

relationship to mechanical pain (b = 0.0005 ± 0.00024 SEM,

t47 = 1.91, p = 0.0622), thermal pain (b = 0.00025 ± 0.00029

SEM, t47 = 0.852, p = 0.399), or pleasantness of positive pictures

(b = �0.00026 ± 0.00028 SEM, t47 = �0.904, p = 0.371). PulvAmy

activation was more sensitive to the aversiveness of images and
Neuron 109, 2404–2412, August 4, 2021 2407
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sounds than other stimulus types (Db = 0.0013 ± 0.00024 SEM,

t47 = 5.600, p < 0.0001). Similar results were found for colliculus

and amygdala patterns (Table S1); however, interestingly, effect

sizes were smallest in the amygdala, perhaps because of its

functional heterogeneity (Janak and Tye, 2015; Kyriazi et al.,

2018) or local fMRI signal inhomogeneity. These results establish

that a pathway model optimized for colliculus-pulvinar-amyg-

dala connectivity (without reference to behavior) predicts norma-

tive human judgements of aversiveness and that this pathway is

sensitive and specific to exteroceptive processing of threatening

stimuli as in non-human research (Wei et al., 2015).

Human affective responses may bemediated by direct and in-

direct pathways from the superior colliculus to the amygdala.

The existence of a direct colliculus-pulvinar-amygdala pathway

is contentious because threat-related collicular inputs target

the inferior pulvinar, but pulvinar-amygdala projections originate

in the medial pulvinar (Pessoa and Adolphs, 2010). This region

exhibits strong functional correlations with higher-level visual

areas (Arcaro et al., 2018), suggesting cortical involvement in

threat processing rather than a direct subcortical pathway. How-

ever, other findings show that projections from inferior layers of

the superior colliculus to the medial pulvinar and on to the amyg-

dala mediate ‘‘fear-like’’ freezing in rodents (Wei et al., 2015). To

evaluate evidence of a direct (versus indirect) pathway, we per-

formed a multi-level mediation analysis (Atlas et al., 2010),

testing whether fMRI activity in PulvAmy (the pulvinar pattern opti-

mized for amygdala connectivity) formally mediates the relation-

ship between SCPulv activity and normative human judgments of

aversiveness. Significant mediation implies that SCPulv-PulvAmy

connectivity covaries with the PulvAmy to emotion intensity

connection and is most consistent with a direct pathway. We

observed significant mediation effects (Figure 2D) for aversive

pictures (path a 3 b = 3.720 ± 1.566 SEM, z = 2.356, p =

0.018) and sounds (path a 3 b = 16.379 ± 3.579 SEM, z =

3.580, p < 0.0001). A similar mediation analysis using online

measures of self-reporting revealed similar effects for negative

sounds (path a 3 b = 2.00 ± 0.450 SEM, z = 3.722, p <

0.0001), which varied primarily in terms of basic acoustic fea-

tures but not images (path a 3 b = 0.2344 ± 0.2529 SEM, z =

0.8543, p = 0.3930), suggesting that this pathway may not be

involved in evaluative processes that vary over time or between

individuals. These results identify a human subcortical pathway

involved in aversiveness and are consistent with direct projec-

tions from the superior colliculus to the pulvinar and on to the

amygdala, but they do not preclude the existence of other

pathways.

Standard connectivity approaches did not reveal significant

mediation of aversiveness. Mediation using the mean signal in

each region produced much smaller, non-significant effects for

pictures (path a 3 b = 0.0029 ± 0.0171 SEM, z = 0.1728, p =

0.875, 95% CI of difference = [�2.738 to 13.964]) and sounds

(path a 3 b = 0.0186 ± 0.0283 SEM, z = 0.711, p = 0.518, 95%

CI of difference = [�13.890 to 31.820]). Thus, standard connec-

tivity approaches are not sufficient to identify subcortical path-

ways mediating emotional experience.

The pathway we identified likely does not operate in isolation.

Recent neuroscientific accounts (Pessoa and Adolphs, 2010)

and studies of the amygdala’s role in coordinating widely distrib-
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uted activity (Gr€undemann et al., 2019; Stringer et al., 2019) sug-

gest that the colliculus-pulvinar-amygdala pathway may be part

of a broader cortical-subcortical network for generating and

coordinating threat responses, and multiple cortico-amygdala

pathways could play a similar role. To compare cortical and

thalamic pathways with the amygdala, we used MPathI to iden-

tify optimized pathways connecting the amygdala with each of a

series of local regions spanning the thalamus (Krauth et al., 2010)

and cortex (Glasser et al., 2016). We performed principal-

component analysis (PCA) on the amygdala-related cortical

and thalamic pattern responses (‘‘pathways’’ to the amygdala

below) to identify commonalities in amygdala connectivity

across multiple pathways (Figure 3) and situate the pulvinar-

amygdala pathway among them.

This analysis revealed that activity in the pulvinar-amygdala

pathway was functionally similar to pathways connecting the

amygdala with multiple portions of ‘‘visual,’’ ‘‘somatomotor,’’

‘‘frontoparietal,’’ ‘‘attention,’’ and ‘‘limbic’’ networks (Yeo et al.,

2011). One group (component 1; Figure 3A) included the ‘‘low

road’’ pulvinar-amygdala pathway, pathways from the insula

and mid-cingulate cortex to the amygdala, and others. It was

related to multiple large-scale networks (Figure 3B) and was

the only component associated with ‘‘somatomotor,’’ ‘‘atten-

tion,’’ and ‘‘frontoparietal’’ networks. This group selectively re-

sponded to aversive images and sounds but not painful or pos-

itive stimuli (Figure 3C; Table S2). A second group of pathways

(component 2) included parts of the traditional visual cortical

‘‘high road’’ to the amygdala, including amygdala connections

with the LGN and visual cortex (predominantly the ventral

stream) and was associated with ‘‘visual’’ and ‘‘limbic’’ cortical

networks (Figure 3B). These pathways selectively responded

to the aversiveness of negative pictures but not other stimuli. A

third group (component 3) included amygdala connections

with the anterior temporal lobe and orbitofrontal cortex (OFC)

and loaded predominantly on the ‘‘limbic’’ cortical network

(Figure 3B). These pathways were not associated with emotional

intensity in this study. They are known to have dense connectiv-

ity with the amygdala and have been implicated inmnemonic (Ol-

son et al., 2007) and associative (Shenhav et al., 2013) process-

ing of affective information, including contextual influences on

emotion that were not manipulated here. These findings identify

three different profiles of amygdala activity, each correlated with

distinct large-scale systems. The colliculus-pulvinar-amygdala

pathway was part of a broader system anatomically and func-

tionally consistent with a ‘‘low road’’ to visually and aurally

induced threat, whereas other systems were consistent with

‘‘high road’’ visual cortical pathways to the amygdala and con-

ceptual ‘‘top down’’ influences on the amygdala.

DISCUSSION

Our findings are consistent with ‘‘multiple roads’’ accounts (Pes-

soa and Adolphs, 2010) but also consistent with the importance

of the collicular-pulvinar-amygdala pathway for unconscious af-

fective responses to visual stimuli (Tamietto and de Gelder,

2010). The amygdala appears to be important for some types

of negative affect but not others, and other pathways may be

more relevant for affective responses in other modalities (taste,



Figure 3. Distributed pathways to the Amy are sensitive to negative stimuli

(A) Decomposition of cortical and thalamic signals that covary with activity in the Amy, rendered on the brain. Pathway models were estimated between the Amy

and cortical areas identified from a multimodal parcellation (Glasser et al., 2016) and an anatomical atlas of the thalamus and adjacent structures (17 regions).

PCA reduces 197 estimates of activation that covary with the Amy to three orthogonal dimensions. Loadings of each region in this three-dimensional functional

space are conveyed using an additive colorspace (red, component 1; green, component 2; blue, component 3).

(B) Spatial similarity of principal components and resting-state networks from Yeo et al. (2011). The width of each line indicates the degree of correlation between

each component and binary maps of large-scale cortical networks. The first principal component is correlated with ‘‘somatomotor,’’ ‘‘frontoparietal,’’ and

‘‘attention’’ networks; the second component loads on ‘‘visual’’ and ‘‘limbic’’ networks; and the third component loads solely and predominantly on the ‘‘limbic’’

network.

(C) Relationship between activation of each component and the intensity of affective stimuli. Scatterplots show the relationship between activity of each

component and the intensity of affective stimuli. Lines show the least-squares fit between variables for each subject (n = 48).

(D) Scatterplot depicting the mean and standard error of model coefficients for each region in the three-dimensional space, highlighting gradients of activity

across regions (see Table S3 for full details). The Pulv region (Pulvamy) of focus here is in the top right breakout, with some of the highest loadings on component 1

and near-zero loadings on components 2 and 3.
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smell, or somatosensory). In addition, the relationship with

conscious affective and emotional experience requires further

study. Lesion studies indicate that the amygdala is not always

necessary for emotional experience (Anderson and Phelps,

2002; Feinstein et al., 2013). We found that the colliculus-pulvi-

nar pathway tracked normative affect responses across aversive

sounds and images, demonstrating multi-modal properties and

extending previous work showing pulvinar and amygdala coac-

tivation in response to visual threat cues (Liddell et al., 2005;

Morris et al., 1999; Vuilleumier et al., 2003). Pathway activity

also tracked reported affective experience, but it did so more

strongly for sounds than images. Notably, the sounds used

here are perceptually simpler and more uniform than the

emotional images, which may be evaluated variably across indi-

viduals and require more conceptual processing. Recent the-

ories (Barrett, 2017; LeDoux and Brown, 2017) posit that trans-

formation and re-representation of sensory signals is a defining

feature of emotional experience and consciousnessmore gener-

ally (Dehaene et al., 2017). In light of these views and the many

pathways that convey emotion-related information (Gothard,

2020), the sensory signals carried by the colliculus-pulvinar-

amygdala pathway likely do not explain the full complexity of

emotional experience in humans but contribute as one of multi-

ple stages in a distributed information processing system.

This study provides more precise functional identification and

characterization of the colliculus-pulvinar-amygdala pathway

than what has been available previously in humans. The pathway

exhibited a strong and selective relationship with the aversive-

ness of auditory and visual stimuli. This and other thalamocorti-

cal pathways were identified most clearly using ultra-high-field

fMRI (7 T; see also Wang et al., 2020), demonstrating a benefit

of high-resolution imaging that may provide increasing advan-

tages as analytic tools develop to capitalize on it. However, the

multivariate pattern approach inherent in MPathI helped to iden-

tify signals clearly related to specific functional pathways even at

3 T. MPathI measures substantially outperformed conventional

region average-based connectivity and discriminated amygdala

contributions from the colliculus-pulvinar pathway from at least

two other components contributing to amygdala activity. These

findings support the promise of MPathI and related techniques

as important tools for ‘‘next-generation’’ human brain connectiv-

ity (Anzellotti and Coutanche, 2018; Anzellotti et al., 2017; Basti

et al., 2020; Woo et al., 2017). The ability to identify such path-

ways in humans addresses a crucial gap between rapidly

emerging animal research on neural pathways and assessment

of functional correlations with human neuroimaging. It provides

a framework for investigating the functional sensitivity and spec-

ificity of brain pathways across task paradigms and species and

is a step toward understanding how activity in multiple pathways

jointly relates to subjective affective experience.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

7T fMRI Study (Expt 1)
This study included 56 participants (Mage = 26.46 years, SD = 5.87 years, 27 female). All recruited participants were between the ages

of 18 and 40 years, were right-handed, had normal or corrected to normal vision, were not pregnant, were fluent English speakers,

had no known neurological or psychiatric illnesses, andwere recruited from the greater Boston area. Participants were excluded from

the study if they were claustrophobic or had any metal implants that could cause harm during scanning. All participants provided

written informed consent and study procedures were completed as approved by the Partners’ Healthcare Institutional ReviewBoard.

3T fMRI Study (Expt 2)
This study included 48 adult participants (mean ± SD age: 25.1 ± 7.1; 21 female, 27 male; 7 left-handed; 40 white and 8 non-white (1

Hispanic, 5 Asian, 1 Black, and 1 American Indian)). All participants were healthy, with normal or corrected to normal vision and

normal hearing, and with no history of psychiatric, physiological or pain disorders and neurological conditions, no current pain symp-

toms, and noMRI contraindications. Eligibility was assessedwith a general health questionnaire, a pain safety screening form, and an

MRI safety screening form. Participants were recruited from the Boulder/Denver Metro Area. The institutional review board of the

University of Colorado Boulder approved the study, and all participants provided written informed consent.

METHOD DETAILS

7T fMRI Study (Expt 1)
Experimental Paradigm

Participants completed a probabilistic avoidance learning task during fMRI. In this task (Roy et al., 2014), participants learned to

associate different visual cues (circles or triangles) with the aversiveness of stimuli (i.e., mechanical stimulation to the bed of the

thumb (N = 31) or unpleasant visual images from the IAPS (Lang et al., 1997) (N = 25). Mechanical stimuli were delivered at non-painful
Neuron 109, 2404–2412.e1–e5, August 4, 2021 e1
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(3 kg/cm2) or painful (5 kg/cm2) pressure levels. Visual stimuli were randomly selected from negative (normative valence = 2.93 ± 0.67

SD) and neutral (normative valence = 5.52 ± 0.57 SD) IAPS images. 24 trials of each typewere presented in each of five runs (120 trials

total). Participants we presented with both visual cues on every trial, followed by a decision phase, a jittered interstimulus-interval,

and probabilistic reinforcement based on their decision. Reinforcement rates were predetermined based on a randomwalk between

20% and 80%, with outcomes determined randomly on every trial.

MRI data acquisition and preprocessing

Gradient-echo echo-planar imaging BOLD-fMRI was performed on a 7 tesla SiemensMRI scanner. Functional images were acquired

using GRAPPA-EPI sequence: echo time = 28 ms, repetition time = 2.34 s, flip angle = 75�, number of slices = 123, slice orientation =

transversal (axial), anterior to posterior phase encoding, voxel size = 1.1 mm isotropic, gap between slices = 0 mm, field of view =

2053 205mm2, GRAPPA acceleration factor = 3; echo spacing = 0.82ms, bandwidth = 1414Hz per pixel, partial Fourier in the phase

encode direction: 7/8. A custom-built 32-channel radiofrequency coil head array was used for reception. Radiofrequency transmis-

sion was provided by a detunable band-pass birdcage coil. Structural images were acquired using a T1-weighted EPI sequence:

echo time = 22 ms, repetition time = 8.52 s, flip angle = 90�, number of slices = 126, slice orientation = transversal (axial), voxel

size = 1.1 mm isotropic, gap between slices = 0mm, field of view = 2053 205mm2, GRAPPA acceleration factor = 3; echo spacing =

0.82 ms, bandwidth = 1414 Hz per pixel, partial Fourier in the phase encode direction: 6/8. This sequence was selected so that func-

tional and structural data would have similar spatial distortions to facilitate coregistration and subsequent normalization of data.

Results included in this manuscript come from preprocessing performed using FMRIPREP (Esteban et al., 2019), a Nipype (Gor-

golewski et al., 2011) based tool. Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c was per-

formed through nonlinear registration with the antsRegistration tool of ANTs v2.1.0 (Avants et al., 2008; Gorgolewski et al., 2011),

using brain-extracted versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), whitematter

(WM) and gray matter (GM) was performed on the brain-extracted T1w using fast (Zhang et al., 2001) (FSL v5.0.9). Functional data

was slice time corrected using 3dTshift from AFNI v16.2.07 (Cox, 1996) and motion corrected using mcflirt (FSL v5.0.9). This was

followed by co-registration to the corresponding T1w using boundary-based registration (Greve and Fischl, 2009) with six degrees

of freedom, using flirt (FSL). Motion correcting transformations, BOLD-to-T1w transformation and T1w-to-template (MNI) warp were

concatenated and applied in a single step using ants ApplyTransforms (ANTs v2.1.0) using Lanczos interpolation.

3T fMRI Study (Expt. 2)
Experimental Paradigm

Participants received five different types of stimulation (mechanical pain, thermal pain, aversive auditory, aversive visual, and

pleasant visual), each at four stimulus intensities. 24 stimuli of each type (6 per intensity level) were presented over six fMRI runs

in randomorder, with different stimulus types intermixedwithin runs. Following stimulation on each trial, participantsmade behavioral

ratings of their subjective experience. Participants were instructed to answer the question ‘Howmuch do youwant to avoid this expe-

rience in the future?’. Ratings weremadewith a visual analog rating scale, with anchors ‘Not at all’ and ‘Most’ displayed at the ends of

the scale.

Stimuli

Visual stimulation was administered on theMRI screen and included normed pictures from the International Affective Picture System

(Lang et al., 1997; see Table S4). We created four ‘stimulus intensity levels’ by selecting seven images per intensity level in a two-step

process: preliminary selection based on normed valence ratings (averaged across male and female raters) from the IAPS database;

and final selection based on ratings by 10 labmembers (5 male, 5 female) in response to the question ‘‘How aversive is this image? 1-

100.’’ The chosen images included photographs of animals (7), bodily illness and injury (12), and industrial and human waste (9). Each

picture was presented for 10 s.

Pressure stimulation was administered using an in-house pressure pain device. This MRI-safe device provides dynamically

controlled pressure stimulation using LabView software (National Instruments, Austin, TX). Four pressure levels were applied to

an applicator placed on the left thumbnail for 10 s each (Level 1: 4 kg/cm2, Level 2: 5 kg/cm2, Level 3: 6 kg/cm2; Level 4: 7 kg/cm2).

Thermal stimulation was administered using an ATS Pathway System (Medoc Ltd., Haifa, Israel) with a 163 16 mm Peltier-based

contact thermode. Four stimulus intensity levels were delivered to the thenar eminence of the left hand (Level 1: 45�C, Level 2: 46�C,
Level 3: 47�C, Level 4: 48�C). Each thermal stimulus lasted 10 s (1.5 s ramp-up, 1.5 s ramp-down, 7 s at target temperature).

Auditory stimulation was administered using MRI-compatible headphones. We used the sound of a knife scraping on a bottle,

which is a reliable aversive auditory stimulus (Kumar et al., 2008). Four stimulus intensity levels were created by scaling the amplitude

of a single audio file (Level 1: Lv4 �8 dB, Level 2: Lv4 �4 dB, Level 3: Lv4 �1 dB, Level 4: original amplitude). Auditory stimuli lasted

10 s each.

QUANTIFICATION AND STATISTICAL ANALYSIS

MRI data acquisition and preprocessing
Whole-brain fMRI data were acquired on a 3T Siemens MAGNETOM Prisma Fit MRI scanner at the Intermountain Neuroimaging

Consortium facility at the University of Colorado, Boulder. Structural images were acquired using high-resolution T1 spoiled gradient

recall images (SPGR) for anatomical localization and warping to standard MNI space. Functional images were acquired with a
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multiband EPI sequence (TR = 460 ms, TE = 27.2 ms, field of view = 220mm, multiband acceleration factor = 8, flip angle = 44�, 643

64 image matrix, 2.7 mm isotropic voxels, 56 interleaved slices, phase encoding posterior > anterior). Six runs of 7.17 mins duration

(934 total measurements) were acquired. Stimulus presentation and behavioral data acquisition were controlled using the psycho-

physics toolbox (Brainard, 1997) for MATLAB (The MathWorks, Inc., Natick, MA).

fMRI data were preprocessed using an automated pipeline implemented by the Mind Research Network, Albuquerque, NM. The

preprocessing steps included: distortion correction using FSL’s top-up tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), realignment (affine

alignment of first EPI volume (reference image) to T1, followed by affine alignment of all EPI volumes to the reference image and esti-

mation of the motion parameter file (sepi_vr_motion.1D, AFNI; https://afni.nimh.nih.gov/), spatial normalization of the T1 image (T1

normalization to MNI space (nonlinear transform), normalization of EPI image to MNI space (3dNWarpApply, AFNI; https://afni.nimh.

nih.gov/), interpolation to 2 mm isotropic voxels (for better alignment with templates in standard MNI152 space to facilitate prospec-

tive testing) and smoothing with a 6 mm FWHM kernel (SPM 8; https://www.fil.ion.ucl.ac.uk/spm/software/spm8/).

Prior to first level analysis, we removed the first four volumes to allow for image intensity stabilization.We also identified image-wise

outliers by computing both the mean and the standard deviation (across voxels) of intensity values for each image for all slices to

remove intermittent gradient and severe motion-related artifacts.

fMRI data analysis
Data were analyzed using SPM12 (https://www.fil.ion.ucl.ac.uk/spm) and customMATLAB code available from the authors’ website

(https://github.com/canlab/CanlabCore). First-level general linear model (GLM) analyses were conducted in SPM12. The six runs

were concatenated for each subject. Boxcar regressors, convolved with the canonical hemodynamic response function, were con-

structed tomodel periods for the 10 s stimulation and 4-7 s rating periods. The fixation cross was used as an implicit baseline. A high-

pass filter of 0.008 Hz was applied. Nuisance variables included: regressors coding for each run (intercept for each run); linear drift

across timewithin each run; the six estimated headmovement parameters (x, y, z, roll, pitch, and yaw), their mean-centered squares,

their derivatives, and squared derivative for each run (total 24 columns); and motion outliers (spikes) identified in the previous step. A

single-trial model was used to uniquely estimate the response to every stimulus to assess functional connectivity.

Multivariate pathway identification
Functional connectivity between the amygdala, pulvinar, and superior colliculus was estimated using Partial Least-squares (PLS)

regression, which identifies latent multivariate patterns that maximize the covariance between two blocks of data (Wold et al.,

2001). This approach for estimating the covariance between two putatively connected neural populations, which we call multivar-

iate pathway identification (MPathI; see Figure S1), is an extension of multivariate methods that have recently been proposed to

estimate functional connectivity. These methods identify how patterns of activity in one region relate to patterns in another region,

and produce estimates of connectivity based on multivariate dependence (Anzellotti and Coutanche, 2018; Anzellotti et al., 2017;

Basti et al., 2020; Coutanche and Thompson-Schill, 2013). We note that MPathI is not an estimation procedure, but a framework

for studying connectivity. A family of multivariate methods could be used for estimation, including PLS, canonical correlation, or

other multivariate regression approaches. We were motivated to develop a new approach (that utilizes PLS for estimation)

because it is uniquely aligned with our goal of identifying functionally connected neural populations, based on the following con-

siderations: 1) it estimates the spatial distribution of underlying neural populations, unlike representational similarity and distance-

based methods (Basti et al., 2020; Geerligs et al., 2016) that more flexibly search for statistical dependence; 2) it is constrained to

estimate connectivity using robust, reproducible signals by reducing model complexity, which is a problem for related methods

such as canonical correlation analysis (Le Floch et al., 2012; Smith et al., 2015); 3) it does not aim to explain all of the variance

in each region, as is done when estimating multivariate pattern dependence (Anzellotti et al., 2017), but characterizes signals

that covary between regions; and 4) it is a linear estimation procedure, which increases interpretability. These properties allow

PLS to constrain the flexibility of connectivity models and allow them to be validated against what is known about neural pathways

in animal models.

We used SIMPLS as developed by de Jong (1993) to identify latent scores (T and U) and loadings (P and Q) that maximize the

covariance between the centered variables X0 and Y0:

1) Compute the cross-product S = X0
’Y0

2) Compute the singular value decomposition of S

3) Get weights: r = first left singular vector

4) Compute X scores: t = X0r

5) Compute X loadings: p = X0
’t/(t’t)

6) Compute Y loadings: c = Y0
’t

7) Compute Y scores: u = Y0c

With two additional steps to finding regression coefficients that map activity in one block onto the latent scores of the second block

(where A+ is the Moore-Penrose pseudoinverse of matrix A):
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8) Compute Z = X+u

9) Compute V = Y+t

These coefficients can be used to make predictions on out-of-sample data, e.g., in cross-validation or prospective tests.

In Expt. 1 preprocessed BOLD time-series data were used as inputs for pathway models, and separate connectivity models were

fit for each subject. To assess generalizability across subjects and stimulus types in Expt. 2, PLS models were fit using single-trial

estimates of BOLD responses (Gazzaley et al., 2004) to aversive thermal, mechanical, auditory, and visual stimuli, in addition to a

set of pleasant visual stimuli which were used as a control. These data were concatenated across subjects (5,760 total trials, 120

per subject). For the pulvinar–amygdala model, the predictor (X) block of variables included all 208 voxels in an anatomically defined

mask of the pulvinar and the outcome (Y) block included all 240 voxels in the amygdala (Amunts et al., 2005; see Figure S2 for depic-

tion of anatomical ROIs). The superior colliculus–pulvinar model included responses in all voxels in a hand-drawn mask of the supe-

rior colliculus (41 voxels) as the predictor block and pulvinar responses as the outcome.

This set of regions is particularly well suited to pattern-based estimation of connectivity because each region has a fine-grained

structure with unique profiles of connectivity. The superior colliculus is composed of multiple layers, with superficial layers predom-

inantly receiving visual inputs and deeper layers integrating multisensory information and coordinating orienting behavior (Tardif

et al., 2005; May, 2006). Both the pulvinar and amygdala are composed of multiple subnuclei, which have distinct profiles of subcor-

tical and cortical connectivity (Arcaro et al., 2018; Barron et al., 2015; Chang and Yu, 2018; Gattass et al., 2017; Guedj and Vuilleum-

ier, 2020; Hrybouski et al., 2016). Pattern-based analysis of fMRI activity can capture information coded in neural substrates

exceeding the resolution of single voxels, as it samples population activity distributed across voxels, acting as a complex spatiotem-

poral filter (Kriegeskorte et al., 2010). Because anatomy varies across individuals, and population activity may be blurred due to he-

modynamic filtering, ourmaskswere not set at a conservative threshold (i.e., including any voxels that could plausibly be identified as

a specific region), anticipating that MPathI would identify that the key regions within each region that covary with one another.

Each PLS model was specified to identify a pair of latent variables that maximally covary with one another. The patterns of activity

in each region that predict latent activity in the other region were estimated using least-norm regression. Inference on these patterns

was made using bootstrap resampling (5,000 iterations, treating each subject as a block and randomly sampling subjects with

replacement) with normal approximation for inference. Leave-one-subject-out cross-validation was performed to estimate the

strength of functional connections (using the Pearson correlation between actual and estimated brain activity as the measure of in-

terest). Inference on cross-validated estimates of functional connectivity were performed using block permutation tests (1,000 iter-

ations) in which the order of trials in the outcome block were scrambled independently for each subject.

Sensitivity analysis
The sensitivity of the brain pathway models was evaluated by comparing the correlation of multivariate model estimates (e.g., cor-

relations of latent activity common to the pulvinar and amygdala) to that of the mean signals in the same regions. We tested for dif-

ferences in correlation coefficients by converting them to z-scores using the Fisher transform and performing a t test of differences

between pathway models and the mean signal.

Control analyses
To evaluate whether the MPathI approach can classify pathways with known monosynaptic connections from those that do not, we

constructed a set of connectivity models between thalamic nuclei and primary sensory cortex. These included one pathway model

from the lateral geniculate nucleus (LGN, from the Morel Atlas; Krauth et al., 2010) to primary visual cortex (V1, from a multimodal

parcellation of the cortex; Glasser et al., 2016) and another from themedial geniculate nucleus (MGN, from theMorel atlas) to primary

auditory cortex (A1 from Glasser et al., 2016). We also estimated the connectivity of ‘‘crossed’’ connections (i.e., from LGN to V1MGN

and fromMGN to A1LGN) based on the activity of latent patterns in each region. We used these four estimates to classify established

pathways (i.e., LGN-V1 and MGN-V1) from indirect pathways. Inference on the strength of individual pathways was performed using

one-sample t tests on Fisher transformed correlation coefficients.

Mediation analysis
A pathway from the pulvinar to the amygdala is thought to mediate emotional responses by rapidly conveying information about the

environment from the superior colliculus. To test this hypothesis, we performed a series of mediation analyses identifying three sta-

tistical paths to characterize the effects of the activity of different brain pathways on normative aversiveness: 1) path a characterizes

the effect of the SCpulv pathway on PulvAmy activity; 2) path b reflects the relationship between PulvAmy activity and normative ratings

of aversiveness, and 3) path ab reflects pulvinar activity formally mediating the link between superior colliculus activity and normative

aversiveness, reducing the strength of the direct path c’ between these variables. We performed mediation analyses to assess re-

lationships between brain activity and normative differences in aversiveness because they are more closely linked to the function of

the colliculus-pulvinar-amygdala pathway, i.e., to rapidly evaluate threatening sensory cues. Compared to trial-by-trial self-reports,

normative ratings are more directly linked to the nature of stimuli, less influenced by decision variables, including social and contex-

tual factors, and are less influenced by individual differences in introspection and self-report, which are likely mediated by other brain

systems including insular cortices and the default network (Chang et al., 2013; Gu et al., 2013; Kleckner et al., 2017). We tested the
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generalizability of this pathway usingmediation analysis both for negative images and sounds and assessed specificity by performing

the samemediation analysis on responses to painful stimuli (thermal andmechanical) and positive images. We additionally evaluated

whether this pathway is sensitive to moment-to-moment differences in affective experience, as opposed to the normative intensity of

negative valence, by performing the same analysis with on-line ratings.

Cortical and thalamic pathway estimation
To evaluate whether activity in the colliculus-pulvinar-amygdala pathway is distinct from cortical activity during emotion processing,

we estimated pathway models between the amygdala and parcels of the Glasser atlas combined across hemispheres (Glasser et al.,

2016) and anatomically defined regions of the thalamus (Krauth et al., 2010). This produced a series of beta estimates for 197 regions.

These estimates were concatenated into a single 5,760 (trial) by 197 (region) matrix that was subjected to principal component anal-

ysis (PCA). Bootstrap resampling (5,000 samples, with block resampling of subjects to keep all images from a subject together) was

performed to estimate the standard errors of coefficients from PCA.

The activity of each component was estimated by multiplying the PCA coefficients and activation estimates for all pathways. The

association between each component and subjective aversiveness (and pleasantness) ratings was estimated using the procedures

described in the sensitivity analysis section.
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