Math 3150 Fall 2015 HW1 Solutions

Problem 1. Prove $3+11+\cdots+(8 n-5)=4 n^{2}-n$ for all positive integers n.
Solution. The proof is by induction. The base case, $n=1$ states that $3=4(1)^{2}-1$, which is true. Suppose then that

$$
3+\cdots+(8 n-5)=4 n^{2}-n
$$

and consider the sum $3+\cdots+(8 n-5)+(8(n+1)-5)$. By the inductive hypothesis, we have

$$
\begin{aligned}
3+\cdots+(8 n-5)+(8(n+1)-5) & =\left(4 n^{2}-n\right)+(8(n+1)-5) \\
& =4 n^{2}+8 n+4-n-1 \\
& =4(n+1)^{2}-(n+1),
\end{aligned}
$$

which completes the inductive step.
Problem 2. In an ordered field, show that the following identities hold:
(iv) $(-a)(-b)=a b$ for all a, b;
(v) $a c=b c$ and $c \neq 0$ implies $a=b$.

Solution.

(iv) By part (iii) of Theorem 3.1, we have $(-a)(-b)=-(a(-b))$, and by commutativity of multiplication and (iii) again, we have $a(-b)=-a b$, so that

$$
(-a)(-b)=-(-a b),
$$

the additive inverse of the element $-a b$. However, since $a b+(-a b)=0$ and additive inverses are unique, we conclude that $(-a)(-b)=a b$.
(v) Suppose $a c=b c$ and $c \neq 0$. By axiom (M4), there exists an element c^{-1} such that $c c^{-1}=1$. Multiplying both sides of $a c=b c$ on the right by c^{-1} and using associativity of multiplication (M1), we have

$$
\begin{aligned}
a c & =b c \\
\Longrightarrow(a c) c^{-1} & =(b c) c^{-1} \\
\Longrightarrow a\left(c c^{-1}\right) & =b\left(c c^{-1}\right) \\
\Longrightarrow a \cdot 1 & =b \cdot 1 \\
\Longrightarrow a) & =b .
\end{aligned}
$$

Problem 3. In an ordered field, show that the following identities hold:
(v) $0<1$;
(vii) If $0<a<b$, then $0<b^{-1}<a^{-1}$.

Solution.

(v) By multiplicative identity (M3), $1=1 \cdot 1=1^{2}$. By part (iv) of this theorem, $0 \leq a^{2}$ for all a, so we conclude $0 \leq 1$. However, $0 \neq 1$ is a field axiom, ${ }^{1}$ so $0<1$.

[^0](vii) Suppose $0<a<b$. Since $a \neq 0$ and $b \neq 0$, there exist a^{-1} and b^{-1} such that $a a^{-1}=b b^{-1}=1$. By part (vii) of the Theorem, $a^{-1}>0$ and $b^{-1}>0$, and then by part (iii), $a^{-1} b^{-1} \geq 0$. Multiplying both sides of $a<b$ by $a^{-1} b^{-1}$, we have, by (O5),
\[

$$
\begin{aligned}
a a^{-1} b^{-1} & \leq b a^{-1} b^{-1} \\
\Longrightarrow 1 \cdot b^{-1} & \leq a^{-1} b b^{-1} \\
\Longrightarrow b^{-1} & \leq a^{-1} \cdot 1 \\
\Longrightarrow b^{-1} & \leq a^{-1} .
\end{aligned}
$$
\]

Furthermore, $b^{-1} \neq a^{-1}$ since otherwise, we would have $a=b$ by reversing the procedure (multiplying $a^{-1}=b^{-1}$ by $a b$ implies $a=b$).

Problem 4. Let $a, b \in \mathbb{R}$. Show if $a \leq b_{1}$ for every $b_{1}>b$, then $a \leq b$.
Solution. By contradiction, suppose $a>b$. By (a corollary of) the archimedean principle, there exists a number, call it b_{1}, such that

$$
a>b_{1}>b
$$

This contradicts the hypothesis that $a \leq b_{1}$ for every $b_{1}>b$.
Problem 5. Let S and T be nonempty subsets of \mathbb{R} with the property that $s \leq t$ for all $s \in S$ and $t \in T$.
(a) Observe that S is bounded above and T is bounded below.
(b) Prove $\sup S \leq \inf T$.
(c) Give an example of such sets S and T where $S \cap T$ is nonempty.
(d) Give an example of such sets where $\sup S=\inf T$ but $S \cap T$ is the empty set.

Solution.

(a) Since T is nonempty, there exists some $t \in T$ and this has the property that $t \geq s$ for all $s \in S$; thus t is an uppper bound for S. Likewise, T is bounded below by an element $s \in S$.
(b) Let $s_{0}=\sup S$ and $t_{0}=\inf T$, and suppose, by contradiction, that $s_{0}>t_{0}$. Since s_{0} is the least upper bound for S, t_{0} cannot be an upper bound for S, so there exists some $s \in S$ such that $s>t_{0}$. Since t_{0} is the greatest lower bound for T, s can't be a lower bound for T, so there exists some $t \in T$ such that $s>t$, which contradicts the hypothesis that $s \leq t$ for all $s \in S, t \in T$.
(c) $S=[0,1], T=[1,2], \sup S=\inf T=1, S \cap T=\{1\}$.
(d) $S=[0,1), T=(1,2], \sup S=\inf T=1, S \cap T=\emptyset$.

Problem 6. Prove that if $a>0$, then there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<a<n$.
Solution. By (a corollary of) the archimedean property, since $a>0$, there exist $n_{1}, n_{2} \in \mathbb{N}$ such that

$$
\frac{1}{n_{1}}<a<n_{2} .
$$

Taking $n=\max \left\{n_{1}, n_{2}\right\}$, we have $\frac{1}{n} \leq \frac{1}{n_{1}}$ and $n \geq n_{2}$, so $\frac{1}{n}<a<n$.
Problem 7. Prove the following:
(a) $\lim \frac{(-1)^{n}}{n}=0$
(b) $\lim \frac{1}{n^{1 / 3}}=0$
(c) $\lim \frac{2 n-1}{3 n+2}=\frac{2}{3}$
(d) $\lim \frac{n+6}{n^{2}-6}=0$

Solution.

(a) Given $\varepsilon>0$, choose $N \in \mathbb{N}$ such that $N>\frac{1}{\varepsilon}$. Then for all $n \geq N$,

$$
\left|\frac{(-1)^{n}}{n}-0\right|=\frac{1}{n} \leq \frac{1}{N}<\varepsilon
$$

(b) Given $\varepsilon>0$, choose $N \in \mathbb{N}$ such that $N>\varepsilon^{-3}$. Then for all $n \geq N$,

$$
\left|\frac{1}{n^{1 / 3}}-0\right|=\frac{1}{n^{1 / 3}} \leq \frac{1}{N^{1 / 3}}<\varepsilon
$$

(Technically speaking, we should justify why $n \geq N$ implies $n^{1 / 3} \geq N^{1 / 3}$. By contradiction, suppose $m<M$, where $m=n^{1 / 3}$ and $M=N^{1 / 3}$. Then $m^{2}<m M<M^{2}$ by two applications of the axiom which says that multiplication by positive elements preserves order, and likewise $m^{3}<m M^{2}<M^{3}$, which contradicts $n \geq N$.)
(c) Given $\varepsilon>0$, let $N \geq \varepsilon^{-1}$. Then for all $n \geq N$,

$$
\left|\frac{2 n-1}{3 n+2}-\frac{2}{3}\right|=\left|\frac{2 n-1-2\left(n+\frac{2}{3}\right)}{3 n+2}\right|=\left|\frac{-\frac{7}{3}}{3 n+2}\right|=\frac{7}{9 n+6}
$$

$$
\leq \frac{7}{9 n}<\frac{1}{n} \leq \frac{1}{N}<\varepsilon
$$

(d) Note that if $n>5$, then we have $n+6<2 n$ and if $n \geq 4$ then $n^{2}-6 \geq \frac{1}{2} n^{2}$. Given $\varepsilon>0$, choose $N \in \mathbb{N}$ so that $N>\max \left\{\frac{4}{\varepsilon}, 6\right\}$. Then for all $n \geq N$,

$$
\left|\frac{n+6}{n^{2}-6}-0\right|=\frac{n+6}{n^{2}-6} \leq \frac{2 n}{\frac{1}{2} n^{2}}=\frac{4}{n} \leq \frac{4}{N}<\varepsilon
$$

[^0]: ${ }^{1}$ The book does not include this as an axiom, in which case the one point set $\{0\}$ is a field with respect to $0+0=0 \cdot 0=0$. In this 'field', $0=1$. Most mathematicians do not regard $\{0\}$ as a field, and exclude it by requiring $0 \neq 1$ as a 'nontriviality' axiom.

