MATH 3150

For each problem be sure to explain the steps in your argument and fully justify your conclusions.

- 1. For the power series $\sum_{n=1}^{\infty} \frac{2^n}{(3^{2n})\sqrt[5]{n^3}} x^n,$
 - (a) (10 pts) Find the radius of convergence.
 - (b) (10 pts) Find the exact interval of convergence.
- 2. For $n \in \mathbb{N}$, let $f_n(x) = (\sin(x))^n$ and let S equal to the set of real numbers, x, for which $f(x) := \lim_{n \to \infty} f_n(x)$ exists.
 - (a) (10 pts) Describe the set *S* and the function f(x) for $x \in S$.
 - (b) (10 pts) For elements y not in S, give an argument that shows $\lim f_n(y)$ does not exist.
- 3. For $n \in \mathbb{N}$, let $f_n \colon [0, \infty) \to \mathbb{R}$ be the function given by

$$f_n(x) = \begin{cases} 1 & \text{if } n-1 \le x \le n \\ 0 & \text{otherwise.} \end{cases}$$

- (a) (10 pts) Show that the sequence (f_n) converges pointwise on $[0, \infty)$ and determine the function $f = \lim_{n \to \infty} f_n$.
- (b) (15 pts) Does the sequence (f_n) converge uniformly on $[0, \infty)$?

4. Let
$$f_n(x) = \frac{2n - \cos^2(3x)}{5n + \sin(x)}$$
.

- (a) (10 pts) Show that (f_n) converges uniformly on \mathbb{R} . *Hint*: First decide what the limit function is and then show that convergence is uniform.
- (b) (10 pts) Using your result in part (a) and results in the text, determine $\lim_{n\to\infty} \int_a^b f_n(x) dx$ for a < b. B sure to cite any results you use to justify your answer.
- 5. (15 pts) For $n \in \mathbb{N}$, let $f_n: [0, 1] \to \mathbb{R}$ be the function given by $f_n(x) = \sum_{k=0}^n \frac{x^k}{2^k}$. Show that the sequence (f_n) is uniformly Cauchy on [0, 1].