
Math 3150 Fall 2015 HW5 Solutions

Problem 1. For each of the following series, find the radius of convergence and the exact interval of
convergence.

(a)
∑√

nxn

(b)
∑

n−
√
nxn

(c)
∑

xn!

(d)
∑ 3n√

n
x2n+1

Solution.

(a) Here an =
√
n and we may apply the ratio test:

∣∣∣an+1

an

∣∣∣ =
√

n+1
n → 1, which implies that

lim |an|1/n → 1 also. Hence the radius of convergence is 1. The series
∑√

n and
∑√

n(−1)n

both diverge (the associated sequences don’t have limit 0), so the power series converges on (−1, 1).

(b) We apply the root test directly: a
1/n
n = 1/(n1/

√
n), and an argument similar to the proof of Theorem

9.7.(c) shows that n1/
√
n → 1, so lim a

1/n
n = 1 and the radius of convergence is also 1. At x = −1,

the series
∑

n−
√
n(−1)n converges by the alternating series test, since n−

√
n → 0. At x = +1, the

series
∑

n−
√
n converges by comparison to

∑ 1
n2 , since n

√
n > n2 for sufficiently large n. The power

series converges on [−1, 1].

(c) We may view
∑

xn! as the power series
∑

akx
k, where ak = 0 unless k = n!, in which case ak = 1.

Then lim sup |ak|1/k = 1, so the radius of convergence is 1. If |x| = 1, then |x|n! 6→ 0, and the series
diverges. Thus the interval of convergence is (−1, 1).

(d) Relabeling the series as
∑

k akx
k, where

ak =


3(k−1)/2√

k−1
2

k odd

0 k even

,

we can use the root test to compute

lim sup |ak|1/k = lim |a2n+1|1/(2n+1)

= lim
( 3n√

n

)1/(2n+1)

= lim
3n/(2n+1)

n1/(4n+2)

= lim 31/2(3n)−1/(4n+2) = 31/2,

where we use a similar proof to that of Theorem 9.7.(c) to show (3n)1/(4n+2) → 1. Thus the radius
of convergence is R = 1/

√
3.
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At x = R, the series ∑
n

3n√
n

( 1√
3

)2n+1
=
∑
n

1√
3n

diverges since it is (up to a constant) of the form
∑

n−p for p ≥ 1. Likewise, at x = −R, the series∑
n

3n√
n

(−1√
3

)2n+1
=
∑
n

−11√
3n

also diverges. Thus the series converges on (− 1√
3
, 1√

3
).

Problem 2.

(a) Suppose
∑

anx
n has finite radius of convergence R and an ≥ 0 for all n. Show that if the series

converges at R, then it also converges at −R.

(b) Give an example of a power series whose interval of convergence is exactly (−1, 1].

Solution.

(a) By assumption
∑

anR
n converges, which means in particular that the sequence sn = anR

n converges
to 0. Then by the alternating series test,

∑
an(−R)n =

∑
sn(−1)n converges.

(b) The power series
∑

anx
n where an = (−1)n

n is an example.

Problem 3. For x ∈ [0,∞) let fn(x) = x/n.

(a) Find f(x) = limn→∞ fn(x).

(b) Determine whether fn → f uniformly on [0, 1].

(c) Determine whether fn → f uniformly on [0,∞).

Solution.

(a) Fixing x ∈ [0,∞), we have x/n→ 0, so f(x) = 0 for all x, as the pointwise limit of (fn).

(b) The convergence is uniform on [0, 1]. Indeed, given ε > 0, we can choose N ∈ N such that N > 1/ε.
If n ≥ N , then ∣∣x

n − 0
∣∣ = x

n ≤
1
N < ε.

(c) The convergence is not uniform on [0,∞). To see this, recall that uniform convergence is equivalent
to the statement that the sequence bn → 0, where

bn = sup {|fn(x)− f(x)| : x ∈ [0,∞)} .

But clearly for each n, bn = +∞, so this is not possible.
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Problem 4. Let fn(x) = (x− 1
n)2 for x ∈ [0, 1].

(a) Does (fn) converge pointwise on [0, 1]? If so, find the limit function f(x).

(b) Does (fn) converge uniformly on [0, 1]? Prove your assertion.

Solution.

(a) The sequence does converge uniformly: fixing x ∈ [0, 1], the sequence (x + 1
n)2 converges to x2, so

f(x) = x2 on [0, 1].

(b) The convergence is also uniform: indeed,∣∣∣∣(x− 1

n

)2
− x2

∣∣∣∣ =

∣∣∣∣ 1

n2
− 2x

n

∣∣∣∣ ≤ ∣∣∣∣ 1

n2
− 2

n

∣∣∣∣
for all x ∈ [0, 1], and the latter sequence (which is independent of x), converges to 0.

Problem 5.

(a) Show that if
∑
|ak| <∞, then

∑
akx

k converges uniformly on [−1, 1] to a continuous function.

(b) Does
∑ 1

n2x
n represent a continuous function on [−1, 1]?

Solution.

(a) Consider the series
∑

gk(x), where gk(x) = akx
k. The Weierstrass M-test says that if we can find a

sequence Mk such that supx |gk(x)| ≤Mk and
∑

Mk converges, then
∑

gk(x) converges uniformly.
In this case we may take Mk = |ak|, which converges by hypotheses. The partial sums

∑n
k=1 akx

k

are polynomials and therefore continuous on [−1, 1], and since the convergence is uniform the limit∑
akx

k is continuous on [−1, 1] as well.

(b) Yes, by the above,
∑∣∣ 1

n2

∣∣ =
∑ 1

n2 converges, so
∑ 1

n2x
n is a continuous function on [−1, 1].
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