In your work on the following problems you may use the theorems about limits in section 9 of the text.

1. (10 pts) Find a function $f(\epsilon)$ defined for $\epsilon>0$ with the property that

$$
\left|\frac{5 n+6}{2 n-3}-\frac{5}{2}\right|<\epsilon \quad \text { for all } n \in \mathbb{N} \text { with } n>f(\epsilon)
$$

2. (10 pts) Find lim $\sqrt{9 n^{2}+2 n-1}-3 n$.
3. (10 pts) Use the $N-\epsilon$ definition of limit to show that the sequence $a_{n}=\sin \left(\frac{n \pi}{4}\right)$ does not converge.
4. (10 pts) Prove the Squeeze Theorem that if $a_{n} \leq x_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $\lim a_{n}=\lim b_{n}=L$, then the sequence x_{n} converges to L.
5. Let x_{n} be given by $x_{1}=17$ and $x_{n+1}=\sqrt{2 x_{n}+15}$.
(a) (10 pts) Show that the sequence x_{n} is decreasing and bounded below.
(b) (10 pts) Explain whether the sequence x_{n} converges or not. If the sequence converges, then find the limit.
6. Consider the following definitions:

- A sequence $\left\{a_{n}\right\}_{n \geq 1}$ is eventually in a set $A \subset \mathbb{R}$ if there exists an $N \in \mathbb{N}$ such that $a_{n} \in A$ for all $n \geq N$.
- A sequence $\left\{a_{n}\right\}_{n \geq 1}$ is frequently in a set $A \subset \mathbb{R}$ if, for every $N \in \mathbb{N}$, there exists an $n \geq N$ such that $a_{n} \in A$.
(a) (10 pts) Is the sequence with terms $a_{n}=(-1)^{n}$ eventually or frequently in the set $\{1\}$?
(b) (10 pts) Which definition is stronger? Does frequently imply eventually or does eventually imply frequently?
(c) (10 pts) Suppose an infinite number of terms of a sequence $\left\{x_{n}\right\}_{n \geq 1}$ are equal to 2 . Is the sequence necessarily eventually in the interval $(1.9,2.1)$? Is it frequently in $(1.9,2.1)$?
(d) (10 pts) Suppose $\lim x_{n}=2$. Is the sequence $\left\{x_{n}\right\}_{n \geq 1}$ necessarily eventually in the interval $(1.9,2.1)$? Is it frequently in $(1.9,2.1)$?

