Math 3150 Fall 2015 HW2 Solutions

Problem 1. Let $\left(s_{n}\right)$ be a sequence that converges
(a) Show that if $s_{n} \geq a$ for all but finitely many n, then $\lim s_{n} \geq a$.
(b) Show that if $s_{n} \leq b$ for all but finitely many n, then $\lim s_{n} \leq b$.
(c) Conclude that if all but finitely many s_{n} belong to $[a, b]$, then $\lim s_{n} \in[a, b]$.

Solution.

(a) Let m be the largest integer such that $s_{m}<a$ and let $s=\lim s_{n}$. Proceeding by contradiction, suppose that $s<a$. Choose ε such that $0<\varepsilon<a-s$. Since $s_{n} \rightarrow s$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$
s_{n}<s+\varepsilon<s+a-s=a .
$$

In particular, this holds for $n>\max \{N, m\}$, but then $s_{n}<a$ contradicts maximality of m.
(b) Let m be the smallest integer such that $s_{m}>b$ and let $s=\lim s_{n}$. Proceeding by contradiction, suppose that $s>b$. Choose ε such that $0<\varepsilon<s-b$. Since $s_{n} \rightarrow s$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$
b=s-(s-b)<s-\varepsilon<s_{n} .
$$

In particular, this holds for $n>\max \{N, m\}$, but then $s_{n}>b$ contradicts maximality of m.
(c) By part (a), $s=\lim s_{n} \geq a$ and by part (b) $s \leq b$, so $s \in[a, b]$.

Problem 2. Let $x_{1}=1$ and $x_{n+1}=3 x_{n}^{2}$ for $n \geq 1$.
(a) Show if $a=\lim x_{n}$, then $a=\frac{1}{3}$ or $a=0$.
(b) Does $\lim x_{n}$ exist? Explain.
(c) Discuss the apparent contradiction between parts (a) and (b).

Solution.

(a) Suppose $a=\lim x_{n}$ exists. Then invoking the limit theorem for the identity $x_{n+1}=3 x_{n}^{2}$ gives

$$
\lim _{n \rightarrow \infty} x_{n+1}=3\left(\lim _{n \rightarrow \infty} x_{n}\right)^{2} \Longrightarrow a=3 a^{2}
$$

The only two solutions to this equation are $a=0$ or $a=\frac{1}{3}$.
(b) The limit does not exist. In fact, we can show $x_{n+1} \geq 3^{n}$ for all n (or a lower bound which grows even more quickly if we want). Indeed, $x_{2}=3$, and by induction, $x_{n+1}=3 x_{n}^{2} \geq 3\left(3^{n-1}\right)^{2}=3^{2 n-1} \geq 3^{n}$. Since 3^{n} diverges to infinity, it follows that x_{n} must also.
(c) The application of the limit theorem $\lim \left(x_{n}^{2}\right)=\left(\lim x_{n}\right)^{2}$ in part (a) is only valid in case that $\lim x_{n}$ is a finite real number.
Problem 3. Assume all $s_{n} \neq 0$ and the limit $L=\lim \left|\frac{s_{n+1}}{s_{n}}\right|$ exists.
(a) Show that if $L<1$, then $\lim s_{n}=0$.
(b) Show that if $L>1$, then $\lim \left|s_{n}\right|=+\infty$.

Solution.

(a) Define the sequence $r_{n}=\left|\frac{s_{n+1}}{s_{n}}\right|$ of positive real numbers, and suppose that $\lim r_{n}=L<1$. Choose $a \in \mathbb{R}$ such that $L<a<1$, and let $\varepsilon=a-L$. Since $r_{n} \longrightarrow L$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$
r_{n}<L+\varepsilon=a
$$

This implies $\left|s_{n+1}\right|<a\left|s_{n}\right|$ for all $n \geq N$, and in particular $\left|s_{N+1}\right|<a\left|s_{N}\right|$. This is the base case for an induction, where $\left|s_{N+k}\right|<a^{k}\left|s_{N}\right|$ implies $\left|s_{N+k+1}\right|<a\left|s_{N+k}\right|<a^{k+1}\left|s_{N}\right|$, which may be rewritten as the statement $\left|s_{n}\right|<a^{n-N}\left|s_{N}\right|$ for all $n>N$. We therefore have

$$
0 \leq\left|s_{n}\right| \leq c a^{n} \quad \forall n>N,
$$

where $c=\frac{\left|s_{N}\right|}{a^{N}}$ is a constant. Since $a<1$, the sequence a^{n} converges to 0 , and $c \cdot a^{n} \rightarrow 0$ also. By the squeeze lemma, it follows that $\left|s_{n}\right| \rightarrow 0$ which implies $s_{n} \rightarrow 0$.
(b) Define the sequece $t_{n}=\frac{1}{\left|s_{n}\right|}$. Then supposing that $\lim \left|\frac{s_{n+1}}{s_{n}}\right|=L>1$, it follows that $\lim \left|\frac{t_{n+1}}{t_{n}}\right|=$ $L^{-1}<1$. By part (a), $\lim t_{n}=0$, and by Theorem 9.10, it follows that $\lim \left|s_{n}\right|=+\infty$.

Problem 4.

(a) Let $\left(s_{n}\right)$ be a sequence in \mathbb{R} such that

$$
\left|s_{n+1}-s_{n}\right|<2^{-n} \quad \text { for all } n \in \mathbb{N} .
$$

Prove that $\left(s_{n}\right)$ is a Cauchy sequence and hence a convergent sequence.
(b) Is the result in (a) true if we only assume $\left|s_{n+1}-s_{n}\right|<\frac{1}{n}$ for all $n \in \mathbb{N}$?

Solution.

(a) Let $n, k \in \mathbb{N}$. Consider $\left|s_{n+k}-s_{n}\right|$. Adding and subtracting $s_{n+k-1}, s_{n+k-2}, \ldots, s_{n+1}$ and employing the triangle inequality, we have

$$
\begin{aligned}
\left|s_{n+k}-s_{n}\right| \leq\left|s_{n+k}-s_{n+k-1}\right|+\left|s_{n+k-1}-s_{n+k-2}\right|+\cdots+\mid s_{n+1} & -s_{n} \mid \\
& <2^{-n}+2^{-(n+1)}+\cdots+2^{-(n+k-1)}
\end{aligned}
$$

Using the identity $1+r+\cdots+r^{l}=\frac{1+r^{l+1}}{1-r}$ for $r<1$ in the case $r=\frac{1}{2}, l=k-1$, we have

$$
2^{-n}+\cdots+2^{-(n+k-1)}=2^{-n} \frac{1+2^{-k}}{\frac{1}{2}}<2^{-n} \frac{1}{\frac{1}{2}}=2^{-n+1}
$$

thus

$$
\begin{equation*}
\left|s_{n+k}-s_{n}\right|<2^{-n+1} \tag{1}
\end{equation*}
$$

To prove that s_{n} is Cauchy, given $\varepsilon>0$ choose $N \in \mathbb{N}$ such that $2^{-N+1}<\varepsilon$. (This is possible since $2^{-n+1} \rightarrow 0$ as $n \rightarrow \infty$.) Then for any pair $m, n \geq N$, (without loss of generality, $m \geq n$ so $m=n+k$ for some $k \geq 0$),

$$
\left|s_{m}-s_{n}\right|=\left|s_{n+k}-s_{n}\right|<2^{-n+1} \leq 2^{-N+1}<\varepsilon .
$$

Since $\left(s_{n}\right)$ is Cauchy and \mathbb{R} is complete, we conclude that $\left(s_{n}\right)$ converges.
(b) The result is false if we only assume $\left|s_{n+1}-s_{n}\right|<\frac{1}{n}$. As a counter-example, let $s_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$ (the partial summations of the harmonic series). Then $\left|s_{n+1}-s_{n}\right|=\frac{1}{n+1}<\frac{1}{n}$, but the sequence $\left(s_{n}\right)$ diverges to infinity. (One way to see this is as follows:

$$
\begin{aligned}
s_{2^{k}} & =1+\left(\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{9}+\cdots+\frac{1}{16}\right)+\cdots+\left(\frac{1}{2^{k-1}+1}+\cdots+\frac{1}{2^{k}}\right) \\
& \geq 1+\left(\frac{1}{2}\right)+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{16}+\cdots+\frac{1}{16}\right)+\cdots+\left(\frac{1}{2^{k}}+\cdots+\frac{1}{2^{k}}\right) \\
& =1+\left(\frac{1}{2}\right)+\left(\frac{2}{4}\right)+\left(\frac{4}{8}\right)+\left(\frac{8}{16}\right)+\cdots+\frac{2^{k-1}}{2^{k}}=\frac{k+2}{2} .
\end{aligned}
$$

Given any $M>0$ we can choose a k such that $\frac{k+2}{2}>M$, and so $s_{n}>M$ for $n=2^{k}$; hence $s_{n} \rightarrow+\infty$.)
Problem 5. Let $s_{1}=1$ and $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)$ for $n \geq 1$.
(a) Find s_{2}, s_{3} and s_{4}.
(b) Use induction to show $s_{n}>\frac{1}{2}$ for all n.
(c) Show $\left(s_{n}\right)$ is a decreasing sequence.
(d) Show $\lim s_{n}$ exists and find $\lim s_{n}$.

Solution.
(a) $s_{2}=\frac{2}{3}, s_{3}=\frac{5}{9}, s_{4}=\frac{14}{27}$.
(b) $s_{1}=1>\frac{1}{2}$ holds. By induction, supposing that $s_{n}>\frac{1}{2}$, we have

$$
s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)>\frac{1}{3}\left(\frac{1}{2}+1\right)=\frac{1}{2}
$$

so $s_{n}>\frac{1}{2}$ for all n.
(c) Let $r_{n}=s_{n}-s_{n+1}$. We will show by induction that $r_{n} \geq 0$ for all n. We have $r_{1}=1-\frac{2}{3}=\frac{1}{3}>0$. Assuming $r_{n} \geq 0$,

$$
r_{n+1}=s_{n}-s_{n+1}=\frac{1}{3}\left(\left(s_{n-1}+1\right)-\left(s_{n}+1\right)\right)=\frac{1}{3}\left(s_{n-1}-s_{n}\right)=\frac{1}{3} r_{n} \geq 0
$$

completing the inductive step. Thus $\left(s_{n}\right)$ is decreasing.
Alternatively, (not using induction),

$$
\begin{aligned}
s_{n} & >\frac{1}{2} \\
\Longrightarrow \frac{2}{3} s_{n} & >\frac{1}{3} \\
\Longrightarrow \frac{1}{3}\left(s_{n}+1\right) & <s_{n} \\
\Longrightarrow s_{n+1} & <s_{n}
\end{aligned}
$$

which holds for all n by the previous part.
(d) Since $\left(s_{n}\right)$ is a decreasing sequence which is bounded below, it converges to some $s=\lim s_{n}$. Using the limit theorem,

$$
\begin{aligned}
\lim s_{n+1} & =\frac{1}{3}\left(\lim s_{n}+1\right) \\
\Longrightarrow s & =\frac{1}{3}(s+1) \\
\Longrightarrow s & =\frac{1}{2}
\end{aligned}
$$

Problem 6. Let $\left(s_{n}\right)$ be the sequence of numbers in Fig. 11.2 in the book.
(a) Find the set S of subsequential limits of $\left(s_{n}\right)$.
(b) Determine $\limsup s_{n}$ and $\lim \inf s_{n}$.

Solution.

(a) We claim that $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\}$. Indeed, for any $\frac{1}{n}$, there are infinitely many $k \in \mathbb{N}$ such that $s_{k}=\frac{1}{n}$, which implies that $\left(s_{n}\right)$ has a constant subsequence $\left(\frac{1}{n}, \frac{1}{n}, \ldots\right)$. In the case of 0 , for any $\varepsilon>0$, there are infinitely many s_{k} such that $\left|s_{k}-0\right|<\varepsilon$; indeed, we may take n such that $\frac{1}{n}<\varepsilon$ and consider the constant subsequence $\left(\frac{1}{n}, \frac{1}{n}, \ldots\right)$ again. There are no other subsequential limits.
(b) $\liminf s_{n}=\inf S=0$ and $\lim \sup s_{n}=\sup S=1$.

