Math 3150 Fall 2015 HW4 Solutions

Problem 1. Prove each of the following is continuous at x_{0} by the $\varepsilon-\delta$ property.
(a) $f(x)=x^{2}, x_{0}=2$.
(b) $f(x)=\sqrt{x}, x_{0}=0$.
(c) $f(x)=x \sin \frac{1}{x}$ for $x \neq 0$ and $f(0)=0, x_{0}=0$.
(d) $g(x)=x^{3}, x_{0}$ arbitrary.

Solution.

(a) Given $\varepsilon>0$, set $\delta=\min (1, \varepsilon / 5)$. Then for all x such that $|x-2| \leq \delta$, we have

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|x^{2}-4\right|=|x+2||x-2|<5|x-2|<5 \frac{\varepsilon}{5}=\varepsilon .
$$

(b) Note that the domain of f is $[0, \infty)$. Given $\varepsilon>0$, set $\delta=\varepsilon^{2}$. Then for all $x \in[0, \infty)$ such that $|x-0|=|x|<\delta$,

$$
|\sqrt{x}-0|=\sqrt{x}<\sqrt{\delta}=\varepsilon
$$

(c) Given $\varepsilon>0$ let $\delta=\varepsilon$. Then $|x-0|<\delta$ implies

$$
|f(x)-0|=\left|x \sin \frac{1}{x}\right| \leq|x|<\delta=\varepsilon .
$$

(d) Given $\varepsilon>0$, let $\delta=\min \left(1, \varepsilon /\left(3\left|x_{0}\right|^{2}+3\left|x_{0}\right|+1\right)\right)$. Then $\left|x-x_{0}\right| \leq \delta$ implies

$$
\begin{aligned}
\left|x^{3}-x_{0}^{3}\right| & =\left|x-x_{0}\right|\left|x^{2}+x x_{0}+x_{0}^{2}\right| \\
& \leq\left|x-x_{0}\right|\left(|x|^{2}+|x|\left|x_{0}\right|+\left|x_{0}\right|^{2}\right) \\
& <\left|x-x_{0}\right|\left(\left(\left|x_{0}\right|+1\right)^{2}+\left(\left|x_{0}\right|+1\right)\left|x_{0}\right|+\left|x_{0}\right|^{2}\right) \\
& =\left|x-x_{0}\right|\left(3\left|x_{0}\right|^{2}+3\left|x_{0}\right|+1\right) \\
& <\delta\left(3\left|x_{0}\right|^{2}+3\left|x_{0}\right|+1\right) \leq \varepsilon .
\end{aligned}
$$

Problem 2. For each nonzero rational number x, write x as $\frac{p}{q}$ where $p, q \in \mathbb{Z}$ with no common factors and $q>0$, and then define $f(x)=\frac{1}{q}$. Also define $f(0)=1$ and $f(x)=0$ for all $x \in \mathbb{R} \backslash \mathbb{Q}$. Show that f is continuous at each point of $\mathbb{R} \backslash \mathbb{Q}$ and discontinuous at each point of \mathbb{Q}.

Solution. First let x_{0} be irrational; we show f is continuous at x_{0}. For each $q \in \mathbb{N}$, since x is not in the set $\left\{\frac{p}{q}: p \in \mathbb{Z}\right\}$, there exists a $\delta_{q}>0$ such that $\left|x_{0}-y\right| \geq \delta_{q}$ for all $y \in\left\{\frac{p}{q}: p \in \mathbb{Z}\right\}$. Given $\varepsilon>0$, choose $N \in \mathbb{N}$ such that $\frac{1}{N}<\varepsilon$, and let $\delta=\min \left(\delta_{1}, \ldots, \delta_{N}\right)$. Then if $\left|x-x_{0}\right|<\delta$, it necessarily follows that x is either irrational or of the rational form $\frac{p}{q}$ for some $q>N$. Thus if $\left|x-x_{0}\right|<\delta$, we have

$$
\left|f(x)-f\left(x_{0}\right)\right|=|f(x)|<\frac{1}{N}<\varepsilon
$$

Now let x_{0} be rational. To show f is discontinuous at x_{0}, it suffices to produce a sequence x_{n} such that $x_{n} \rightarrow x_{0}$ but $f\left(x_{n}\right) \nrightarrow f\left(x_{0}\right)$. Write $x_{0}=\frac{p}{q}$ in reduced form. One way to do this is to let $x_{n}=\frac{n p+1}{n q}$. Then $f\left(x_{n}\right)=\frac{1}{n q} \rightarrow 0$, while $f\left(x_{0}\right)=\frac{1}{q} \neq 0$.
Problem 3. Suppose f is continuous on $[0,2]$ and $f(0)=f(2)$. Prove that there exist x, y in $[0,2]$ such that $|y-x|=1$ and $f(x)=f(y)$.
Solution. Define the continuous function $g(x)=f(x+1)-f(x)$ on $[0,1]$. Then a pair x, y such that $|y-x|=1$ and $f(x)=f(y)$ is equivalent to a number x such that $g(x)=0$.

We examine several cases. First, if $g(0)=0$ or $g(1)=0$, then we already have a solution, so we can suppose without loss of generality that $g(0) \neq 0$ and $g(1) \neq 0$.

Note that $g(0)<0$ implies $f(1)<f(0)$, and then since $f(2)=f(0)$, it follows that $f(2)>f(1)$ which is equivalent to $g(1)>0$. Similarly, $g(0)>0$ implies $g(1)<0$. In either case, the interval $[g(0), g(1)]$ or $[g(1), g(0)]$ contains 0 , so by the intermediate value theorem there exists $x \in(0,1)$ such that $g(x)=0$.

Problem 4.

(a) Let $F(x)=\sqrt{x}$ for $x \geq 0$. Show f^{\prime} is unbounded on $(0,1]$ but f is nevertheless uniformly continuous on $(0,1]$.
(b) Show f is uniformly continuous on $[1, \infty)$.

Solution.

(a) The derivative is $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$, which tends to $+\infty$ as $x \rightarrow 0$, so f^{\prime} is unbounded on $(0,1]$.

On the other hand, f is defined on the compact interval $[0,1]$, so if f is just continuous (in the ordinary sense) on $[0,1]$, then it is automatically uniformly continuous there. It suffices, therefore, to show that $f:[0,1] \longrightarrow \mathbb{R}$ is continuous.
First, suppose $x_{0}>0$ and $\varepsilon>0$ are given. Let $\delta=\min \left\{\frac{3 x_{0}}{4}, \frac{3 \sqrt{x_{0}} \varepsilon}{2}\right\}$. Then if $\left|x-x_{0}\right|<\delta$, it follows that $x>\frac{x_{0}}{4}$ and thus $\sqrt{x}>\frac{\sqrt{x_{0}}}{2}$. Then

$$
\left|\sqrt{x}-\sqrt{x_{0}}\right|=\frac{\left|x-x_{0}\right|}{\sqrt{x}+\sqrt{x_{0}}}<\frac{\left|x-x_{0}\right|}{\frac{3}{2} \sqrt{x_{0}}}<\frac{\delta}{\frac{3}{2} \sqrt{x_{0}}} \leq \varepsilon .
$$

For $x_{0}=0$, given $\varepsilon>0$, we let $\delta=\varepsilon^{2}$. Then if $|x-0|=x<\delta$, we have

$$
|\sqrt{x}-0|=\sqrt{x}<\varepsilon
$$

Thus f is continuous on $[0,1]$, and hence uniformly continuous since $[0,1]$ is compact. The restriction to any smaller subinterval, such as $(0,1]$ is also uniformly continuous.
Note that this does not contradict the result that f^{\prime} bounded implies f uniformly continuous, since this result is not an if and only if statement.
(b) On the interval $[1, \infty), f$ is again differentiable with $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. However on this interval, $\left|f^{\prime}(x)\right| \leq$ $\frac{1}{2 \sqrt{1}}=\frac{1}{2}$, so f^{\prime} is bounded. We conclude that f is uniformly continuous on $[1, \infty)$.
Alternatively, it is possible to prove directly that f is uniformly continuous on $[0, \infty)$, as several of you did. Here is a nice proof: Given $\varepsilon>0$ let $\delta=\varepsilon^{2}$. Then for any $x, y \in[0, \infty)$ such that $|x-y| \leq \delta$, either

1) $|\sqrt{x}+\sqrt{y}|=\sqrt{x}+\sqrt{y}<\varepsilon$, in which case

$$
|\sqrt{x}-\sqrt{y}| \leq \sqrt{x}+\sqrt{y}<\varepsilon
$$

by the triangle inequality, or
2) $|\sqrt{x}+\sqrt{y}| \geq \varepsilon$, in which case

$$
|\sqrt{x}-\sqrt{y}|=\frac{|x-y|}{|\sqrt{x}+\sqrt{y}|}<\frac{\delta}{\varepsilon}=\varepsilon
$$

where we multiply and divide by $(\sqrt{x}+\sqrt{y}) /(\sqrt{x}+\sqrt{y})$ inside the absolute value in the first step.
Problem 5. Let $f(x)=x \sin \left(\frac{1}{x}\right)$ for $x \neq 0$ and $f(0)=0$.
(a) Observe that f is continuous on \mathbb{R}.
(b) Why is f uniformly continuous on any bounded subset of \mathbb{R} ?
(c) Is f uniformly continuous on \mathbb{R} ?

Solution.

(a) For $x \neq 0, f(x)$ is the multiplication and composition of continuous functions $x \longmapsto x, x \longmapsto \sin x$ and $x \longmapsto \frac{1}{x}$, so is continuous. At $x=0$ we proved continuity directly in class: given $\varepsilon>0$ let $\delta=\varepsilon$. Then for $|x| \leq \delta$,

$$
|f(x)-f(0)|=\left|x \sin \frac{1}{x}\right| \leq|x|<\varepsilon .
$$

(b) Let $A \subset \mathbb{R}$ be a bounded subset, meaning $A \subset[-R, R]$ for some $R>0$. Since $[-R, R]$ is compact, f is uniformly continuous on $[-R, R]$, and therefore on any subset thereof.
(c) In fact, f is uniformly continuous on all of \mathbb{R}. Note that f is differentiable on the intervals $(-\infty,-1]$ and $[1, \infty)$, with derivative $f^{\prime}(x)=\sin \left(\frac{1}{x}\right)-\frac{1}{x} \cos \left(\frac{1}{x}\right)$. For x in either of these intervals, we have

$$
\left|f^{\prime}(x)\right| \leq\left|\sin \left(\frac{1}{x}\right)\right|+\left|\frac{1}{x} \cos \left(\frac{1}{x}\right)\right| \leq 2
$$

It follows that f is uniformly continuous on $(-\infty,-1]$ and $[1, \infty)$. We noted above that f is uniformly continuous on $[-1,1]$. It is then a general fact that if a function f is separately uniformly continuous on a pair of intervals A and B meeting at a single point $A \cap B=\{p\}$, then it is uniformly continuous on $A \cup B$.
To prove this claim, let $\varepsilon>0$ be given. There exist $\delta_{A}, \delta_{B}>0$ such that if $x, x^{\prime} \in A$ with $\left|x-x^{\prime}\right|<$ δ_{A}, or if $x, x^{\prime} \in B$ with $\left|x-x^{\prime}\right|<\delta_{B}$, then $\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon / 2$. Then set $\delta=\min \left(\delta_{A}, \delta_{B}\right)$. If $x, x^{\prime} \in A \cup B$ with $\left|x-x^{\prime}\right|<\delta$, then

$$
\begin{equation*}
\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon \tag{1}
\end{equation*}
$$

Indeed, if $x, x^{\prime} \in A$ or $x, x^{\prime} \in B$, then (1) follows from the above. In the case that $x \in A$ and $x^{\prime} \in B$, say, it follows that $|x-p|<\delta_{A}$ and $\left|x^{\prime}-p\right|<\delta_{B}$, where $p=A \cap B$ is the common endpoint. Then (1) follows from

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq|f(x)-f(p)|+\left|f(p)-f\left(x^{\prime}\right)\right|<\varepsilon / 2+\varepsilon / 2 .
$$

Problem 6. For metric spaces $\left(S_{1}, d_{1}\right),\left(S_{2}, d_{2}\right)$ and $\left(S_{3}, d_{3}\right)$, prove that if $f: S_{1} \longrightarrow S_{2}$ and $g: S_{2} \longrightarrow$ S_{3} are continuous, then $g \circ f: S_{1} \longrightarrow S_{3}$ is continuous.

Solution. Let $U \subset S_{3}$ be an arbitrary open set. Then $g^{-1}(U) \subset S_{2}$ is open since g is continuous, and $f^{-1}\left(g^{-1}(U)\right)=(g \circ f)^{-1}(U) \subset S_{1}$ is open by continuity of f. Thus the inverse image of any open set in S_{3} with respect to $g \circ f$ is open, and it follows that $g \circ f$ is continuous.

Problem 7. Show $C=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}=1\right\}$ is a connected subset of \mathbb{R}^{2}.
Solution. We know that C is equivalent to the set of points $(\cos \theta, \sin \theta) \in \mathbb{R}^{2}$ such that $\theta \in[0,2 \pi)$. As several students pointed out, the map $f:[0,2 \pi) \longrightarrow \mathbb{R}^{2}, f(\theta)=(\cos \theta, \sin \theta)$ is continuous, and the domain is connected, hence the image $C=f([0,2 \pi))$ is connected.

Alternatively, we can proceed as follows. We first show that C is path-connected, meaning that for any pair of points $\vec{x}, \vec{y} \in C$, there is a continuous function (i.e., path) $\gamma:[a, b] \subset \mathbb{R} \longrightarrow C$ such that $\gamma(a)=\vec{x}$ and $\gamma(b)=\vec{y}$.

Indeed, $\vec{x}=\left(\cos \theta_{0}, \sin \theta_{0}\right)$ and $\vec{y}=\left(\cos \theta_{1}, \sin \theta_{1}\right)$ for some $\theta_{0}, \theta_{1} \in[0,2 \pi)$, and then

$$
\gamma(t)=\left(\cos \left((1-t) \theta_{0}+t \theta_{1}\right), \sin \left((1-t) \theta_{0}+t \theta_{1}\right)\right), 0 \leq t \leq 1
$$

is a continuous path in C with $\gamma(0)=\vec{x}$ and $\gamma(1)=\vec{y}$.
Now we show that any path connected set is connected. Suppose, by contradiction, that C was disconnected, by open sets $U, V \subset \mathbb{R}^{2}$, say. Let $\vec{x} \in C \cap U$ and $\vec{y} \in C \cap V$ (which exist as these sets are nonemtpy), and let $\gamma:[0,1] \longrightarrow C$ be a continuous path from \vec{x} to \vec{y}. Then $\gamma^{-1}(U)$ and $\gamma^{-1}(V)$ are open sets in \mathbb{R} disconnecting $[0,1]$, which is a contradiction since $[0,1]$ is an interval, and hence is connected.

