
Real Analysis, MATH 3150 Final Exam Fall 2022

For this exam you are allowed one two-sided page of notes on a standard, 8 ½ by
11 inches, piece of paper. No additional notes or scratch paper are allowed. You may
use the blank, unnumbered, pages on the back of each numbered page for your work if
needed. If you do this, be sure to note on the numbered page where the reader should
look for the continuation of your work on the problem.
Cellphones and laptops must be turned off and placed on the floor.
For credit you need to fully justify your response to each question. You can cite results
in the text by indicating the result—for example, since every bounded sequence contains
a convergent subsequence, it follows that . . . . . .

1. Consider the function f : R → R defined by

f(x) =

x sin
( 1

2πx

)
, if x ̸= 0,

0, if x = 0.

(a) (4 pts) Show that f is continuous.

Solution: The function f is differentiable (and thus continuous) at any point
x ̸= 0, since there it is the product of the continuous function x and the composite
of the continuous functions sin(x) and 1/(2πx).

At x = 0, we have

lim
x→0

|f(x)| = lim
x→0

∣∣∣∣x sin
( 1

2πx

)∣∣∣∣ ≤ lim
x→0

|x| = 0,

since the sine function is bounded in absolute value by 1. It follows that

lim
x→0

f(x) = 0 = f(0),

thus showing that f is also continuous at x = 0.

(b) (4 pts) Show that the restriction of f to the interval [−1, 1] is uniformly contin-
uous.

Solution: Since f is continuous on the closed interval [−1, 1], it is uniformly
continuous on that interval.

(c) (4 pts) Show that f is not differentiable at x = 0.

Solution: The limit of the Newton quotient,

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0
sin

( 1

2πx

)
does not exist. Thus, the function f is not differentiable at x = 0.
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2. Consider the function f : [0, 1] → R given by

f(x) =


1, if x = 1/3,

2, if x = 2/3,

0, otherwise.

(a) (6 pts) Compute the lower and upper integrals, L(f) =

∫ 1

0

f(x)dx and U(f) =∫ 1

0

f(x)dx.

Solution: For each n > 2, consider the partition of [0, 1] given by

Pn =

{
0 <

1

3
− 1

3n
<

1

3
+

1

3n
<

2

3
− 1

3n
<

2

3
+

1

3n
< 1

}
.

Then L(f, Pn) = 0 and

U(f, Pn) =
2

3n
· 1 + 2

3n
· 2 =

2

3n
· 3 =

2

n
.

Therefore, limn→∞ L(f, Pn) = limn→∞ U(f, Pn) = 0.

In general, for any sequence of partitions Pn, we have

L(f, Pn) ≤ L(f) ≤ U(f) ≤ U(f, Pn).

For f and Pn in this problem, it follows from the Squeeze Lemma that

L(f) = U(f) = 0.

(b) (2 pts) Show that f is integrable, and compute

∫ 1

0

f(x)dx.

Solution: Since L(f) = U(f) = 0, the function f is integrable on the interval

[0, 1] and

∫ 1

0

f(x)dx = 0.
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3. Consider the function f : [1,∞) → R given by

f(x) =

∫ √
x

1

et
2

dt.

(a) (2 pts) What is f(1)?

Solution: f(1) =
∫ 1

1
et

2
dt = 0, since the interval of integration has width 0.

(b) (5 pts) Show that f is differentiable. What is its derivative?

Solution: The function t 7→ et
2
is continuous; thus, by the Fundamental Theo-

rem of Calculus, the function f(x) =
∫ √

x

1
et

2
dt is differentiable, with derivative

f ′(x) = e(
√
x)2 · (

√
x)′ =

ex

2
√
x
.

(c) (3 pts) What is f ′(4)?

Solution: f ′(4) =
e4

2
√
4
=

e4

4
.
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4. This problem concerns the integral
∫ 1

0
x dx.

(a) (5 pts) For a fixed n, let Pn be the partition {0 = x0 < · · · < xn = 1} of [0, 1] into
n equal intervals, so that xi =

i
n
. Compute the upper and lower sums U(x, Pn)

and L(x, Pn). (You may use the formula 1 + 2 + · · ·+ k = k(k + 1)/2.)

Solution: f(x) = x is a increasing function so on any interval the maximum
value is taken on at the right hand endpoint and the minimum value is taken on
at the left hand endpoint. This gives

U(x, Pn) =
n∑

i=1

f((i)/n)(1/n) =
n∑

i=1

(i) · (1/n2)

= (1 + 2 + 3 + · · ·+ n) · (1/n2) =
n(n+ 1)

2
· 1

n2

=
n2 + n

2n2
=

1 + 1/n

2

and

L(x, Pn) =
n∑

i=1

f((i− 1)/n)(1/n) =
n∑

i=1

(i− 1) · (1/n2)

= (0 + 1 + 2 + 3 + · · ·+ (n− 1)) · (1/n2) =
(n− 1)(n)

2
· 1

n2

=
n2 − n

2n2
=

1− 1/n

2

(b) (4 pts) Show that limn→∞ U(x, Pn) = limn→∞ L(x, Pn) =
1
2
.

Solution: From part (a) we have

limU(f, Pn) = lim
1 + 1/n

2
=

1

2
and limL(f, Pn) = lim

1− 1/n

2
=

1

2

(c) (3 pts) Using the results of parts (a) and (b), deduce that f(x) = x is integrable

on [0, 1] and
∫ 1

0
x dx = 1

2
.

Solution: In general, for any sequence of partitions Pn, we have

L(f, Pn) ≤ L(f) ≤ U(f) ≤ U(f, Pn)

For f and Pn in this problem, it follows from the result in part (b) and the
Squeeze Lemma that L(f) = U(f) = 1/2. Hence f(x) = x is integrable and∫ 1

0
x dx = 1

2
.
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5. (a) (5 pts) Fix a > 0 and consider the power series fa(x) =
∑

n≥1
1
n
(ax)n. Determine

its radius of convergence R.

Solution: For the power series fa(x) =
∑∞

n=1
an

n
xn we have (by the Root Test)

β = lim sup

∣∣∣∣ann
∣∣∣∣1/n = a lim

n→∞
(1/n)1/n = a lim

x→0
xx.

Now note that xx = ex lnx = e
ln x
1/x . By l’Hôpital’s rule,

lim
x→0

lnx

1/x
= lim

x→0

1/x

−1/x2
= lim

x→0
(−x) = 0.

Hence, limx→0 x
x = e0 = 1, and thus β = a. We conclude that

R =
1

β
=

1

a
.

Alternatively, we may use the Ratio Test to compute the radius of convergence:

β = lim
n→∞

∣∣∣∣∣∣∣∣
an+1

n+ 1
an

n

∣∣∣∣∣∣∣∣ = a lim
n→∞

n

n+ 1
= a,

and so, once again, R = 1/a.

(b) (5 pts) Compute f ′
a(x) on (−R,R), and identify this with a known function

in closed form. Using the fundamental theorem of calculus, find an explicit
expression for fa(x).

Solution: For x ∈ (−1/a, 1/a) we have

f ′
a(x) =

∞∑
n=1

an

n
· nxn−1 =

∞∑
n=1

anxn−1 = a
∞∑
k=0

(ax)k = a
1

1− ax
,

where we used the formula for the sum of a geometric series,
∑∞

k=0 r
k = 1/(1−r),

with ratio |r| = |ax| < 1.

Integrating the resulting function, we obtain

fa(x) = a

∫
1

1− ax
dx = −a ln(1− ax)/a = − ln(1− ax).

(c) (4 pts) Evaluate the series
∑∞

n=1
1

n 2n
.

Solution: This series is of the form fa(x), with a = 1 and x = 1/2. Hence,
∞∑
n=1

1

n 2n
= − ln(1− 1 · 1/2) = − ln(1/2) = ln(2).
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6. Consider the sequence of functions

fn(x) =
x

1 + nx2
for x ∈ R, n ∈ N.

(a) (5 pts) Compute the derivative f ′
n(x). Then find the pointwise limit g(x) of the

sequence of derivatives f ′
n(x) as n → ∞.

Solution: The derivative of fn(x) is given by

f ′
n(x) =

1− nx2

(1 + nx2)2

Divding the numerator and denominator each by n2 gives

f ′
n(x) =

1/n2 − x2/n

(1/n+ x2)2

If x ̸= 0, then limn→∞ f ′
n(x) = 0/x4 = 0.

Since f ′
n(0) = 1, we have limn→∞ f ′

n(0) = 1.

(b) (5 pts) Does the sequence of derivatives f ′
n(x) converge uniformly? Why, or why

not?

Solution: From part (a) we have

lim
n→∞

f ′
n(x) =

{
0 if x ̸= 0

1 if x = 0

If the sequence of derivatives f ′
n(x) converged uniformly, then the function limn→∞ f ′

n(x)
would be continuous. Since limn→∞ f ′

n(x) is not continuous at x = 0, it follows
that the sequence of derivatives f ′

n(x) does not converge uniformly.
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7. Let g(x) = f(x) + 2x, where f : [0, 1] → R is a differentiable function which satisfies
f(0) = f(1).

(a) (4 pts) Show that there exists a point c ∈ [0, 1] such that g′(c) = 2.

Solution: g′(x) = f ′(x) + 2 so the condition that g′(c) = 2 is equivalent to
the condition that f ′(c) = 0. Since f(0) = f(1), it follows from Rolle’s Theo-
rem that there is point c ∈ (0, 1) with f ′(c) = 0, and it then follows that g′(c) = 2.

(b) (4 pts) Find explicitly such a point c ∈ [0, 1] for f(x) = x(x− 1).

Solution: g(x) = x(x− 1) + 2x = x2 − x+ 2x = x2 + x, so g′(x) = 2x+ 1, and
we have g′(c) = 2 for c = 1/2.
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8. For the series
∞∑
n=1

(−1)n
x3 + n

n3

(a) (5 pts) Show that the series converges uniformly on any bounded interval [0,M ]
for M > 0. (Hint: Use the M-Test.)

Solution: Fix M > 0. For x ∈ [0,M ], we have:∣∣∣∣(−1)n
x3 + n

n3

∣∣∣∣ = x3 + n

n3
≤ M3 + n

n3
.

Moreover,
∞∑
n=1

M3 + n

n3
= M3

∞∑
n=1

1

n3
+

∞∑
n=1

1

n2
< ∞,

since the latter series are p-series, with p = 3 and p = 2, respectively, and thus
both are convergent (since in both cases p > 1).

Therefore, by the Weierstrass M-test, the given series converges uniformly on
[0,M ].

(b) (5 pts) Show that the series does not converge uniformly on [0,+∞). (Hint: Use
Cauchy’s criterion.)

Solution: Let sn(x) =
∑n

k=1(−1)k x3+k
k3

be the partial sums of the given series.
By the Cauchy criterion for uniform convergence (with ε = 1), it is enough to
show: For every N ∈ N, there exists an x ∈ R and integers n ≥ m > N such
that |sn(x)− sm(x)| ≥ 1.

Let us take m = N + 1 and n = N + 2; then

|sn(x)− sn−1(x)| =
x3 + n

n3
≥ (x/n)3 = (x/(N + 2))3.

Thus, if we let x be a real number such that x > N + 2 (which we can do, by
the Archimedean principle), we have that

|sn(x)− sn−1(x)| ≥ (x/(N + 2))3 > ((N + 2)/(N + 2))3 = 1,

and we are done.
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9. Let f : [2, 3] → R be a function, continuous on [2, 3], and differentiable on (2, 3).
Suppose that f(2) = 6 and f(3) = 9.

(a) (5 pts) Show that, for some point x0 ∈ (2, 3), the tangent line to the graph of f
at x0 passes through the origin.

Solution: The slope of the line through the origin and the point (x, f(x)) on
the graph of f is f(x)/x. Thus, the condition that the tangent line at the point
(x0, f(x0)) passes though the orgin is

slope of tangent = slope of line through (0, 0) and the point on the graph

f ′(x0) =
f(x0)

x0

(1)

Set q(x) = f(x)
x

for x ∈ [2, 3]. Then

q′(x) =
1

x

(
f ′(x)− f(x)

x

)

Since q(2) = q(3) = 3, it follows from Rolle’s Theorem that there is a point x0

between 2 and 3 with q′(x0) = 0. From the formula above for the derivative of q
it then follows that equation (1) holds at x0, and hence, the argument is complete.

(b) (5 pts) Illustrate your result in part (a) with a sketch.

Solution:

y = 3x

y = f(x)

tangent line that goes through the origin



MATH 3150 Final Exam Fall 2022

10. (6 pts) Suppose the function f : R → R satisfies∣∣f(x)− f(y)
∣∣ ≤ C|x− y|2 for all x, y ∈ R,

for some C > 0. Show that f must be constant. (Hint: First show that f is
differentiable.)

Solution: Suppose ϵ > 0, and 0 < δ < C/ϵ. Then

(2)

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ < C|x− y| < ϵ for |x− y| < δ

From the inequality (2), it follows that f is differentiable and f ′(x) = 0 for all x.
From the Mean Value Theorem it then follows that for x ̸= y there is a point c

between x and y with
f(x)− f(y) = f ′(c)(x− y)

Since f ′(c) = 0 we have that f(x) = f(y) and the argument is complete.


