1. (10 pts) Let $\left(s_{n}\right)$ be a sequence such that

$$
\left|s_{n+1}-s_{n}\right|<\frac{1}{n^{3}} \quad \text { for all } n \in \mathbb{N}
$$

Prove that $\left(s_{n}\right)$ is a Cauchy sequence and hence a convergent sequence.
2. Consider the sequence $\left(x_{n}\right)$ with terms $\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}, \frac{1}{7}, \ldots$.
(a) (5 pts) Show that $\left(x_{n}\right)$ is bounded.
(b) (10 pts) Show directly from the definition that $\left(x_{n}\right)$ is not a Cauchy sequence.
(c) $(5 \mathrm{pts})$ Find two convergent subsequences of $\left(x_{n}\right)$ that converge to two different limits.
(d) (5 pts) What conclusion regarding the convergence of the sequence $\left(x_{n}\right)$ can you draw from part (c), and how does that conclusion compare to the answer in part (b)?
3. Let $\left(x_{n}\right)$ be a sequence of real numbers. In each of the following situations, decide whether the sequence converges: if yes, give a proof why; otherwise, give an example where it does not.
(a) (10 pts) $\left|x_{n}-x_{k}\right| \leq \frac{1}{n}+\frac{1}{k}$ for all $n, k \geq 1$.
(b) (10 pts) For all $\epsilon>0$, there is an $n>1 / \epsilon$ such that $\left|x_{n}\right|<\epsilon$.
4. Let $\left(a_{n}\right)$ be a sequence and let c, d be real numbers with $c<d$. Assume that the terms in the sequence $\left(a_{n}\right)$ are eventually in the closed interval $[c, d]$. Prove that
(a) $(10 \mathrm{pts})\left(a_{n}\right)$ is bounded
(b) (10 pts) $\lim \inf s_{n}$ and $\lim \sup s_{n}$ are elements in $[c, d]$.
5. (10 pts) Let $\left(a_{n}\right)$ be a bounded sequence, and let $\left(a_{n_{k}}\right)$ be a convergent subsequence $\left(a_{n}\right)$. Prove that

$$
\liminf a_{n} \leq \lim a_{n_{k}} \leq \limsup a_{n}
$$

6. For each of the following series, determine whether the series converges or diverges. Justify your answers.
(a) $(5 \mathrm{pts}) \sum \frac{\sin (n)}{n^{2}}$
(b) (5 pts) $\sum_{n=2}^{\infty} \frac{1}{n \ln (n)}$
(c) $(5 \mathrm{pts}) \sum \frac{5 n^{2}+6 n-2}{3^{n}+1}$
