For each problem be sure to explain the steps in your argument and fully justify your conclusions.

1. For the power series $\sum_{n=1}^{\infty} \frac{2^{n}}{\left(3^{2 n}\right) \sqrt[5]{n^{3}}} x^{n}$,
(a) (10 pts) Find the radius of convergence.
(b) (10 pts) Find the exact interval of convergence.
2. For $n \in \mathbb{N}$, let $f_{n}(x)=(\sin (x))^{n}$ and let S equal to the set of real numbers, x, for which $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$ exists.
(a) (10 pts) Describe the set S and the function $f(x)$ for $x \in S$.
(b) (10 pts) For elements y not in S, give an argument that shows $\lim f_{n}(y)$ does not exist.
3. For $n \in \mathbb{N}$, let $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ be the function given by

$$
f_{n}(x)= \begin{cases}1 & \text { if } n-1 \leq x \leq n \\ 0 & \text { otherwise }\end{cases}
$$

(a) (10 pts) Show that the sequence $\left(f_{n}\right)$ converges pointwise on $[0, \infty)$ and determine the function $f=\lim _{n \rightarrow \infty} f_{n}$.
(b) (15 pts) Does the sequence $\left(f_{n}\right)$ converge uniformly on $[0, \infty)$?
4. Let $f_{n}(x)=\frac{2 n-\cos ^{2}(3 x)}{5 n+\sin (x)}$.
(a) (10 pts) Show that $\left(f_{n}\right)$ converges uniformly on \mathbb{R}. Hint: First decide what the limit function is and then show that convergence is uniform.
(b) (10 pts) Using your result in part (a) and results in the text, determine $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x$ for $a<b$. B sure to cite any results you use to justify your answer.
5. (15 pts) For $n \in \mathbb{N}$, let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be the function given by $f_{n}(x)=\sum_{k=0}^{n} \frac{x^{k}}{2^{k}}$. Show that the sequence $\left(f_{n}\right)$ is uniformly Cauchy on $[0,1]$.

