Be sure to fully justify your response to each problem.

1. (15 pts) Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers. Suppose the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges. Show that the power series $\sum_{n=1}^{\infty} a_{n} x^{n}$ converges uniformly on the interval $[-1,1]$ to a continuous function.
2. (15 pts) Show that $|\sin (x)-\sin (y)| \leq|x-y|$ for all x, y in \mathbb{R}.
3. (15 pts) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Assume that f is differentiable on $(0,1)$ and that $f(x)+x f^{\prime}(x) \geq 0$, for all $x \in(0,1)$. Show that $f(x) \geq 0$, for all $x \in[0,1]$.
4. (15 pts) A fixed point of a function f is a value x such that $f(x)=x$. Let $f:(a, b) \rightarrow \mathbb{R}$ be a differentiable function. Assume that $f^{\prime}(x) \neq 1$, for all $x \in(a, b)$. Show that f has at most one fixed point.
5. Let $f(x)=\ln (x)$, let $\sum_{n=0}^{\infty} a_{n}(x-1)^{n}$ be the Taylor series for f around $x=1$, and let $R_{n}(x)$ be the remainder $R_{n}(x)=\ln (x)-\sum_{k=0}^{n-1} a_{k}(x-1)^{k}$ for $x>0$.
(a) (10 pts) Using the formula for $R_{n}(x)$ in $\S 31.3$ Taylor's Theorem (p. 250), find an upper bound for $\left|R_{n}(x)\right|$.
(b) (10 pts) Find all values of $x>0$ for which it follows from your result in part (a) that $\lim _{n \rightarrow+\infty} R_{n}(x)=0$.
6. Let f be the function defined by

$$
f(t)= \begin{cases}2 & \text { for } t \leq 0 \\ \sin (t) & \text { for } 0<t \leq \pi / 2 \\ t-\pi / 2+1 & \text { for } t>\pi / 2\end{cases}
$$

(a) (4 pts) Determine $F(x)=\int_{0}^{x} f(t) d t$.
(b) (4 pts) Sketch the graph of F.
(c) $(4 \mathrm{pts})$ At which points, if any, is F not continuous?
(d) (4 pts) At which points, if any, is F not differentiable?
(e) (4 pts) Calculate $F^{\prime}(x)$ at those points where F is differentiable.

