MATH 3150

Problem Set 3

1. (10 pts) Let (s_n) be a sequence such that

$$|s_{n+1} - s_n| < \frac{1}{n^3}$$
 for all $n \in \mathbb{N}$

Prove that (s_n) is a Cauchy sequence and hence a convergent sequence.

- 2. Consider the sequence (x_n) with terms $\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}, \frac{1}{7}, \dots$
 - (a) (5 pts) Show that (x_n) is bounded.
 - (b) (10 pts) Show directly from the definition that (x_n) is *not* a Cauchy sequence.
 - (c) (5 pts) Find two convergent subsequences of (x_n) that converge to two different limits.
 - (d) (5 pts) What conclusion regarding the convergence of the sequence (x_n) can you draw from part (c), and how does that conclusion compare to the answer in part (b)?
- 3. Let (x_n) be a sequence of real numbers. In each of the following situations, decide whether the sequence converges: if yes, give a proof why; otherwise, give an example where it does not.
 - (a) (10 pts) $|x_n x_k| \le \frac{1}{n} + \frac{1}{k}$ for all $n, k \ge 1$.
 - (b) (10 pts) For all $\epsilon > 0$, there is an $n > 1/\epsilon$ such that $|x_n| < \epsilon$.
- 4. Let (a_n) be a sequence and let c, d be real numbers with c < d. Assume that the terms in the sequence (a_n) are eventually in the closed interval [c, d]. Prove that
 (a) (10 pts) (a_n) is bounded
 - (b) (10 pts) $\liminf s_n$ and $\limsup s_n$ are elements in [c, d].
- 5. (10 pts) Let (a_n) be a bounded sequence, and let (a_{n_k}) be a convergent subsequence (a_n) . Prove that

 $\liminf a_n \le \lim a_{n_k} \le \limsup a_n$

6. For each of the following series, determine whether the series converges or diverges. Justify your answers.

(a) (5 pts)
$$\sum \frac{\sin(n)}{n^2}$$

(b) (5 pts) $\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$
(c) (5 pts) $\sum \frac{5n^2 + 6n - 2}{3^n + 1}$