For each problem be sure to explain the steps in your argument and fully justify your conclusions.

1. For the power series $\sum_{n=1}^{\infty} \frac{2^{n}}{\left(3^{2 n}\right) \sqrt[5]{n^{3}}} x^{n}$,
(a) (10 pts) Find the radius of convergence.

Solution: Use the ratio test

$$
\begin{aligned}
\lim \left|\frac{a_{n+1}}{a_{n}}\right| & =\lim \left|\frac{2^{n+1}}{2^{n}} \cdot \frac{3^{2 n}}{3^{2(n+1)}} \cdot \frac{\sqrt[5]{n^{3}}}{\sqrt[5]{(n+1)^{3}}} \cdot \frac{x^{n+1}}{x^{n}}\right| \\
& =\lim \frac{2}{3^{2}}\left(\frac{n}{n+1}\right)^{5 / 3}|x| \\
& =\lim \frac{2}{9}\left(\frac{1}{1+1 / n}\right)^{5 / 3}|x| \\
& =\frac{2}{9}|x| .
\end{aligned}
$$

By the ratio test, the series converges for $|x|<9 / 2$ and diverges for $|x|>9 / 2$. Thus, the radius of convergence is $9 / 2$.
(b) (10 pts) Find the exact interval of convergence.

Solution: The endpoints of the interval of convergence are $x=-9 / 2$ and $x=9 / 2$.
With $x=-9 / 2$ the series is

$$
\sum \frac{2^{n}}{\left(3^{2 n}\right) \sqrt[5]{n^{3}}} \cdot\left(\frac{-9}{2}\right)^{n}=\sum(-1)^{n}\left(\frac{1}{\sqrt[5]{n^{3}}}\right)=\sum(-1)^{n}\left(\frac{1}{n^{3 / 5}}\right)
$$

This is an alternating series with $a_{n}=1 / n^{3 / 5}$, since $a_{n+1}<a_{n}$, and $\lim a_{n}=0$, the series converges by the alternating series test.
For $x=9 / 2$, the series is $\sum 1 / n^{3 / 5}$. This is a p-series with $p=3 / 5 \leq 1$, so the series diverges by the p-series test.
The exact interval of convergence is $[-9 / 2,9 / 2)$.
2. For $n \in \mathbb{N}$, let $f_{n}(x)=(\sin (x))^{n}$ and let S equal to the set of real numbers, x, for which $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$ exists.
(a) (10 pts) Describe the set S and the function $f(x)$ for $x \in S$.

Solution: First note that $|\sin (x)| \leq 1$ for all $x \in \mathbb{R}$ and that $|\sin (x)|=1$ if and only if x is an odd multiple of $\pi / 2$. In other words, if we let

$$
P=\{x \in \mathbb{R} \mid \exists k \in \mathbb{Z} \text { such that } x=(2 k+1) \pi / 2\}
$$

then $x \in P$ if and only if $|\sin (x)|=1$ and $x \notin P$ if and only if $|\sin (x)|<1$.
Now recall that, for a fixed $a \in R$ with $|a|<1$, the sequence $\left(a^{n}\right)_{n \in \mathbb{N}}$ converges, and $\lim _{n \rightarrow \infty} a^{n}=0$. One way to see this is that the geometric series $\sum_{n=0}^{\infty} a^{n}$ converges to $1 /(1-a)$ if $|a|<1$, a fact which implies that the terms of the series must converge to 0 .
It follows from the above that $\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty}(\sin (x))^{n}=0$ for all $x \notin P$; that is, $f(x)=0$ for all $x \notin P$.

If $x \in P$, there are two cases to consider. First assume that $x=(4 k+1) \pi / 2$ for some $k \in \mathbb{Z}$. Then $\sin (x)=1$, and so $\sin (x)^{n}=1$ for all $n \in \mathbb{N}$. It follows that $\lim _{n \rightarrow \infty} f_{n}(x)=$ $\lim _{n \rightarrow \infty} 1=1$, and so $f(x)=1$ in this case.
Next, assume that $x=(4 k-1) \pi / 2$ for some $k \in \mathbb{Z}$. Then $\sin (x)=-1$, and so $\sin (x)^{n}=(-1)^{n}$ for all $n \in \mathbb{N}$. It follows that $\lim _{n \rightarrow \infty} f_{n}(x)$ does not exist in this case (see below).
Putting all this information together, we conclude that the set S of real numbers, x, for which $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$ exists is equal to

$$
S=\{x \in \mathbb{R} \mid \nexists k \in \mathbb{Z} \text { such that } x=(4 k-1) \pi / 2\}
$$

Moreover, the function $f: S \rightarrow \mathbb{R}$ is given by

$$
f(x)= \begin{cases}0 & \text { if } x \notin P \\ 1 & \text { if } x=4 k+1 \text { for some } k \in \mathbb{Z}\end{cases}
$$

(b) (10 pts) For elements y not in S, give an argument that shows $\lim f_{n}(y)$ does not exist.

Solution: Let y be a real number such that $y \notin S$. As explained above, such an element must be of the form $y=(4 k-1) \pi / 2$ for some $k \in \mathbb{Z}$. In this case, $\sin (y)=-1$, and so $\sin (x)^{n}=(-1)^{n}$ for all $n \in \mathbb{N}$. We need to show that $\lim _{n \rightarrow \infty} f_{n}(y)$ does not exist, or, equivalently, that the sequence $\left((-1)^{n}\right)_{n \in \mathbb{N}}$ does not converge. We will show that by producing two subsequences that converge to different limits.

- First take the subsequence $\left((-1)^{2 m}\right)_{m \in \mathbb{N}}$. Each term in this subsequence is equal to 1 ; thus, the subsequence converges to 1 .
- Next, take the subsequence $\left((-1)^{2 m-1}\right)_{m \in \mathbb{N}}$. Each term in this subsequence is equal to -1 ; thus, the subsequence converges to -1 .

3. For $n \in \mathbb{N}$, let $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ be the function given by

$$
f_{n}(x)= \begin{cases}1 & \text { if } n-1 \leq x \leq n \\ 0 & \text { otherwise }\end{cases}
$$

(a) (10 pts) Show that the sequence $\left(f_{n}\right)$ converges pointwise on $[0, \infty)$ and determine the function $f:=\lim _{n \rightarrow \infty} f_{n}$.
Solution: Let $x \in[0, \infty)$. For all $n>x$, then, we have that $x \notin[n-1, n]$, and thus $f_{n}(x)=0$. It follows that $\lim _{n \rightarrow \infty} f_{n}(x)=0$. Since this happens for every $x \geq 0$, we conclude that the sequence $\left(f_{n}\right)$ converges pointwise on $[0, \infty)$. Moreover, the limit function, $f:=\lim _{n \rightarrow \infty} f_{n}$, is identically 0 ; that is, $f=0$.
(b) (15 pts) Does the sequence $\left(f_{n}\right)$ converge uniformly on $[0, \infty)$?

Solution: No, the sequence $\left(f_{n}\right)$ does not converge uniformly on $[0, \infty)$ to the function $f=0$. To prove this assertion, we need to show:
$\exists \epsilon>0$ such that $\forall N \in \mathbb{N}, \quad \exists n>N$ and $\exists x \in S \quad$ such that $\quad\left|f_{n}(x)\right| \geq \epsilon$.
Take $\epsilon=1$, and let $N \in \mathbb{N}$. Then, for any $n>N$ and for any x with $n-1 \leq x \leq n$, we have that $f_{n}(x)=1$, and so $\left|f_{n}(x)\right| \geq \epsilon$.
Alternatively, to show that $\left(f_{n}\right)$ does not converge uniformly to 0 on $[0, \infty)$, it is enough to show that

$$
\lim _{n \rightarrow \infty} \sup \left\{\left|f_{n}(x)\right|: x \in[0, \infty)\right\}>0
$$

In our situation, $\sup \left\{\left|f_{n}(x)\right|: x \in[0, \infty)\right\}=1$, for every $n \in \mathbb{N}$, and so

$$
\lim _{n \rightarrow \infty} \sup \left\{\left|f_{n}(x)\right|: x \in[0, \infty)\right\}=1>0 .
$$

4. Let $f_{n}(x)=\frac{2 n-\cos ^{2}(3 x)}{5 n+\sin (x)}$.
(a) (10 pts) Show that $\left(f_{n}\right)$ converges uniformly on \mathbb{R}. Hint: First decide what the limit function is and then show that convergence is uniform.
Solution: For all $x \in \mathbb{R}$, we have

$$
0 \leq \frac{\cos ^{2}(3 x)}{n} \leq \frac{1}{n} \quad \text { and } \quad \frac{-1}{n} \leq \frac{\sin (x)}{n} \leq \frac{1}{n}
$$

and it follows from the squeeze lemma that $\lim _{n \rightarrow \infty} \cos ^{2}(3 x) / n=\lim _{n \rightarrow \infty} \sin (x) / n=0$ for all $x \in \mathbb{R}$. Hence for all $x \in \mathbb{R}$ we have

$$
\lim _{n \rightarrow \infty} \frac{2 n-\cos ^{2}(3 x)}{5 n+\sin (x)}=\lim \frac{2-\cos ^{2}(3 x) / n}{5+\sin (x) / n}=\frac{2-0}{5+0}=2 / 5
$$

Thus $f_{n} \rightarrow f$ pointwise, where $f(x)=2 / 5$ for all $x \in \mathbb{R}$.
The first step to show that $f_{n} \rightarrow f$ uniformly on \mathbb{R}, is to find an upper bound for $\left|f_{n}(x)-f(x)\right|$ that is independent of x. Consider the following

$$
\begin{align*}
\left|f_{n}(x)-f(x)\right| & =\left|\frac{2-\cos ^{2}(3 x) / n}{5+\sin (x) / n}-\frac{2}{5}\right| \\
& =\left|\frac{10-5 \cos ^{2}(3 x) / n-10-2 \sin (x) / n}{5(5+\sin (x) / n)}\right| \tag{1}\\
& =\left|\frac{-5 \cos ^{2}(3 x) / n-2 \sin (x) / n}{5(5+\sin (x) / n)}\right| \\
& \leq \frac{5 / n+2 / n}{5(5)}=\frac{7}{25} \cdot \frac{1}{n}
\end{align*}
$$

where the last line follows from the line just before it by applying the triangle inequality and using the inequalities $\left|\cos ^{2}(3 x)\right| \leq 1,|\sin (x)| \leq 1$, and $5(5+1 / n)>25$.
We can now prove that $f_{n} \rightarrow f$ uniformly as follows. Given $\epsilon>0$, choose $N \in \mathbb{N}$ with $N>\frac{7}{25} \cdot \frac{1}{\epsilon}$. Then for $n \geq N$, we have $\frac{7}{25} \cdot \frac{1}{n}<\epsilon$, and hence, using equation (1) we have

$$
\left|f_{n}(x)-f(x)\right|<\frac{7}{25} \cdot \frac{1}{n}<\epsilon \quad \text { for all } n \geq N \text { and all } x \in \mathbb{R}
$$

This completes the proof that $f_{n} \rightarrow f$ uniformly.
(b) (10 pts) Using your result in part (a) and results in the text, determine $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x$ for $a<b$. B sure to cite any results you use to justify your answer.
Solution: Since $f_{n} \rightarrow f$ uniformly and each f_{n} is a continuous function, it follows (see 25.2 Theorem in the text) that for $a<b$

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} \frac{2 n-\cos ^{2}(3 x)}{5 n+\sin (x)} d x=\int_{a}^{b} \frac{2}{5} d x=\frac{2}{5}(b-a)
$$

5. (15 pts) For $n \in \mathbb{N}$, let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be the function given by $f_{n}(x)=\sum_{k=0}^{n} \frac{x^{k}}{2^{k}}$. Show that the sequence $\left(f_{n}\right)$ is uniformly Cauchy on $[0,1]$.
Solution: For this problem we use the following property of geometric series in Example 1 on page 96 of the text. The series

$$
\begin{equation*}
a+a r+a r^{2}+\cdots+a r^{n}+\cdots=\frac{a}{1-r} \quad \text { if }|r|<1 \tag{2}
\end{equation*}
$$

To see that $f_{n}(x)$ is uniformly Cauchy on $[0,1]$, the first step is to find an upper bound for $\left|f_{n}(x)-f_{m}(x)\right|$ that is independent of x. Let $x \in[0,1]$ and let $m, n \in \mathbb{N}$ with $m>n$, then
(a)

$$
\left|f_{n}(x)-f_{n}(x)\right|=\left|\sum_{k=0}^{m} \frac{x^{k}}{2^{k}}-\sum_{k=0}^{n} \frac{x^{k}}{2^{k}}\right|
$$

(b)

$$
=\left(\frac{x}{2}\right)^{n+1}+\left(\frac{x}{2}\right)^{n+2}+\cdots+\left(\frac{x}{2}\right)^{m}
$$

(c)
(d)
(e)
(f)

$$
=\left|\sum_{k=n+1}^{m} \frac{x^{k}}{2^{k}}\right|
$$

$$
<\left(\frac{x}{2}\right)^{n+1}+\left(\frac{x}{2}\right)^{n+2}+\cdots+\left(\frac{x}{2}\right)^{m}+\cdots
$$

$$
=\frac{(x / 2)^{n+1}}{1-(x / 2)}
$$

$$
\leq 2\left(\frac{x^{n+1}}{2^{n+1}}\right)
$$

$$
\leq \frac{1}{2^{n}}
$$

where line (b) follows from line (a) and line (c) follows from line (b) since $x \geq 0$, line (d) follows from line (c) using (2) given that since $x \in[0,1]$, we have $|r|=|x / 2|<1$, line (e) folllows from line (d) since $2>1-x / 2$ for $x \in[0,1]$, and line (f) follows from line (e) since $x \in[0,1]$ implies that $x^{n+1} \leq 1$. This shows that

$$
\begin{equation*}
\left|f_{n}(x)-f_{m}(x)\right|<\frac{1}{2^{n}} \quad \text { for } m \geq n \text { and all } x \in[0,1] \tag{3}
\end{equation*}
$$

The proof that $f_{n} \rightarrow f$ uniformly on $[0,1]$ now proceeds as follows. Given any $\epsilon>0$, since $\lim 1 / 2^{n}=0$, it follows that there is an $N \in \mathbb{N}$ such that $1 / 2^{n}<\epsilon$ for all $n \geq N$. Then for $m \geq n \geq N$ we have from equation (3) that

$$
\left|f_{n}(x)-f_{m}(x)\right|<\frac{1}{2^{n}}<\epsilon
$$

and the proof that $f_{n} \rightarrow f$ uniformly is complete.

