Problem Set 5

Be sure to *fully justify your response* to each problem.

- 1. (15 pts) Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of real numbers. Suppose the series $\sum_{n=1}^{\infty} |a_n|$ converges. Show that the power series $\sum_{n=1}^{\infty} a_n x^n$ converges uniformly on the interval [-1, 1] to a continuous function.
- 2. (15 pts) Show that $|\sin(x) \sin(y)| \le |x y|$ for all x, y in \mathbb{R} .
- 3. (15 pts) Let $f: [0,1] \to \mathbb{R}$ be a continuous function. Assume that f is differentiable on (0,1) and that $f(x) + xf'(x) \ge 0$, for all $x \in (0,1)$. Show that $f(x) \ge 0$, for all $x \in [0,1]$.
- 4. (15 pts) A fixed point of a function f is a value x such that f(x) = x. Let $f: (a, b) \to \mathbb{R}$ be a differentiable function. Assume that $f'(x) \neq 1$, for all $x \in (a, b)$. Show that f has at most one fixed point.
- 5. Let $f(x) = \ln(x)$, let $\sum_{n=0}^{\infty} a_n (x-1)^n$ be the Taylor series for f around x = 1, and let
 - $R_n(x)$ be the remainder $R_n(x) = \ln(x) \sum_{k=0}^{n-1} a_k (x-1)^k$ for x > 0.
 - (a) (10 pts) Using the formula for $R_n(x)$ in §31.3 Taylor's Theorem (p. 250), find an upper bound for $|R_n(x)|$.
 - (b) (10 pts) Find all values of x > 0 for which it follows from your result in part (a) that $\lim_{n \to +\infty} R_n(x) = 0.$
- 6. Let f be the function defined by

$$f(t) = \begin{cases} 2 & \text{for } t \le 0\\ \sin(t) & \text{for } 0 < t \le \pi/2\\ t - \pi/2 + 1 & \text{for } t > \pi/2. \end{cases}$$

- (a) (4 pts) Determine $F(x) = \int_0^x f(t) dt$.
- (b) (4 pts) Sketch the graph of F.
- (c) (4 pts) At which points, if any, is F not continuous?
- (d) (4 pts) At which points, if any, is F not differentiable?
- (e) (4 pts) Calculate F'(x) at those points where F is differentiable.