Math 3150 Fall 2015 HW5 Solutions

Problem 1. For each of the following series, find the radius of convergence and the exact interval of convergence.
(a) $\sum \sqrt{n} x^{n}$
(b) $\sum n^{-\sqrt{n}} x^{n}$
(c) $\sum x^{n!}$
(d) $\sum \frac{3^{n}}{\sqrt{n}} x^{2 n+1}$

Solution.

(a) Here $a_{n}=\sqrt{n}$ and we may apply the ratio test: $\left|\frac{a_{n+1}}{a_{n}}\right|=\sqrt{\frac{n+1}{n}} \rightarrow 1$, which implies that $\lim \left|a_{n}\right|^{1 / n} \rightarrow 1$ also. Hence the radius of convergence is 1 . The series $\sum \sqrt{n}$ and $\sum \sqrt{n}(-1)^{n}$ both diverge (the associated sequences don't have limit 0), so the power series converges on $(-1,1)$.
(b) We apply the root test directly: $a_{n}^{1 / n}=1 /\left(n^{1 / \sqrt{n}}\right)$, and an argument similar to the proof of Theorem 9.7.(c) shows that $n^{1 / \sqrt{n}} \rightarrow 1$, so $\lim a_{n}^{1 / n}=1$ and the radius of convergence is also 1. At $x=-1$, the series $\sum n^{-\sqrt{n}}(-1)^{n}$ converges by the alternating series test, since $n^{-\sqrt{n}} \rightarrow 0$. At $x=+1$, the series $\sum n^{-\sqrt{n}}$ converges by comparison to $\sum \frac{1}{n^{2}}$, since $n^{\sqrt{n}}>n^{2}$ for sufficiently large n. The power series converges on $[-1,1]$.
(c) We may view $\sum x^{n!}$ as the power series $\sum a_{k} x^{k}$, where $a_{k}=0$ unless $k=n$!, in which case $a_{k}=1$. Then limsup $\left|a_{k}\right|^{1 / k}=1$, so the radius of convergence is 1 . If $|x|=1$, then $|x|^{n!} \nrightarrow 0$, and the series diverges. Thus the interval of convergence is $(-1,1)$.
(d) Relabeling the series as $\sum_{k} a_{k} x^{k}$, where

$$
a_{k}=\left\{\begin{array}{ll}
\frac{3^{(k-1) / 2}}{\sqrt{\frac{k-1}{2}}} & k \text { odd } \\
0 & k \text { even }
\end{array},\right.
$$

we can use the root test to compute

$$
\begin{aligned}
\lim \sup \left|a_{k}\right|^{1 / k} & =\lim \left|a_{2 n+1}\right|^{1 /(2 n+1)} \\
& =\lim \left(\frac{3^{n}}{\sqrt{n}}\right)^{1 /(2 n+1)} \\
& =\lim \frac{3^{n /(2 n+1)}}{n^{1 /(4 n+2)}} \\
& =\lim 3^{1 / 2}(3 n)^{-1 /(4 n+2)}=3^{1 / 2}
\end{aligned}
$$

where we use a similar proof to that of Theorem 9.7.(c) to show $(3 n)^{1 /(4 n+2)} \rightarrow 1$. Thus the radius of convergence is $R=1 / \sqrt{3}$.

At $x=R$, the series

$$
\sum_{n} \frac{3^{n}}{\sqrt{n}}\left(\frac{1}{\sqrt{3}}\right)^{2 n+1}=\sum_{n} \frac{1}{\sqrt{3 n}}
$$

diverges since it is (up to a constant) of the form $\sum n^{-p}$ for $p \geq 1$. Likewise, at $x=-R$, the series

$$
\sum_{n} \frac{3^{n}}{\sqrt{n}}\left(\frac{-1}{\sqrt{3}}\right)^{2 n+1}=\sum_{n} \frac{-11}{\sqrt{3 n}}
$$

also diverges. Thus the series converges on $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

Problem 2.

(a) Suppose $\sum a_{n} x^{n}$ has finite radius of convergence R and $a_{n} \geq 0$ for all n. Show that if the series converges at R, then it also converges at $-R$.
(b) Give an example of a power series whose interval of convergence is exactly $(-1,1]$.

Solution.

(a) By assumption $\sum a_{n} R^{n}$ converges, which means in particular that the sequence $s_{n}=a_{n} R^{n}$ converges to 0 . Then by the alternating series test, $\sum a_{n}(-R)^{n}=\sum s_{n}(-1)^{n}$ converges.
(b) The power series $\sum a_{n} x^{n}$ where $a_{n}=\frac{(-1)^{n}}{n}$ is an example.

Problem 3. For $x \in[0, \infty)$ let $f_{n}(x)=x / n$.
(a) Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Determine whether $f_{n} \rightarrow f$ uniformly on $[0,1]$.
(c) Determine whether $f_{n} \rightarrow f$ uniformly on $[0, \infty)$.

Solution.

(a) Fixing $x \in[0, \infty)$, we have $x / n \rightarrow 0$, so $f(x)=0$ for all x, as the pointwise limit of $\left(f_{n}\right)$.
(b) The convergence is uniform on $[0,1]$. Indeed, given $\varepsilon>0$, we can choose $N \in \mathbb{N}$ such that $N>1 / \varepsilon$. If $n \geq N$, then

$$
\left|\frac{x}{n}-0\right|=\frac{x}{n} \leq \frac{1}{N}<\varepsilon .
$$

(c) The convergence is not uniform on $[0, \infty)$. To see this, recall that uniform convergence is equivalent to the statement that the sequence $b_{n} \rightarrow 0$, where

$$
b_{n}=\sup \left\{\left|f_{n}(x)-f(x)\right|: x \in[0, \infty)\right\} .
$$

But clearly for each $n, b_{n}=+\infty$, so this is not possible.

Problem 4. Let $f_{n}(x)=\left(x-\frac{1}{n}\right)^{2}$ for $x \in[0,1]$.
(a) Does $\left(f_{n}\right)$ converge pointwise on $[0,1]$? If so, find the limit function $f(x)$.
(b) Does $\left(f_{n}\right)$ converge uniformly on $[0,1]$? Prove your assertion.

Solution.

(a) The sequence does converge uniformly: fixing $x \in[0,1]$, the sequence $\left(x+\frac{1}{n}\right)^{2}$ converges to x^{2}, so $f(x)=x^{2}$ on $[0,1]$.
(b) The convergence is also uniform: indeed,

$$
\left|\left(x-\frac{1}{n}\right)^{2}-x^{2}\right|=\left|\frac{1}{n^{2}}-\frac{2 x}{n}\right| \leq\left|\frac{1}{n^{2}}-\frac{2}{n}\right|
$$

for all $x \in[0,1]$, and the latter sequence (which is independent of x), converges to 0 .

Problem 5.

(a) Show that if $\sum\left|a_{k}\right|<\infty$, then $\sum a_{k} x^{k}$ converges uniformly on $[-1,1]$ to a continuous function.
(b) Does $\sum \frac{1}{n^{2}} x^{n}$ represent a continuous function on $[-1,1]$?

Solution.

(a) Consider the series $\sum g_{k}(x)$, where $g_{k}(x)=a_{k} x^{k}$. The Weierstrass M-test says that if we can find a sequence M_{k} such that $\sup _{x}\left|g_{k}(x)\right| \leq M_{k}$ and $\sum M_{k}$ converges, then $\sum g_{k}(x)$ converges uniformly. In this case we may take $M_{k}=\left|a_{k}\right|$, which converges by hypotheses. The partial sums $\sum_{k=1}^{n} a_{k} x^{k}$ are polynomials and therefore continuous on $[-1,1]$, and since the convergence is uniform the limit $\sum a_{k} x^{k}$ is continuous on $[-1,1]$ as well.
(b) Yes, by the above, $\sum\left|\frac{1}{n^{2}}\right|=\sum \frac{1}{n^{2}}$ converges, so $\sum \frac{1}{n^{2}} x^{n}$ is a continuous function on $[-1,1]$.

