In your work on the following problems you may use the theorems about limits in section 9 of the text.

1. (10 pts) Find a function $f(\epsilon)$ defined for $\epsilon>0$ with the property that

$$
\left|\frac{5 n+6}{2 n-3}-\frac{5}{2}\right|<\epsilon \quad \text { for all } n \in \mathbb{N} \text { with } n>f(\epsilon)
$$

Solution: It suffices to show for

$$
f(\epsilon)=\left(\frac{27}{4 \epsilon}+\frac{3}{2}\right)
$$

that given any $\epsilon>0$

$$
\left|\frac{5 n+6}{2 n-3}-\frac{5}{2}\right|<\epsilon \quad \text { for all } n \in \mathbb{N} \text { with } n>f(\epsilon)
$$

This can be done as follows. First note that

$$
\frac{5 n+6}{2 n-3}-\frac{5}{2}=\frac{10 n+12-10 n+15}{2(2 n-3}=\frac{27}{2(2 n-3)}
$$

so it suffices to show that

$$
\left|\frac{27}{2(2 n-3)}\right|<\epsilon \quad \text { for all } n \in \mathbb{N} \text { with } n>f(\epsilon)
$$

Now assume $n>f(\epsilon)$, then

$$
\begin{aligned}
n & >\left(\frac{27}{4 \epsilon}+\frac{3}{2}\right) \\
2 n & >\frac{27}{2 \epsilon}+3 \\
2 n-3 & >\frac{27}{2 \epsilon}>0 \\
\epsilon & >\frac{27}{2(2 n-3)}=\left|\frac{27}{2(2 n-3)}\right|
\end{aligned}
$$

and the proof is complete.
2. (10 pts) Find $\lim \sqrt{9 n^{2}+2 n-1}-3 n$

Solution:

$$
\begin{aligned}
\lim \sqrt{9 n^{2}+2 n-1}-3 n & =\lim \sqrt{9 n^{2}+2 n-1}-3 n\left(\frac{\sqrt{9 n^{2}+2 n-1}+3 n}{\sqrt{9 n^{2}+2 n-1}+3 n}\right) \\
& =\lim \frac{9 n^{2}+2 n-1-9 n^{2}}{\sqrt{9 n^{2}+2 n-1}+3 n} \\
& =\lim \frac{2 n-1}{\sqrt{9 n^{2}+2 n-1}+3 n} \\
& =\lim \frac{2-(1 / n)}{\sqrt{9+2 / n-1 / n^{2}}+3} \\
& =\frac{2-0}{\sqrt{9+0-0}+3} \\
& =\frac{2}{6}=\frac{1}{3}
\end{aligned}
$$

where the fourth line above follows from the third line by dividing each of the the numerator and denominator in the third line by n and then moving $1 / n$ into the square root expression as $1 / n^{2}$. The fifth line follows from the fourth line using example 5 in $\S 8$ of the text, along with Theorems 9.3 and 9.6, and Lemma 9.5 and the argument is complete.
3. (10 pts) Use the $N-\epsilon$ definition of limit to show that the sequence $a_{n}=\sin \left(\frac{n \pi}{4}\right)$ does not converge.

Solution: Note that for $n=8 k+2$, we have $\sin \left(\frac{n \pi}{4}\right)=\sin \left(\frac{(8 k+2) \pi}{4}\right)=\sin (2 \pi+\pi / 2)=\sin (\pi / 2)=$ 1 , and it follows that for each $N \in \mathbb{N}$ there is an $n>N$ with $a_{n}=\sin \left(\frac{n \pi}{4}\right)=1$. Similarly, by choosing values of n of the form $n=8 k-2$, it follows that for each $N \in \mathbb{N}$ there is an $n>N$ with $a_{n}=\sin \left(\frac{n \pi}{4}\right)=-1$. The proof now proceeds by contradiction. Suppose the sequence a_{n} converges to a. Then given $\epsilon=1 / 2$, there is an $N \in \mathbb{N}$ with $\left|a_{n}-a\right|<1 / 2$ for all $n>N$. From the reasoning above, we have that there is an $n_{1}>N$ with $a_{n_{1}}=1$ and an $n_{2}>N$ with $a_{n_{2}}=-1$. Then using the triangle inequality we have

$$
2=|1-(-1)|=\left|a_{n_{1}}-a_{n_{2}}\right|=\left|a_{n_{1}}-a+a-a_{n_{2}}\right| \leq\left|a_{n_{1}}-a\right|+\left|a-a_{n_{2}}\right|<1 / 2+1 / 2=1
$$

Since $2<1$ is false, the assumption that the sequence a_{n} converges must be false, and the proof is complete.
4. (10 pts) Prove the Squeeze Theorem that if $a_{n} \leq x_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $\lim a_{n}=\lim b_{n}=L$, then the sequence x_{n} converges to L.

Solution: First note that directly from the definition of the absolute value (i.e., $|u|=u$ if $u \geq 0$ and $|u|=-u$ if $u<0$) it follows that the inequality

$$
\begin{equation*}
|a-b|<c \quad \text { is equivalent to } \quad b-c<a<b+c \tag{1}
\end{equation*}
$$

Now assume $\lim a_{n}=\lim b_{n}=L$ and an $\epsilon>0$ has been given, then there is an $N_{1} \in \mathbb{N}$ and an $N_{2} \in \mathbb{N}$ such that

$$
\begin{array}{ll}
\left|a_{n}-L\right|<\epsilon & \text { for all } n>N_{1} \\
\left|b_{n}-L\right|<\epsilon & \text { for all } n>N_{2}
\end{array}
$$

Thus, for $n>\max \left\{N_{1}, N_{2}\right\}$ we have $\left|a_{n}-L\right|<\epsilon$ and $\left|b_{n}-L\right|<\epsilon$ and from equation (1) and the assumption $a_{n} \leq x_{n} \leq b_{n}$ we have that

$$
L-\epsilon<a_{n} \leq x_{n} \leq b_{n}<L+\epsilon \quad \text { for } n>N=\max \left\{N_{1}, N_{2}\right\}
$$

From $L-\epsilon<x_{n}<L+\epsilon$ for $n>N$ and equation (1), we have

$$
\left|x_{n}-L\right|<\epsilon \quad \text { for all } n>N
$$

and the proof that $\lim x_{n}=L$ is complete.
5. Let x_{n} be given by $x_{1}=17$ and $x_{n+1}=\sqrt{2 x_{n}+15}$
(a) (10 pts) Show that the sequence x_{n} is decreasing and bounded below.

Solution: Since $x_{1}=17$, we have that $x_{2}=\sqrt{2(17)+15}=\sqrt{49}=7$. Hence $x_{2}<x_{1}$ and the base case for showing $x_{n+1}<x_{n}$ by induction is complete. For the inductive step, assume $x_{n+1}<x_{n}$, then

$$
\begin{aligned}
x_{n+1} & <x_{n} \\
2 x_{n+1}+15 & <2 x_{n}+15 \\
\sqrt{2 x_{n+1}+15} & <\sqrt{2 x_{n}+15} \\
x_{n+2} & <x_{n+1}
\end{aligned}
$$

This completes the argument that the sequence x_{n} is decreasing.
Note that $x_{1}=17>0$ and by a straightforward argument it follows by induction that if $x_{n}>0$ then $x_{n+1}>0$. Hence the sequence x_{n} is bounded below by 0 and the argument that the sequence x_{n} is decreasing and bounded below is complete.
(b) (10 pts) Explain whether the sequence x_{n} converges or not. If the sequence converges, then find the limit.

Solution: By part (a), the sequence x_{n} is decreasing and bounded below. Hence the sequence x_{n} converges by Theorem 10.2 in the text. Let $\lim x_{n}=x$, then using Example 5 in $\S 8$, along with Theorems 9.2 and 9.3 in the text, we have

$$
\begin{aligned}
\lim x_{n+1} & =\lim \left(\sqrt{2 x_{n}+15}\right) \\
x & =\sqrt{2 \lim x_{n}+15} \\
x & =\sqrt{2 x+15} \quad \text { so } \\
x^{2} & =2 x+15 \\
0 & =x^{2}-2 x-15 \\
0 & =(x-5)(x+3)
\end{aligned}
$$

So $x=5$ or $x=-3$. Since the sequence is bounded below by zero and a decreasing sequence converges to its inf, we have that the limit of x_{n} must be greater than or equal to zero and so $x \neq-3$. Thus, $\lim x_{n}=5$.
6. Consider the following definitions:

- A sequence $\left\{a_{n}\right\}_{n \geq 1}$ is eventually in a set $A \subset \mathbb{R}$ if there exists an $N \in \mathbb{N}$ such that $a_{n} \in A$ for all $n \geq N$.
- A sequence $\left\{a_{n}\right\}_{n \geq 1}$ is frequently in a set $A \subset \mathbb{R}$ if, for every $N \in \mathbb{N}$, there exists an $n \geq N$ such that $a_{n} \in A$.
(a) (10 pts) Is the sequence with terms $a_{n}=(-1)^{n}$ eventually or frequently in the set $\{1\}$?

Solution: The sequence is frequently in the set $\{1\}$. Indeed, if $n=2 k$ is an even natural number, then $a_{2 k}=1$. Thus, given any $N \in \mathbb{N}$, we may take $n=N$ if N is even and $n=N+1$ if N is odd, and then it follows that $n \geq N$ and $a_{n}=1$, that is, $a_{n} \in\{1\}$.
On the other hand, the sequence is not eventually in the set $\{1\}$. Indeed, given any $N \in \mathbb{N}$, we may take $n=N$ if N is odd and $n=N+1$ if N is even, and then it follows that $n \geq N$ and $a_{n}=-1$, and so, $a_{n} \notin\{1\}$.
(b) (10 pts) Which definition is stronger? Does frequently imply eventually or does eventually imply frequently?
Solution: The first definition (the sequence is eventually in a set) is stronger than the second definition (the sequence is frequently in a set).
Indeed, suppose $\left\{a_{n}\right\}_{n \geq 1}$ is eventually in $A \subset \mathbb{R}$, that is, there is an $N_{1} \in \mathbb{N}$ such that $a_{n} \in A$ for all $n \geq N$. Let $N_{2} \in \mathbb{N}$ be an arbitrary natural number, and put $N=\max \left\{N_{1}, N_{2}\right\}$. Then $a_{n} \in A$ for all $n \geq N$ (since $N \geq N_{1}$). In particular, $a_{N} \in A$ for such an integer $N \geq N_{2}$, thereby showing that $\left\{a_{n}\right\}_{n \geq 1}$ is frequently in $A \subset \mathbb{R}$.
On the other hand, as shown in part (a), there exist sequences which are frequently but not eventually in a subset $A \subset \mathbb{R}$. Thus, the two notions are not equivalent, but rather, one (eventually) is stronger (or, more restrictive) than the other (frequently).
(c) (10 pts) Suppose an infinite number of terms of a sequence $\left\{x_{n}\right\}_{n \geq 1}$ are equal to 2 . Is the sequence necessarily eventually in the interval $(1.9,2.1)$? Is it frequently in $(1.9,2.1)$?
Solution: The sequence is frequently but not necessarily eventually in the interval (1.9, 2.1). Indeed, let $N \in \mathbb{N}$. By assumption, the set $S=\left\{n \in \mathbb{N}: x_{n} \in(1.9,2.1)\right\}$ is infinite; thus, the subset $S^{\prime}=\left\{n \in \mathbb{N}: n \geq N\right.$ and $\left.x_{n} \in(1.9,2.1)\right\}$ is also infinite. Consequently, there is an $n \geq N$ such that $x_{n} \in(1.9,2.1)$. Thus, we have shown that the sequence $\left\{x_{n}\right\}_{n \geq 1}$ is frequently in the interval $(1.9,2.1)$.
On the other hand, consider the sequence with terms $x_{n}=1+(-1)^{n}$. Then $x_{n}=2$ for all n even and $x_{n}=0$ for all n odd. Thus, arguing as in part (a), this sequence is frequently but not eventually in the interval $(1.9,2.1)$.
(d) (10 pts) Suppose $\lim x_{n}=2$. Is the sequence $\left\{x_{n}\right\}_{n \geq 1}$ necessarily eventually in the interval $(1.9,2.1)$? Is it frequently in $(1.9,2.1)$?
Solution: The sequence is eventually in the interval (1.9,2.1), and thus, by part (b), also frequently in the interval $(1.9,2.1)$.
To prove the first claim, recall that $\lim x_{n}=2$ means the following: For every $\epsilon>0$, there exists an $N=N(\epsilon) \in \mathbb{N}$ such that $\left|x_{n}-2\right|<\epsilon$ for all $n \geq N$. Now take $\epsilon=0.1$. There exists then an $N=N(.1) \in \mathbb{N}$ such that $\left|x_{n}-2\right|<0.1$ for all $n \geq N$. In other words, there is an $N \in \mathbb{N}$ such that $1.9<x_{n}<2.1$ for all $n \geq N$. This shows that the sequence is eventually in the interval $(1.9,2.1)$, and the proof is complete.

