
MATH 3150 Problem Set 2 Fall 2022

In your work on the following problems you may use the theorems about limits in section 9 of the
text.

1. (10 pts) Find a function f (ϵ) defined for ϵ > 0 with the property that∣∣∣∣∣5n + 6
2n − 3

−
5
2

∣∣∣∣∣ < ϵ for all n ∈ N with n > f (ϵ)

Solution: It suffices to show for

f (ϵ) =
(
27
4ϵ
+

3
2

)
that given any ϵ > 0 ∣∣∣∣∣5n + 6

2n − 3
−

5
2

∣∣∣∣∣ < ϵ for all n ∈ N with n > f (ϵ)

This can be done as follows. First note that
5n + 6
2n − 3

−
5
2
=

10n + 12 − 10n + 15
2(2n − 3

=
27

2(2n − 3)
so it suffices to show that∣∣∣∣∣ 27

2(2n − 3)

∣∣∣∣∣ < ϵ for all n ∈ N with n > f (ϵ)

Now assume n > f (ϵ), then

n >
(
27
4ϵ
+

3
2

)
2n >

27
2ϵ
+ 3

2n − 3 >
27
2ϵ
> 0

ϵ >
27

2(2n − 3)
=

∣∣∣∣∣ 27
2(2n − 3)

∣∣∣∣∣
and the proof is complete.
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2. (10 pts) Find lim
√

9n2 + 2n − 1 − 3n

Solution:

lim
√

9n2 + 2n − 1 − 3n = lim
√

9n2 + 2n − 1 − 3n
 √9n2 + 2n − 1 + 3n
√

9n2 + 2n − 1 + 3n


= lim

9n2 + 2n − 1 − 9n2

√
9n2 + 2n − 1 + 3n

= lim
2n − 1

√
9n2 + 2n − 1 + 3n

= lim
2 − (1/n)√

9 + 2/n − 1/n2 + 3

=
2 − 0

√
9 + 0 − 0 + 3

=
2
6
=

1
3

where the fourth line above follows from the third line by dividing each of the the numerator
and denominator in the third line by n and then moving 1/n into the square root expression as
1/n2. The fifth line follows from the fourth line using example 5 in §8 of the text, along with
Theorems 9.3 and 9.6, and Lemma 9.5 and the argument is complete.

3. (10 pts) Use the N − ϵ definition of limit to show that the sequence an = sin
(

nπ
4

)
does not

converge.

Solution: Note that for n = 8k+2, we have sin
(

nπ
4

)
= sin

(
(8k+2)π

4

)
= sin(2π+π/2) = sin(π/2) =

1, and it follows that for each N ∈ N there is an n > N with an = sin
(

nπ
4

)
= 1. Similarly, by

choosing values of n of the form n = 8k − 2, it follows that for each N ∈ N there is an n > N
with an = sin

(
nπ
4

)
= −1. The proof now proceeds by contradiction. Suppose the sequence an

converges to a. Then given ϵ = 1/2, there is an N ∈ N with |an − a| < 1/2 for all n > N. From
the reasoning above, we have that there is an n1 > N with an1 = 1 and an n2 > N with an2 = −1.
Then using the triangle inequality we have

2 = |1 − (−1)| = |an1 − an2 | = |an1 − a + a − an2 | ≤ |an1 − a| + |a − an2 | < 1/2 + 1/2 = 1

Since 2 < 1 is false, the assumption that the sequence an converges must be false, and the proof
is complete.

4. (10 pts) Prove the Squeeze Theorem that if an ≤ xn ≤ bn for all n ∈ N and lim an = lim bn = L,
then the sequence xn converges to L.

Solution: First note that directly from the definition of the absolute value (i.e., |u| = u if u ≥ 0
and |u| = −u if u < 0) it follows that the inequality

(1) |a − b| < c is equivalent to b − c < a < b + c
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Now assume lim an = lim bn = L and an ϵ > 0 has been given, then there is an N1 ∈ N and an
N2 ∈ N such that

|an − L| < ϵ for all n > N1

|bn − L| < ϵ for all n > N2

Thus, for n > max{N1,N2} we have |an − L| < ϵ and |bn − L| < ϵ and from equation (1) and the
assumption an ≤ xn ≤ bn we have that

L − ϵ < an ≤ xn ≤ bn < L + ϵ for n > N = max{N1,N2}

From L − ϵ < xn < L + ϵ for n > N and equation (1), we have

|xn − L| < ϵ for all n > N

and the proof that lim xn = L is complete.

5. Let xn be given by x1 = 17 and xn+1 =
√

2xn + 15
(a) (10 pts) Show that the sequence xn is decreasing and bounded below.

Solution: Since x1 = 17, we have that x2 =
√

2(17) + 15 =
√

49 = 7. Hence x2 < x1

and the base case for showing xn+1 < xn by induction is complete. For the inductive step,
assume xn+1 < xn, then

xn+1 < xn

2xn+1 + 15 < 2xn + 15√
2xn+1 + 15 <

√
2xn + 15

xn+2 < xn+1

This completes the argument that the sequence xn is decreasing.
Note that x1 = 17 > 0 and by a straightforward argument it follows by induction that if
xn > 0 then xn+1 > 0. Hence the sequence xn is bounded below by 0 and the argument that
the sequence xn is decreasing and bounded below is complete.

(b) (10 pts) Explain whether the sequence xn converges or not. If the sequence converges, then
find the limit.

Solution: By part (a), the sequence xn is decreasing and bounded below. Hence the se-
quence xn converges by Theorem 10.2 in the text. Let lim xn = x, then using Example 5 in
§8, along with Theorems 9.2 and 9.3 in the text, we have

lim xn+1 = lim
( √

2xn + 15
)

x =
√

2 lim xn + 15

x =
√

2x + 15 so

x2 = 2x + 15

0 = x2 − 2x − 15
0 = (x − 5)(x + 3)

So x = 5 or x = −3. Since the sequence is bounded below by zero and a decreasing
sequence converges to its inf, we have that the limit of xn must be greater than or equal to
zero and so x , −3. Thus, lim xn = 5.
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6. Consider the following definitions:
• A sequence {an}n≥1 is eventually in a set A ⊂ R if there exists an N ∈ N such that an ∈ A

for all n ≥ N.
• A sequence {an}n≥1 is frequently in a set A ⊂ R if, for every N ∈ N, there exists an n ≥ N

such that an ∈ A.
(a) (10 pts) Is the sequence with terms an = (−1)n eventually or frequently in the set {1}?

Solution: The sequence is frequently in the set {1}. Indeed, if n = 2k is an even natural
number, then a2k = 1. Thus, given any N ∈ N, we may take n = N if N is even and
n = N + 1 if N is odd, and then it follows that n ≥ N and an = 1, that is, an ∈ {1}.
On the other hand, the sequence is not eventually in the set {1}. Indeed, given any N ∈ N,
we may take n = N if N is odd and n = N + 1 if N is even, and then it follows that n ≥ N
and an = −1, and so, an < {1}.

(b) (10 pts) Which definition is stronger? Does frequently imply eventually or does eventually
imply frequently?
Solution: The first definition (the sequence is eventually in a set) is stronger than the
second definition (the sequence is frequently in a set).
Indeed, suppose {an}n≥1 is eventually in A ⊂ R, that is, there is an N1 ∈ N such that an ∈ A
for all n ≥ N. Let N2 ∈ N be an arbitrary natural number, and put N = max{N1,N2}. Then
an ∈ A for all n ≥ N (since N ≥ N1). In particular, aN ∈ A for such an integer N ≥ N2,
thereby showing that {an}n≥1 is frequently in A ⊂ R.
On the other hand, as shown in part (a), there exist sequences which are frequently but not
eventually in a subset A ⊂ R. Thus, the two notions are not equivalent, but rather, one
(eventually) is stronger (or, more restrictive) than the other (frequently).

(c) (10 pts) Suppose an infinite number of terms of a sequence {xn}n≥1 are equal to 2. Is the
sequence necessarily eventually in the interval (1.9, 2.1)? Is it frequently in (1.9, 2.1)?
Solution: The sequence is frequently but not necessarily eventually in the interval (1.9, 2.1).
Indeed, let N ∈ N. By assumption, the set S = {n ∈ N : xn ∈ (1.9, 2.1)} is infinite; thus,
the subset S ′ = {n ∈ N : n ≥ N and xn ∈ (1.9, 2.1)} is also infinite. Consequently, there
is an n ≥ N such that xn ∈ (1.9, 2.1). Thus, we have shown that the sequence {xn}n≥1 is
frequently in the interval (1.9, 2.1).
On the other hand, consider the sequence with terms xn = 1 + (−1)n. Then xn = 2 for all n
even and xn = 0 for all n odd. Thus, arguing as in part (a), this sequence is frequently but
not eventually in the interval (1.9, 2.1).

(d) (10 pts) Suppose lim xn = 2. Is the sequence {xn}n≥1 necessarily eventually in the interval
(1.9, 2.1)? Is it frequently in (1.9, 2.1)?
Solution: The sequence is eventually in the interval (1.9, 2.1), and thus, by part (b), also
frequently in the interval (1.9, 2.1).
To prove the first claim, recall that lim xn = 2 means the following: For every ϵ > 0, there
exists an N = N(ϵ) ∈ N such that |xn − 2| < ϵ for all n ≥ N. Now take ϵ = 0.1. There exists
then an N = N(.1) ∈ N such that |xn − 2| < 0.1 for all n ≥ N. In other words, there is an
N ∈ N such that 1.9 < xn < 2.1 for all n ≥ N. This shows that the sequence is eventually
in the interval (1.9, 2.1), and the proof is complete.


