1. (10 pts) Let $\left(s_{n}\right)$ be a sequence such that

$$
\left|s_{n+1}-s_{n}\right|<\frac{1}{n^{3}} \quad \text { for all } n \in \mathbb{N}
$$

Prove that $\left(s_{n}\right)$ is a Cauchy sequence and hence a convergent sequence.
Solution: Let $n \geq m$. Then, by the triangle inequality and our assumption,

$$
\begin{aligned}
\left|s_{n}-s_{m}\right| & \leq\left|s_{n}-s_{n-1}\right|+\cdots+\left|s_{m+1}-s_{m}\right| \\
& <\frac{1}{(n-1)^{3}}+\cdots+\frac{1}{m^{3}} \\
& =\sum_{k=m}^{n-1} \frac{1}{k^{3}} .
\end{aligned}
$$

Now consider the series $\sum_{k=1}^{\infty} 1 / k^{3}$. By the integral test, this is a convergent series. Thus, by the Cauchy criterion for convergence, the following holds: for all $\epsilon>0$, there is an $N \in \mathbb{N}$ such that, for all $n \geq m \geq N$,

$$
\sum_{k=m}^{n-1} \frac{1}{k^{3}}<\epsilon
$$

Returning now to the original sequence, the above estimates imply the following: for all $\epsilon>0$, there is an $N \in \mathbb{N}$ such that $\left|s_{n}-s_{m}\right|<\epsilon$, for all $n \geq m \geq N$. This shows that $\left(s_{n}\right)$ is a Cauchy sequence (of real numbers), and thus, it converges.
2. Consider the sequence $\left(x_{n}\right)$ with terms $\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}, \frac{1}{7}, \ldots$.
(a) (5 pts) Show that $\left(x_{n}\right)$ is bounded.

The terms of the sequence are fractions of the form p / q with $1 \leq p<q$. Hence, $0<x_{n}<1$, for all $n \geq 1$, showing that the sequence is bounded below by 0 and above by 1 .
(b) (10 pts) Show directly from the definition that $\left(x_{n}\right)$ is not a Cauchy sequence.

We need to show the following: There exists an $\epsilon>0$ such that for all $N \in \mathbb{N}$, there are some $n \geq m \geq N$ so that $\left|x_{n}-x_{m}\right| \geq \epsilon$.
Let us take $\epsilon=1 / 2$. Then, for all $N \in \mathbb{N}$, there will be an $m \geq N$ such that $x_{m}=\frac{k}{k+1}$ for some $k \geq 3$. Then $x_{m+1}=\frac{1}{k+2}$, and so

$$
\left|x_{m+1}-x_{m}\right|=\left|\frac{1}{k+2}-\frac{k}{k+1}\right|=\left|\frac{k+1-k^{2}-2 k}{(k+1)(k+2)}\right|=\frac{k^{2}+k-1}{k^{2}+3 k+2} \geq \frac{1}{2}
$$

where the last inequality holds, since $2 k^{2}+2 k-2 \geq k^{2}+3 k+2$, or $k^{2}-k-4 \geq 0$, which is true for all $k \geq 3$.
(c) (5 pts) Find two convergent subsequences of $\left(x_{n}\right)$ that converge to two different limits.

The subsequence $x_{1}=1 / 2, x_{2}=1 / 3, x_{4}=1 / 4, x_{7}=1 / 5, x_{11}=1 / 6, x_{16}=1 / 7, \ldots$ has terms $x_{k(k-1) / 2+1}=1 /(k+1)$, and thus converges to 0 .
The subsequence $x_{1}=1 / 2, x_{3}=2 / 3, x_{6}=3 / 4, x_{10}=4 / 5, x_{15}=5 / 6, \ldots$ has terms $x_{k(k+1) / 2}=k /(k+1)$, and thus converges to 1 .
(d) (5 pts) What conclusion regarding the convergence of the sequence $\left(x_{n}\right)$ can you draw from part (c), and how does that conclusion compare to the answer in part (b)?
Solution: The given sequence has two subsequences that converge to two distinct limits (0 and 1). Therefore, the sequence $\left(x_{n}\right)$ is not convergent, since if we had $\lim _{n \rightarrow \infty} x_{n}=x$, then any subsequence would also converge to x, forcing $0=x=1$, a contradiction. This conclusion agrees with the answer in part (b): both say that $\left(x_{n}\right)$ does not converge.
3. Let $\left(x_{n}\right)$ be a sequence of real numbers. In each of the following situations, decide whether the sequence converges: if yes, give a proof why; otherwise, give an example where it does not.
(a) (10 pts) $\left|x_{n}-x_{k}\right| \leq \frac{1}{n}+\frac{1}{k}$ for all $n, k \geq 1$.

Solution: Let $\epsilon>0$, and take $N>2 / \epsilon$. Then, for all $n \geq m \geq N$, we have

$$
\left|x_{n}-x_{m}\right| \leq \frac{1}{n}+\frac{1}{m} \leq \frac{1}{N}+\frac{1}{N}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

This shows that $\left(x_{n}\right)$ is a Cauchy sequence, and thus converges.
(b) (10 pts) For all $\epsilon>0$, there is an $n>1 / \epsilon$ such that $\left|x_{n}\right|<\epsilon$.

Solution: The sequence does not necessarily converge. For instance, take $x_{n}=1 / n$ if n is even and $x_{n}=1$ if n is odd. Then the hypothesis of the problem is satisfied: for all $\epsilon>0$, take $n>1 / \epsilon$ and n even; then $\left|x_{n}\right|<\epsilon$. This shows that $\lim _{k \rightarrow \infty} x_{2 k}=0$. On the other hand, $\lim _{k \rightarrow \infty} x_{2 k-1}=1$. Therefore, the sequence $\left(x_{n}\right)$ has two subsequences converging to distinct limits, and thus $\left(x_{n}\right)$ does not converge.
4. Let $\left(a_{n}\right)$ be a sequence and let c, d be real numbers with $c<d$. Assume that the terms in the sequence $\left(a_{n}\right)$ are eventually in the closed interval $[c, d]$. Prove that
(a) (10 pts) $\left(a_{n}\right)$ is bounded

Solution: Since the terms in the sequence $\left(a_{n}\right)$ are eventually in the closed interval $[c, d]$, it follows that there an $N \in \mathbb{N}$ with

$$
\begin{equation*}
c \leq a_{n} \leq d \quad \text { for all } n \geq N \tag{1}
\end{equation*}
$$

Recall that a nonempty finite set contains both a maximum and a minimum element so we have that

$$
\max \left\{a_{1}, a_{2}, \ldots, a_{N-1}, d\right\}
$$

is an uppper bound for $\left(a_{n}\right)$, and

$$
\min \left\{a_{1}, a_{2}, \ldots, a_{N-1}, c\right\}
$$

is a lower bound for $\left(a_{n}\right)$ and the argument is complete.
(b) (10 pts) $\lim \inf a_{n}$ and $\lim \sup a_{n}$ are elements in $[c, d]$.

Solution: The first step is to show that $\lim \sup a_{n} \leq d$. From equation (1), it follows that for $n \geq N$, we have that d is an upper bound for $\left\{a_{k}: k \geq n\right\}$ and hence

$$
\begin{equation*}
v_{n}=\sup \left\{a_{k}: k \geq n\right\} \leq d \quad \text { for all } n \geq N \tag{2}
\end{equation*}
$$

Recall that since $\left(a_{n}\right)$ is bounded the decreasing sequence v_{n} converges to a finite limit and the limit is $\lim \sup a_{n}$. Thus from equation (2), we have that $\lim \sup a_{n} \leq d$. A similar argument shows that $c \leq \liminf a_{n}$ and the argument is complete.
5. (10 pts) Let $\left(a_{n}\right)$ be a bounded sequence, and let $\left(a_{n_{k}}\right)$ be a convergent subsequence $\left(a_{n}\right)$. Prove that

$$
\liminf a_{n} \leq \lim a_{n_{k}} \leq \lim \sup a_{n}
$$

Solution: The first step is to see that since the natural numbers n_{k} that give a subsequence of a_{n} have the property that

$$
n_{1}<n_{2}<n_{3}<\cdots<n_{k}<n_{k+1}<\cdots
$$

it follows that

$$
\begin{equation*}
n_{k} \geq k \quad \text { for all } k \in \mathbb{N} \tag{3}
\end{equation*}
$$

Equation (3) can be proved by induction as follows.
Since $n_{1} \in \mathbb{N}$, we have that $n_{1} \geq 1$.
For the inductive step, assume $n_{k} \geq k$. Then since $n_{k+1}>n_{k}$ and $n_{k}, n_{k+1} \in \mathbb{N}$ we have that $n_{k+1} \geq n_{k}+1$. This together with the assumption that $n_{k} \geq k$ then shows that $n_{k+1} \geq k+1$, and the proof of equation (3) is complete.

From equation (3) it follows that

$$
\left\{a_{n_{k}}: k \geq n\right\} \subset\left\{a_{k}: k \geq n\right\}
$$

and hence

$$
\sup \left\{a_{n_{k}}: k \geq n\right\} \leq \sup \left\{a_{k}: k \geq n\right\}
$$

Since $\left(a_{n}\right)$ is bounded, we have that $\left(a_{n_{k}}\right)$ is bounded so the sequences of sups in the equation above both converge and we have

$$
\lim _{k \rightarrow \infty} \sup \left\{a_{n_{k}}: k \geq n\right\} \leq \lim _{k \rightarrow \infty} \sup \left\{a_{k}: k \geq n\right\}
$$

The limits in the inequality above are the respective lim sups so we have

$$
\lim \sup a_{n_{k}} \leq \lim \sup a_{n}
$$

Since $\left(a_{n_{k}}\right)$ converges $\lim \sup \left(a_{n_{k}}\right)=\lim a_{n_{k}}$ so we have $\lim a_{n_{k}} \leq \lim \sup a_{n}$ and the argument is complete.
6. For each of the following series, determine whether the series converges or diverges. Justify your answers.
(a) $(5 \mathrm{pts}) \sum \frac{\sin (n)}{n^{2}}$

Solution: Since

$$
\left|\frac{\sin (n)}{n^{2}}\right| \leq \frac{1}{n^{2}}
$$

and $\sum\left(1 / n^{2}\right)$ converges by the integral test, it follows from the comparison test that $\sum \sin (n) / n^{2}$ converges.
(b) (5 pts) $\sum_{n=2}^{\infty} \frac{1}{n \ln (n)}$

Solution: The derivative of $\ln \left(\ln (x)\right.$ equals $1 /(x \ln (x))$ and $\lim _{x \rightarrow \infty} x \ln (x)$ is infinite so

$$
\int_{2}^{\infty} \frac{1}{x \ln (x)} d x \text { diverges }
$$

and it then follows that $\sum 1 /(n \ln (n))$ diverges by the integral test.
(c) $(5 \mathrm{pts}) \sum \frac{5 n^{2}+6 n-2}{3^{n}+1}$

Solution: Set $a_{n}=\frac{5 n^{2}+6 n-2}{3^{n}+1}$, then

$$
\begin{aligned}
\lim \left|\frac{a_{n+1}}{a_{n}}\right| & =\lim \left|\frac{5(n+1)^{2}+6(n+1)-2}{5 n^{2}+6 n-2} \cdot \frac{3^{n}+1}{3^{n+1}+1}\right| \\
& =\lim \left|\frac{5(1+1 / n)^{2}+6\left(1 / n+1 / n^{2}\right)-2 / n^{2}}{5+6 / n-2 / n^{2}} \cdot \frac{1+1 / 3^{n}}{3+1 / 3^{n}}\right| \\
& =\left|\frac{5(1+0)^{2}+6(0+0)-0}{5+0-0} \cdot \frac{1+0}{3+0}\right| \\
& =\frac{1}{3}
\end{aligned}
$$

where the second line follows from the first line by dividing both the numerator and denominator in the first line by $n^{2} \cdot 3^{n}$. Since $\lim \left|a_{n+1} / a_{n}\right|=1 / 3<1$ it follows that $\sum \frac{5 n^{2}+6 n-2}{3^{n}+1}$ converges by the ratio test.

