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MATH 3150 Real Analysis: Solutions to the Midterm Fall 2022

Instructions: Write your name in the space provided. Calculators are permitted. You are
also allowed a one-sided A4 sized note sheet of only definitions and theorems (no examples
allowed) from classes and the textbook. Make sure your name is on the sheet, and hand in
your note sheet along with your exam. Books, other notes, and laptops are not allowed.

1. Define a sequence (xn) in R recursively by setting x1 = 7 and xn+1 =
√

2 + xn for
n ≥ 1.

(a) (10 pts) Show that the sequence converges.

Solution: The first step is to see by induction that xn+1 < xn for all n ∈ N. For the
base case, we have

x2 =
√

2 + x1 =
√

2 + 7 =
√

9 = 3

so 3 = x2 < x1 = 7. For the inductive step, we assume xn+1 < xn and show that
xn+2 < xn+1.

xn+1 < xn so

2 + xn+1 < 2 + xn so√
2 + xn+1 <

√
2 + xn and we have

xn+2 < xn+1

This completes the proof that the sequence (xn) is decreasing. The next step is to see
that (xn) is bounded below. The proof is by induction. Note that the base case is
x1 > 0 which holds since x1 = 7. For the inductive step, assume xn > 0 and show that
xn+1 > 0. Since xn > 0 we have that 2 + xn > 0. Hence,

√
2 + xn = xn+1 > 0 and it

follows that the sequence (xn) is bounded below by 0.

Since (xn) is decreasing and bounded below, the sequence converges.

(b) (10 pts) Find the limit of the sequence.

Solution: Let limxn = L, then L = limxn+1 and then using theorems in the text
about limits of sequences we have

L = limxn+1

= lim
√

2 + xn

=
√

lim(2 + xn)

=
√

2 + limxn

=
√

2 + L.

Since L =
√

2 + L we have L2 = 2 +L so L2−L− 2 = (L+ 1)(L− 2) = 0, and hence,
L = −1 or L = 2. Since the sequence is bounded below by 0, it follows that L 6= −1,
so limxn = L = 2.
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2. (15 pts) Let an = (−1)n + 1/n. Use the definition of lim inf and lim sup to find lim sup an
and lim inf an.

Solution: Set

vN = sup{an : n ∈ N, n ≥ N}
uN = inf{an : n ∈ N, n ≥ N}

then lim sup an = lim vN and lim inf an = limun.
Note that

a2k = 1 + 1/2k,

a2k+1 = −1 + 1/(2k + 1),

a2k > a2k+1,

lim
k→∞

a2k = 1, and

lim
k→∞

a2k+1 = −1.

Since a2k > a2k+1, it follows that vN = sup{a2k : 2k ≥ N} which equals 1 + 1/N if N is
even and 1 + 1/(N + 1) if N is odd. Hence lim sup an = limk→∞ a2k = 1.

Since a2k > a2k+1, it follows that uN = inf{a2k+1 : 2k + 1 ≥ N} which equals
limk→∞[−1 + 1/(2k + 1)] = −1. Thus, uN = −1 for all N and we have lim inf an = −1.



MATH 3150 Midterm Fall 2022

3. (10 pts) Show that a subsequence of a subsequence of a sequence is a subsequence of the
original sequence.

Solution: Recall that a map f : N→ N is called increasing if f(n) > f(m) for all n > m.
A first step is to see that a composition f2 ◦ f1 of increasing functions is an increasing

function. Suppose f1 and f2 are increasing functions and n > m, then f1(n) > f1(m) since
f1 is increasing and then f2(f1(n)) > f2(f1(m)) since f2 is increasing and f1(n) > f1(m)
and the argument that a composition of increasing functions is increasing is complete.

Recall that a sequence is a function g : N→ R and a subsequence of g is a composition
f1 ◦ g with f1 : N → N an increasing function. Thus, a subsequence of the subsequence
f1 ◦ g is a composition f2

(
f1 ◦ g

)
with f2 : N → N an increasing function. Note that

f2
(
f1 ◦ g

)
=
(
f2 ◦ f1

)
◦ g, with f2 ◦ f1 increasing since it is the composition of increasing

functions.
Thus, the subsequence f2

(
f1◦g

)
of the subsequence f1◦g of g is the subsequence

(
f1◦f2

)
g

of the sequence g.
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4. (15 pts) Let (xn) and (yn) be Cauchy sequences of real numbers, and let zn = xn−yn. Use
the definition of Cauchy sequence to show that (zn) is also a Cauchy sequence.

Solution: Given any ε > 0, since (xn) and (yn) are Cauchy, it follows that there are
elements N1, N2 ∈ N with

|xn − xm| <ε/2 for all n,m > N1

|yn − ym| <ε/2 for all n,m > N2.

Thus for N = max{N1, N2} we have for all n,m > N , that

|(xn − yn)− (xm − ym)| = |xn − xm + ym − yn|
≤ |xn − xm|+ |ym − yn|
< ε/2 + ε/2 = ε.

This completes the argument that (xn − yn) is a Cauchy sequence.
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5. Let f : [1, 2]→ R be a function such that f(1) > 1 and f(2) < 4.

(a) (10 pts) Assuming f is continuous, show that there is a number c ∈ [1, 2] such that
f(c) = c2.

Solution: Consider the function g : [1, 2] → R, g(x) = x2. This is a continuous
function; indeed, if limn→∞ xn = x0, then limn→∞ x2n = x20, by properties of limits of
sequences. Therefore, the function

h : [1, 2]→ R, h(x) = f(x)− x2

is also a continuous function, since h = f − g, and the difference of two continuous
functions is again continuous. Furthermore, note that h(1) = f(1) − 12 > 1 − 1 = 0
and h(2) = f(2)− 22 < 4− 4 = 0.

To sum up, the function h : [1, 2]→ R is continuous, h(1) > 0, and h(2) < 0. Therefore,
by the Intermediate Value Theorem, there is a number c ∈ [1, 2] such that h(c) = 0;
that is, f(c)− c2 = 0, or, f(c) = c2.

(b) (10 pts) Give an example of a (discontinuous) function f : [1, 2] → R for which the
equation f(c) = c2 has no solution c ∈ [1, 2].

Solution: Consider the function f : [1, 2]→ R defined by

f(x) =

{
2 if 1 ≤ x <

√
2

0 if
√

2 ≤ x ≤ 2.

Clearly, the function f satisfies the hypothesis of the problem; indeed, f(1) = 2 > 1 and
f(2) = 0 < 4. Note also that f is not continuous at x =

√
2, since lim

x→
√
2
− f(x) = 2,

while lim
x→

√
2
+ f(x) = 0. Finally, note that

x2 < 2 = f(x) if 0 ≤ x <
√

2

0 = f(x) < x2 if
√

2 ≤ x ≤ 2.

Therefore, f(x) 6= x2 for 0 ≤ x ≤ 2; that is, the equation f(c) = c2 has no solution
c ∈ [1, 2].
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6. (10 pts) Let f be a function defined on a domain D ⊂ R. Given elements x, y ∈ D with
x 6= y set s(x, y) = (f(x)− f(y))/(x− y) and then let

S = {s(x, y) : x, y ∈ D,x 6= y}
Show directly from the definition of uniform continuity that if the set S is bounded, then
f is uniformly continuous on D.

Solution: In general, if a set S is bounded, then the set of absolute values, |S| = {|s| : s ∈
S} is also bounded. To see this recall that a set S is bounded if it is a subset of a closed
interval; that is, L ≤ s ≤ U for all s ∈ S; equivalently S ⊂ [L,U ]. Now consider the
set −S = {−s : s ∈ S}, then −S ⊂ [−U,−L] and S ∪ (−S) ⊂ [L,U ] ∪ [−U,−L] ⊂

[
a =

min{L,−U}, b = max{U,−L}
]
. Since |a| = a if a > 0 and −a if a < 0, it follows that

|S| ⊂ S ∪ (−S) ⊂ [a, b], and hence, |S| is a bounded set.
Now taking S to be the set in this problem we have that |S| is bounded. Hence, there

is an M > 0 with

(1)
|f(x)− f(y)|
|x− y|

≤M for all x, y ∈ D,x 6= y

Given any ε > 0, for all x, y ∈ D with x 6= y and |x− y| < ε/M , we have

|f(x)− f(y)| < M |x− y| < M · ε/M = ε.

Thus, f is uniformly continuous on D.



MATH 3150 Midterm Fall 2022

7. (10 pts) Let X,Y and Z be subsets of R. Suppose f : X → Y is a uniformly continuous
function on X, and g : Y → Z is a uniformly continuous function on Y . Show that the
composition g ◦ f : X → Z is also uniformly continuous.

Solution: Let ε > 0. Since g is uniformly continuous on Y , there is a δ1 > 0 such that,
for all y1, y2 ∈ Y with

|y1 − y2| < δ1 =⇒ |g(y1)− g(y2)| < ε.

Likewise, since f is uniformly continuous on X, there is a δ > 0 such that, for all
x1, x2 ∈ X with

|x1 − x2| < δ =⇒ |f(x1)− f(x2)| < δ1.

Therefore, if |x1 − x2| < δ, taking y1 = f(x1) and y2 = f(x2), we have |y1 − y2| < δ1,
and hence

|g(f(x1))− g(f(x2))| = |g(y1)− g(y2)| < ε.

To recap, we have shown the following: For all ε > 0 and for all x1, x2 ∈ X with
|x1 − x2| < δ, we have that |(g ◦ f)(x1) − (g ◦ f)(x2)| < ε, and this means precisely that
the function g ◦ f is uniformly continuous on X.


