
MATH 3150 Problem Set 4 Fall 2022

For each problem be sure to explain the steps in your argument and fully justify your conclusions.
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(a) (10 pts) Find the radius of convergence.
Solution: Use the ratio test
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By the ratio test, the series converges for |x| < 9/2 and diverges for |x| > 9/2. Thus, the
radius of convergence is 9/2.

(b) (10 pts) Find the exact interval of convergence.
Solution: The endpoints of the interval of convergence are x = −9/2 and x = 9/2.
With x = −9/2 the series is∑ 2n
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This is an alternating series with an = 1/n3/5, since an+1 < an, and lim an = 0, the series
converges by the alternating series test.
For x = 9/2, the series is

∑
1/n3/5. This is a p-series with p = 3/5 ≤ 1, so the series

diverges by the p-series test.
The exact interval of convergence is [−9/2, 9/2).

2. For n ∈ N, let fn(x) = (sin(x))n and let S equal to the set of real numbers, x, for which
f (x) B limn→∞ fn(x) exists.
(a) (10 pts) Describe the set S and the function f (x) for x ∈ S .

Solution: First note that | sin(x)| ≤ 1 for all x ∈ R and that | sin(x)| = 1 if and only if x is
an odd multiple of π/2. In other words, if we let

P = {x ∈ R | ∃ k ∈ Z such that x = (2k + 1)π/2},

then x ∈ P if and only if | sin(x)| = 1 and x < P if and only if | sin(x)| < 1.
Now recall that, for a fixed a ∈ R with |a| < 1, the sequence (an)n∈N converges, and
limn→∞ an = 0. One way to see this is that the geometric series

∑∞
n=0 an converges to

1/(1 − a) if |a| < 1, a fact which implies that the terms of the series must converge to 0.
It follows from the above that limn→∞ fn(x) = limn→∞(sin(x))n = 0 for all x < P; that is,
f (x) = 0 for all x < P.
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If x ∈ P, there are two cases to consider. First assume that x = (4k + 1)π/2 for some
k ∈ Z. Then sin(x) = 1, and so sin(x)n = 1 for all n ∈ N. It follows that limn→∞ fn(x) =
limn→∞ 1 = 1, and so f (x) = 1 in this case.
Next, assume that x = (4k−1)π/2 for some k ∈ Z. Then sin(x) = −1, and so sin(x)n = (−1)n

for all n ∈ N. It follows that limn→∞ fn(x) does not exist in this case (see below).
Putting all this information together, we conclude that the set S of real numbers, x, for
which f (x) B limn→∞ fn(x) exists is equal to

S = {x ∈ R | ∄ k ∈ Z such that x = (4k − 1)π/2}.

Moreover, the function f : S → R is given by

f (x) =

0 if x < P ,

1 if x = 4k + 1 for some k ∈ Z.

(b) (10 pts) For elements y not in S , give an argument that shows lim fn(y) does not exist.
Solution: Let y be a real number such that y < S . As explained above, such an element
must be of the form y = (4k − 1)π/2 for some k ∈ Z. In this case, sin(y) = −1, and
so sin(x)n = (−1)n for all n ∈ N. We need to show that limn→∞ fn(y) does not exist,
or, equivalently, that the sequence ((−1)n)n∈N does not converge. We will show that by
producing two subsequences that converge to different limits.

• First take the subsequence ((−1)2m)m∈N. Each term in this subsequence is equal to 1;
thus, the subsequence converges to 1.

• Next, take the subsequence ((−1)2m−1)m∈N. Each term in this subsequence is equal to
−1; thus, the subsequence converges to −1.

3. For n ∈ N, let fn : [0,∞)→ R be the function given by

fn(x) =

1 if n − 1 ≤ x ≤ n,

0 otherwise.

(a) (10 pts) Show that the sequence ( fn) converges pointwise on [0,∞) and determine the
function f B limn→∞ fn.
Solution: Let x ∈ [0,∞). For all n > x, then, we have that x < [n−1, n], and thus fn(x) = 0.
It follows that limn→∞ fn(x) = 0. Since this happens for every x ≥ 0, we conclude that the
sequence ( fn) converges pointwise on [0,∞). Moreover, the limit function, f B limn→∞ fn,
is identically 0; that is, f = 0.

(b) (15 pts) Does the sequence ( fn) converge uniformly on [0,∞)?
Solution: No, the sequence ( fn) does not converge uniformly on [0,∞) to the function
f = 0. To prove this assertion, we need to show:

∃ϵ > 0 such that ∀N ∈ N, ∃n > N and ∃x ∈ S such that | fn(x)| ≥ ϵ.

Take ϵ = 1, and let N ∈ N. Then, for any n > N and for any x with n − 1 ≤ x ≤ n, we have
that fn(x) = 1, and so | fn(x)| ≥ ϵ.
Alternatively, to show that ( fn) does not converge uniformly to 0 on [0,∞), it is enough to
show that

lim
n→∞

sup{| fn(x)| : x ∈ [0,∞)} > 0
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In our situation, sup{| fn(x)| : x ∈ [0,∞)} = 1, for every n ∈ N, and so

lim
n→∞

sup{| fn(x)| : x ∈ [0,∞)} = 1 > 0.

4. Let fn(x) =
2n − cos2(3x)

5n + sin(x)
.

(a) (10 pts) Show that ( fn) converges uniformly onR. Hint: First decide what the limit function
is and then show that convergence is uniform.
Solution: For all x ∈ R, we have

0 ≤
cos2(3x)

n
≤

1
n

and
−1
n
≤

sin(x)
n
≤

1
n

and it follows from the squeeze lemma that limn→∞ cos2(3x)/n = limn→∞ sin(x)/n = 0 for
all x ∈ R. Hence for all x ∈ R we have
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=

2 − 0
5 + 0

= 2/5

Thus fn → f pointwise, where f (x) = 2/5 for all x ∈ R.
The first step to show that fn → f uniformly onR, is to find an upper bound for | fn(x)− f (x)|
that is independent of x. Consider the following
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=
7
25
·

1
n
,

(1)

where the last line follows from the line just before it by applying the triangle inequality
and using the inequalities | cos2(3x)| ≤ 1, | sin(x)| ≤ 1, and 5(5 + 1/n) > 25.
We can now prove that fn → f uniformly as follows. Given ϵ > 0, choose N ∈ N with

N >
7

25
·

1
ϵ

. Then for n ≥ N, we have
7

25
·

1
n
< ϵ, and hence, using equation (1) we have

| fn(x) − f (x)| <
7
25
·

1
n
< ϵ for all n ≥ N and all x ∈ R.

This completes the proof that fn → f uniformly.

(b) (10 pts) Using your result in part (a) and results in the text, determine limn→∞

∫ b

a
fn(x) dx

for a < b. B sure to cite any results you use to justify your answer.
Solution: Since fn → f uniformly and each fn is a continuous function, it follows (see
25.2 Theorem in the text) that for a < b

lim
n→∞

∫ b

a
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a

2
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(b − a).



MATH 3150 Problem Set 4, Fall 2022 4

5. (15 pts) For n ∈ N, let fn : [0, 1] → R be the function given by fn(x) =
n∑

k=0

xk

2k . Show that the

sequence ( fn) is uniformly Cauchy on [0, 1].
Solution: For this problem we use the following property of geometric series in Example 1 on
page 96 of the text. The series

(2) a + ar + ar2 + · · · + arn + · · · =
a

1 − r
if |r| < 1

To see that fn(x) is uniformly Cauchy on [0, 1], the first step is to find an upper bound for
| fn(x) − fm(x)| that is independent of x. Let x ∈ [0, 1] and let m, n ∈ N with m > n, then
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where line (b) follows from line (a) and line (c) follows from line (b) since x ≥ 0, line (d)
follows from line (c) using (2) given that since x ∈ [0, 1], we have |r| = |x/2| < 1, line (e)
folllows from line (d) since 2 > 1 − x/2 for x ∈ [0, 1], and line (f) follows from line (e) since
x ∈ [0, 1] implies that xn+1 ≤ 1. This shows that

(3) | fn(x) − fm(x)| <
1
2n for m ≥ n and all x ∈ [0, 1].

The proof that fn → f uniformly on [0, 1] now proceeds as follows. Given any ϵ > 0, since
lim 1/2n = 0, it follows that there is an N ∈ N such that 1/2n < ϵ for all n ≥ N. Then for
m ≥ n ≥ N we have from equation (3) that

| fn(x) − fm(x)| <
1
2n < ϵ

and the proof that fn → f uniformly is complete.


