1. Given a number x_{n} with $x_{n} \geq-40$ set $x_{n+1}=\sqrt{x_{n}+40}$.
(a) (10 pts) Show by mathematical induction that if $x_{1}=-39$, then $x_{n+1}>x_{n}$ for all integers $n \geq 1$.
Solution: Assume $x_{1}=-39$ and let $P(n)$ be the statement that $x_{n+1}>x_{n}$. The proof that $P(n)$ is true for all $n \geq 1$ is by induction. The base case is $n=1$.
Given that $x_{1}=-39$, we have that $x_{2}=\sqrt{x_{1}+40}=\sqrt{-39+40}=\sqrt{1}=1$ so $x_{1}<x_{2}$, and hence, $P(1)$ is true.
For the inductve step assume $P(n)$ is true. Then we have

$$
\begin{aligned}
x_{n+1} & >x_{n} \\
x_{n+1}+40 & >x_{n}+40 \\
\sqrt{x_{n+1}+40} & >\sqrt{x_{n}+40} \\
x_{(n+1)+1} & >x_{(n+1)}
\end{aligned}
$$

From the last line, it follows that $P(n+1)$ is true and the proof that $x_{n+1}>x_{n}$ for all $n \geq 1$ is complete.
(b) (10 pts) Show by mathematical induction that if $x_{1}=24$, then $x_{n+1}<x_{n}$ for all integers $n \geq 1$.
Solution: Assume $x_{1}=24$ and let $Q(n)$ be the statement that $x_{n+1}<x_{n}$. The proof that $Q(n)$ is true for all $n \geq 1$ is by induction. The base case is $n=1$.
Given that $x_{1}=24$, we have that $x_{2}=\sqrt{x_{1}+40}=\sqrt{24+40}=\sqrt{64}=8$ so $x_{2}<x_{1}$, and hence, $Q(1)$ is true.
For the inductve step assume $Q(n)$ is true. Then we have

$$
\begin{aligned}
x_{n+1} & <x_{n} \\
x_{n+1}+40 & <x_{n}+40 \\
\sqrt{x_{n+1}+40} & <\sqrt{x_{n}+40} \\
x_{(n+1)+1} & <x_{(n+1)}
\end{aligned}
$$

From the last line, it follows that $Q(n+1)$ is true and the proof that $x_{n+1}<x_{n}$ for all $n \geq 1$ is complete.
2. (15 pts) Show by induction that
(I(n))

$$
\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{2 n-1}{2 n} \leq \frac{1}{\sqrt{3 n+1}}
$$

Solution: For $n=1$, we have that $I(1)$ is the inequality

$$
\frac{1}{2} \leq \frac{1}{\sqrt{3(1)+1}}=\frac{1}{2} .
$$

In this case, both the inequality and the equality hold.
To procceed by induction, assume that the inequality $I(n)$ is true for $n \in \mathbb{N}$. We want to show that the inequality
$(I(n+1))$

$$
\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \cdots \frac{2 n+1}{2 n+2} \leq \frac{1}{\sqrt{3 n+4}}
$$

is true. Using the inequality $I(n)$, this is to prove

$$
\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \cdots \cdot \frac{2 n-1}{2 n} \cdot \frac{2 n+1}{2 n+2} \leq \frac{1}{\sqrt{3 n+1}} \cdot \frac{2 n+1}{2 n+2} \leq \frac{1}{\sqrt{3 n+4}}
$$

So we want to show

$$
\frac{2 n+1}{2 n+2} \leq \frac{\sqrt{3 n+1}}{\sqrt{3 n+4}}
$$

By taking a square of both sides and then simplifying it is equivalent to show

$$
\begin{equation*}
(3 n+4)\left(4 n^{2}+4 n+1\right) \leq(3 n+1)\left(4 n^{2}+8 n+4\right) \tag{1}
\end{equation*}
$$

The left hand side of the inequality (1) simplifies to

$$
\begin{aligned}
(3 n+4)\left(4 n^{2}+4 n+1\right) & =12 n^{3}+12 n^{2}+3 n+16 n^{2}+16 n+4 \\
& =12 n^{3}+28 n^{2}+19 n+4
\end{aligned}
$$

and the right hand side of the inequality (1) simplifies to

$$
\begin{aligned}
(3 n+1)\left(4 n^{2}+8 n+4\right) & =12 n^{3}+24 n^{2}+12 n+4 n^{2}+8 n+4 \\
& =12 n^{3}+28 n^{2}+20 n+4
\end{aligned}
$$

Thus, the inequality in equation (1) is equivalent to the inequality

$$
\begin{equation*}
19 n \leq 20 n \tag{2}
\end{equation*}
$$

Since the inequality in equation (2) is true for all $n \geq 1$, the proof by induction that the inequality in equation $I(n)$ holds for all $n \geq 1$ is complete.

Also, since $19 n<20 n$ for all $n \geq 1$, equality in $I(n)$ is not obtained for $n>1$. Therefore, the equality is obtained if and only if $n=1$.
3. (10 pts) Determine whether $(2+\sqrt{3})^{2 / 3}$ is a rational number, and explain your reasoning.

Solution: First approach. The first step is to see that $\sqrt{3}$ is not rational as follows. $a=\sqrt{3}$ is a solution to the equation $a^{2}-3=0$. By the Rational Zeros Theorem the only possible rational solutions are $\pm 1, \pm 3$. Since none of these values is a solution to $a^{2}-3=0$, it follows that $a^{2}-3=0$ does not have any rational solutions, and hence, $\sqrt{3}$ is not rational.

We can now show that $(2+\sqrt{3})^{2 / 3}$ is not rational as follows. Suppose $a=(2+\sqrt{3})^{2 / 3}$ is rational, then

$$
a^{3}=(2+\sqrt{3})^{2}=4+4 \sqrt{3}+3=7+4 \sqrt{3}
$$

is rational, and hence $\left(a^{3}-7\right) / 4=\sqrt{3}$ is rational. Thus the assumption that $a=(2+\sqrt{3})^{2 / 3}$ is rational implies that $\sqrt{3}$ is rational. This is a contradiction, so the assumption must be false, and it follows that $a=(2+\sqrt{3})^{2 / 3}$ is not rational.

Second approach. If $a=(2+\sqrt{3})^{2 / 3}$ is rational, then

$$
\begin{aligned}
a^{3} & =(2+\sqrt{3})^{2}=4+4 \sqrt{3}+3 \quad \text { so } \\
a^{3}-7 & =4 \sqrt{3} \quad \text { hence } \\
\left(a^{3}-7\right)^{2} & =16(3) \quad \text { and we have } \\
a^{6}-14 a^{3}+49 & =48 \\
a^{6}-14 a^{3}+1 & =0
\end{aligned}
$$

Thus, $a=(2+\sqrt{3})^{2 / 3}$ is a solution to $p(a)=a^{6}-14 a^{3}+1=0$. By the Rational Zeros Theorem the only possible rational solutions are ± 1. Since neither of these is a solution to $p(a)=0$, it follows that $p(a)=0$ has no rational solutions, and hence $(2+\sqrt{3})^{2 / 3}$ is not a rational number.
4. (10 pts) Use the Rational Zeros Theorem to find all rational solutions, if any, to the equation

$$
\begin{equation*}
p(x)=3 x^{4}-4 x^{3}-x^{2}-4 x-4=0 . \tag{3}
\end{equation*}
$$

Explain your reasoning.
Solution: By the Rational Zeros Theorem, if $r=c / d$ is a solution to equation (3) where c and d are integers with no common factors, then c divides 4 and d divides 3 . Thus $c= \pm 1, \pm 2, \pm 4$ and $d= \pm 1, \pm 3$, so the only possible rational solutions to equation (3) are

$$
\pm 1, \pm 2, \pm 4, \pm 1 / 3, \pm 2 / 3, \pm 4 / 3
$$

Using a calculator or computer gives the following values for $p(x)=3 x^{4}-4 x^{3}-x^{2}-4 x-4$ rounded to 1 decimal place

$p(1)=-10$	$p(2)=0$	$p(4)=476$
$p(-1)=6$	$p(-2)=80$	$p(-4)=1020$
$p(1 / 3)=-5.6$	$p(2 / 3)=-7.7$	$p(4 / 3)=-11.1$
$p(-1 / 3)=-2.6$	$p(-2 / 3)=0$	$p(-4 / 3)=18.5$

Thus, there are two, and only two, rational solutions to $p(x)=0$. The solutions are $x=2$ and $x=-2 / 3$.
5. (10 pts) Show by induction using the triangle inequality that

$$
\begin{equation*}
\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right| \tag{4}
\end{equation*}
$$

for all $a_{i} \in \mathbb{R}$ and all $n \geq 2$.
Solution: Recall the triangle inequality states that

$$
|a+b| \leq|a|+|b| \quad \text { for all } a, b \in R
$$

Thus the inequality (4) holds for $n=2$.
Now assume the inequality (4) holds for a given $n \geq 2$ then

$$
\begin{aligned}
\left|a_{1}+\cdots a_{n}+a_{n+1}\right| & \leq\left|a_{1}+\cdots a_{n}\right|+\left|a_{n+1}\right| \quad \text { by (4) } \\
& \leq\left|a_{1}\right|+\cdots\left|a_{n}\right|+\left|a_{n+1}\right| \quad \text { by the inductive assumption }
\end{aligned}
$$

and the proof is complete.
6. Show that for $a, b \in \mathbb{R}$ we have
(a) (10 pts) $|a+b|+|a-b|=2 \max \{|a|,|b|\}$.

Solution: We have $|a+b|=\max \{a+b,-a-b\},|a-b|=\max \{a-b, b-a\}$, so $|a+b|+|-a-b|$ is equal to

$$
\begin{aligned}
\max \{(a+b)+|a-b|,- & a-b+|a-b|\} \\
= & \max \{(a+b)+(a-b),(a+b)-(a-b), \\
& \quad-a-b+(a+b),-a-b,-a-b\} \\
= & \max \{2 a, 2 b,-2 b,-2 a\} \\
= & 2 \max \{|a|,|b|\} .
\end{aligned}
$$

(b) (10 pts) $||a+b|-|a-b|| \leq 2 \min \{|a|,|b|\}$

Solution: Since $(a+b) \leq(a-b)+2 b \leq|a-b|+2|b|$, we get $a+b \leq|a-b|+2|b|$.
Replacing a by $-a$ and b by $-b$ gives $-a-b \leq|b-a|+2|b|=|a-b|+2|b|$, therefore $|a+b|=\max \{a+b,-a-b\} \leq|a-b|+2|b|$ and $|a+b|-|a-b| \leq 2|b|$.
Switching a and b gives $|a+b|-|a-b|=|b+a|-|b-a| \leq 2|a|$, so we get $|a+b|-|a-b| \leq$ $2 \min \{|a|,|b|\}$. Replacing b by $-b$ yields

$$
-(|a+b|-|a-b|)=|a-b|-|a+b| \leq 2 \min \{|a|,|-b|\}=2 \min \{|a|,|b|\}
$$

so we conclude that

$$
||a+b|-|a-b|| \leq 2 \min \{|a|,|b|\} .
$$

7. (15 pts) Given nonempty subsets A and B of \mathbb{R}, define the set $A-B$ by

$$
A-B=\{a-b: a \in A, b \in B\} .
$$

State and prove a formula for $\inf (A-B)$ in terms of $\inf (A), \sup (A), \inf (B)$, and $\sup (B)$.
Solution: We will show that

$$
\begin{equation*}
\inf (A-B)=\inf (A)-\sup (B) \tag{5}
\end{equation*}
$$

Set $a:=\inf (A)$ and $b:=\sup (B)$. We prove (5) by first showing that $\inf (A-B) \geq a-b$, and then showing that $a-b \geq \inf (A-B)$.

To prove the first inequality, let $x \in A$ and $y \in B$. By the definition of $a=\inf (A)$, we have that $x \geq a$. Likewise, by the definition of $b=\sup (B)$, we have that $y \leq b$, or, $-y \geq-b$. Therefore,

$$
x-y \geq a-b
$$

Since any element in the set $A-B$ is of the form $x-y$, for some $x \in A$ and $y \in B$, it follows from the definition of infimum that $\inf (A-B) \geq a-b$.

To prove the second inequality, let $\varepsilon>0$. By the definition of $a=\inf (A)$, there in an element $x \in A$ such that $a+\varepsilon / 2 \geq x$. Likewise, by the definition of $b=\sup (B)$, there in an element $y \in B$ such that $b-\varepsilon / 2 \leq y$, or, $-b+\varepsilon / 2 \geq-y$. Therefore, $(a+\varepsilon / 2)+(-b+\varepsilon / 2) \geq x-y$, or,

$$
a-b+\varepsilon \geq x-y
$$

Using now the definition of $\inf (A-B)$, we infer that

$$
a-b+\varepsilon \geq \inf (A-B) .
$$

But this inequality holds for any $\varepsilon>0$, we conclude that

$$
a-b \geq \inf (A-B)
$$

and this completes the proof.

