
Math 3150 Fall 2015 HW3 Solutions

Problem 1. Show that lim sup(sn + tn) ≤ lim sup sn + lim sup tn for bounded sequences (sn) and (tn).

Solution. Fix n and observe that sk ≤ sup {sk : k ≥ n} and tk ≤ sup {tk : k ≥ n} for all k ≥ n. Thus
sup {sk : k ≥ n}+ sup {tk : k ≥ n} is an upper bound for the set {sk + tk : k ≥ n} and must be greater
than or equal to the least upper bound sup {sk + tk : k ≥ n}. In more compact notation, we have

an ≤ bn + cn, where

an = sup {sk + tk : k ≥ n} , bn = sup {sk : k ≥ n} , cn = sup {tk : k ≥ n} .

Since these inequalities hold for all n, it follows that lim an ≤ lim bn + lim cn. (This is the result of a
homework problem we did not do, so it is worth mentioning a proof: to prove an ≤ bn ∀ n =⇒ a :=
lim an ≤ b := lim bn, suppose by contradiction that a > b. Choosing ε > 0 such that a− ε > b+ ε (for
instance ε = a−b/4 will do), it follows that there existN1 andN2 such that an > bn for n ≥ max(N1, N2),
a contradiction.)

The conclusion follows since lim an = lim sup(sn+tn), lim bn = lim sup sn and lim cn = lim sup tn.

Problem 2. Show that lim sup(sn tn) ≤ (lim sup sn)(lim sup tn) for bounded sequences (sn) and (tn) of
nonnegative numbers.

Solution. By assumption 0 ≤ sn and 0 ≤ tn for all n, which implies that 0 ≤ sup {sk : k ≥ n} for all n,
and similarly 0 ≤ sup {tk : k ≥ n}. Fix n ∈ N, and note that, for all k ≥ n,

sk tk ≤ sk sup {tk : k ≥ n} ≤ sup {sk : k ≥ n} sup {tk : k ≥ n} ,

where we have twice used the fact that multiplication by nonnegative numbers preserves order. Thus
the right hand side is an upper bound for the set {sk tk : k ≥ n}, and therefore

sup {sk tk : k ≥ n} ≤ sup {sk : k ≥ n} sup {tk : k ≥ n} ∀ n.

This inequality persists in the limit as n→∞ (as noted in the previous proof), so we conclude that

lim sup(sn tn) = lim
n

sup {sk tk : k ≥ n} ≤ lim
n

sup {sk : k ≥ n} lim
n

sup {tk : k ≥ n} = (lim sup sn)(lim sup tn).

Problem 3. Let B be the set of all bounded sequences x = (x1, x2, . . .) in R.

(a) Define d(x,y) = sup {|xi − yi| : i ∈ N} . Show that d is a metric on B.

(b) Does d∗(x,y) =
∑∞

i=1 |xi − yi| define a metric on B?

Solution.
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(a) The numbers |xi − yi| are all nonnegative, which implies that d(x,y) ≥ 0 for all x,y ∈ B. Further-
more, if d(x,y) = sup {|xi − yi|} = 0 then |xi − yi| = 0 for all i, meaning that xi = yi for all i and
hence x = y. The symmetry condition d(x,y) = d(y,x) follows from |xi − yi| = |yi − xi|. Finally,
for the triangle inequality, suppose x, y and z are bounded sequences. We have

|xi − yi| ≤ |xi − zi|+ |zi − yi|

from the triangle inequality for |·| in R. From this it follows that

sup {|xi − yi|} ≤ sup {|xi − zi|+ |zi − yi|} ≤ sup {|xi − zi|}+ sup {|zi − xi|} , (1)

since |xi − zi|+ |zi − yi| ≤ sup {|xi − zi|}+ sup {|zi − yi|} for all i, The equation (1) is precisely the
triangle inequality d(x,y) ≤ d(x, z) + d(z,y). We conclude that d is a metric on B.

(b) The sequences are only supposed to be bounded, so the series
∑∞

i=1 |xi − yi| need not converge. For
instance if x = (1, 1, 1, . . .) and y = (0, 0, 0, . . .), then d∗(x,y) =

∑∞
i=1 1 does not converge. Thus d∗

is not defined on all pairs, and cannot be a metric. (If we limit ourselves to the set B∗ of sequences
x = (xi) such that

∑∞
i=1 |xi| <∞, then d∗ is a metric on B∗.)

Problem 4. Let E be a subset of a metric space (S, d). Then

(a) E is closed if and only if E = E−.

(b) E is closed if and only if it contains the limit of every convergent sequence of points in E.

(c) An element is in E− if and only if it is the limit of a convergent sequence of points in E.

(d) Denoting the boundary of E by ∂E, we have ∂E = E− ∩ (S \ E)−.

Proof.

(a) Suppose E is closed. Then E is the smallest closed set containing E, so E = E− =
⋂
{C ⊃ E : C closed}.

Conversely, if E = E− then E is a union of closed sets, which is therefore closed.

(c) For this it is convenient to make use of the following Lemma, proved in class:

Lemma. x ∈ E− if and only if for every r > 0 in R, the open ball B(x, r) = {y ∈ S : d(x, y) < r}
contains some point of E.

Suppose first that x ∈ E−. Then for each k ∈ N, we invoke the Lemma with r = 1
k , and obtain

a point xk ∈ E. Together these form a sequence (xk) with the property that d(xk, x) < 1
k , which

implies xk → x.

Conversely, suppose x is the limit of a sequence (xk) of points in E. Then given any r > 0, setting
ε = r in the definition of the limit gives an N ∈ N such that d(xN , x) < ε = r. Since xN is in E,
this satisfies the hypothesis of the Lemma, so we conclude x ∈ E−.

(b) This follows from (a) and (c). In more detail, if E is closed, then E = E− by part (a), and then E
must contain the limit of every convergent sequence of points in E by the characterization of E−

in part (b).

Conversely, suppose E contains the limit of every convergent sequence of points in E. Such limits
are precisely the points x ∈ E−, so this means E− ⊆ E. The inclusion E ⊆ E− always holds, so
E = E− and then E is closed by part (a).
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(b) By definition ∂E = E− \ E◦ = E− ∩ (S \ E◦), so it suffices to show that S \ E◦ = (S \ E)−. One
characterization of the interior is E◦ =

⋃
{O open : O ⊆ E}, so

S \ E◦ = S \
(⋃

{O open : O ⊆ E}
)

=
⋂
{S \O : O open, O ⊆ E}

since the complement of a union is the intersection of the complements. For each O, let C = S \O.
Then C is closed, and O ⊆ E implies C ⊇ (S \E). Conversely, if C is a closed set containing S \E,
then C = S \O, where O is open and contained in E. Thus

S \ E◦ =
⋂
{C : C closed, C ⊇ (S \ E)} = (S \ E)−.

Problem 5. Let (S, d) be any metric space.

(a) Show that a closed subset E of a compact set F is compact.

(b) Show that a finite union of compact sets is compact.

Solution.

(a) There are two natural proofs of this, using the two main characterizations of compact sets in terms
of sequences and open covers, respectively.

Using open covers: Let U = {Uα : α ∈ A} be an arbitrary open cover of E. Then U ∪ {S \ E} is
an open cover of F , since S \ E is an open set, and any point in F is either in E, in which case is
lies in some Uα, or it is in the complement of E, in which case it lies in S \E. The cover has a finite
subcover since F is compact. But since E is contained in F , this finite subcover is also a cover of
E, and throwing out the set S \ E if necessary, we obtain a finite subcover of U which covers E.

Using sequences: Let (sn) be a sequence in E. Since E ⊂ F , (sn) is also a sequence in F . Since F
is compact, there exists a subsequence (snk

) such that snk
→ s ∈ F . Since E is closed, the limit, s,

lies in E. We have produced a subsequence converging to a limit in E, and since (sn) was arbitrary,
we conclude that E is compact.

(b) Again we can give two proofs:

Using open covers: Let U be an open cover of E1 ∪ · · · ∪ EN , where the Ei are compact. In
particular U is an open cover of each Ei, i = 1, . . . , N . Then for each i there is a finite open subcover
cover: Ei ⊂ Uαi,1 ∪ · · · ∪ Uαi,Ki

. Then{
Uαi,n : 1 ≤ i ≤ N, 1 ≤ n ≤ Ki

}
is a finite subcover of U which covers E1 ∪ · · · ∪ EN .

Using sequences: Suppose (sn) is a sequence in E1∪· · ·∪EN . There is some i such that infinitely
many of the sn lie in Ei; these form a subsequence of (sn). Since Ei is compact, this has a further
subsequence which converges in Ei. This subsubsequence is a subsequence of the original sequence
which converges in E1 ∪ · · · ∪ EN , and since (sn) was arbitrary, we conclude that E1 ∪ · · · ∪ EN is
compact.
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