A solution to Problem 9.15

Problem. Show that $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0$, for all $a \in \mathbb{R}$.
Solution. If $a=0$, this is obvious. It is enough to prove the claim when $a>0$, since, in general, $\lim _{n \rightarrow \infty}\left|x_{n}\right|=0$ implies $\lim _{n \rightarrow \infty} x_{n}=0$.

So fix $a>0$. By the Archimedean principle, there is an integer $n>a$. Set

$$
k:=\frac{a^{n}}{n!} .
$$

Then, for every $m>n$, we have

$$
0<\frac{a^{m}}{m!}=k \cdot \frac{a}{n+1} \cdots \frac{a}{m-1} \frac{a}{m}<k \cdot 1 \cdots 1 \cdot \frac{a}{m}=k \frac{a}{m} .
$$

But

$$
\lim _{m \rightarrow \infty} k \frac{a}{m}=k a \lim _{m \rightarrow \infty} \frac{1}{m}=k a \cdot 0=0
$$

Thus, by the "Squeeze Theorem" (from Assignment 2, but slightly modified, to allow for the "squeezing inequalities" to hold only for m sufficiently large), we conclude that $a^{m} / m!\rightarrow 0$.

This can also be seen directly from the definition of limit: let $\epsilon>0$, and take $N>k a / \epsilon$. Then, for $m>N$, we have

$$
\left|a^{m} / m!\right|<k a / m<k a / N<\epsilon,
$$

thus showing once again that $a^{m} / m!\rightarrow 0$.

