
Math 3150 Fall 2015 HW1 Solutions

Problem 1. Prove 3 + 11 + · · ·+ (8n− 5) = 4n2 − n for all positive integers n.

Solution. The proof is by induction. The base case, n = 1 states that 3 = 4(1)2 − 1, which is true.
Suppose then that

3 + · · ·+ (8n− 5) = 4n2 − n

and consider the sum 3 + · · ·+ (8n− 5) + (8(n + 1)− 5). By the inductive hypothesis, we have

3 + · · ·+ (8n− 5) + (8(n + 1)− 5) = (4n2 − n) + (8(n + 1)− 5)

= 4n2 + 8n + 4− n− 1

= 4(n + 1)2 − (n + 1),

which completes the inductive step. �

Problem 2. In an ordered field, show that the following identities hold:

(iv) (−a)(−b) = ab for all a, b;
(v) ac = bc and c 6= 0 implies a = b.

Solution.

(iv) By part (iii) of Theorem 3.1, we have (−a)(−b) = −(a(−b)), and by commutativity of multipli-
cation and (iii) again, we have a(−b) = −ab, so that

(−a)(−b) = −(−ab),

the additive inverse of the element −ab. However, since ab + (−ab) = 0 and additive inverses
are unique, we conclude that (−a)(−b) = ab.

(v) Suppose ac = bc and c 6= 0. By axiom (M4), there exists an element c−1 such that c c−1 = 1.
Multiplying both sides of ac = bc on the right by c−1 and using associativity of multiplication
(M1), we have

ac = bc

=⇒ (ac)c−1 = (bc)c−1

=⇒ a(cc−1) = b(cc−1)

=⇒ a · 1 = b · 1
=⇒ a) = b. �

Problem 3. In an ordered field, show that the following identities hold:

(v) 0 < 1;
(vii) If 0 < a < b, then 0 < b−1 < a−1.

Solution.

(v) By multiplicative identity (M3), 1 = 1 · 1 = 12. By part (iv) of this theorem, 0 ≤ a2 for all a, so
we conclude 0 ≤ 1. However, 0 6= 1 is a field axiom,1 so 0 < 1.

1The book does not include this as an axiom, in which case the one point set {0} is a field with respect to 0+0 = 0·0 = 0.
In this ‘field’, 0 = 1. Most mathematicians do not regard {0} as a field, and exclude it by requiring 0 6= 1 as a ‘nontriviality’
axiom.
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(vii) Suppose 0 < a < b. Since a 6= 0 and b 6= 0, there exist a−1 and b−1 such that aa−1 = bb−1 = 1.
By part (vii) of the Theorem, a−1 > 0 and b−1 > 0, and then by part (iii), a−1b−1 ≥ 0.
Multiplying both sides of a < b by a−1b−1, we have, by (O5),

aa−1b−1 ≤ ba−1b−1

=⇒ 1 · b−1 ≤ a−1bb−1

=⇒ b−1 ≤ a−1 · 1
=⇒ b−1 ≤ a−1.

Furthermore, b−1 6= a−1 since otherwise, we would have a = b by reversing the procedure
(multiplying a−1 = b−1 by ab implies a = b). �

Problem 4. Let a, b ∈ R. Show if a ≤ b1 for every b1 > b, then a ≤ b.

Solution. By contradiction, suppose a > b. By (a corollary of) the archimedean principle, there exists
a number, call it b1, such that

a > b1 > b.

This contradicts the hypothesis that a ≤ b1 for every b1 > b. �

Problem 5. Let S and T be nonempty subsets of R with the property that s ≤ t for all s ∈ S and
t ∈ T .

(a) Observe that S is bounded above and T is bounded below.
(b) Prove supS ≤ inf T .
(c) Give an example of such sets S and T where S ∩ T is nonempty.
(d) Give an example of such sets where supS = inf T but S ∩ T is the empty set.

Solution.

(a) Since T is nonempty, there exists some t ∈ T and this has the property that t ≥ s for all s ∈ S;
thus t is an uppper bound for S. Likewise, T is bounded below by an element s ∈ S.

(b) Let s0 = supS and t0 = inf T , and suppose, by contradiction, that s0 > t0. Since s0 is the least
upper bound for S, t0 cannot be an upper bound for S, so there exists some s ∈ S such that s > t0.
Since t0 is the greatest lower bound for T , s can’t be a lower bound for T , so there exists some
t ∈ T such that s > t, which contradicts the hypothesis that s ≤ t for all s ∈ S, t ∈ T .

(c) S = [0, 1], T = [1, 2], supS = inf T = 1, S ∩ T = {1}.
(d) S = [0, 1), T = (1, 2], supS = inf T = 1, S ∩ T = ∅. �

Problem 6. Prove that if a > 0, then there exists n ∈ N such that 1
n < a < n.

Solution. By (a corollary of) the archimedean property, since a > 0, there exist n1, n2 ∈ N such that

1
n1

< a < n2.

Taking n = max {n1, n2}, we have 1
n ≤

1
n1

and n ≥ n2, so 1
n < a < n. �

Problem 7. Prove the following:

(a) lim (−1)n

n = 0

(b) lim 1
n1/3 = 0

(c) lim 2n−1
3n+2 = 2

3

(d) lim n+6
n2−6

= 0

Solution.
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(a) Given ε > 0, choose N ∈ N such that N > 1
ε . Then for all n ≥ N ,∣∣∣∣(−1)n

n
− 0

∣∣∣∣ =
1

n
≤ 1

N
< ε.

(b) Given ε > 0, choose N ∈ N such that N > ε−3. Then for all n ≥ N ,∣∣∣∣ 1

n1/3
− 0

∣∣∣∣ =
1

n1/3
≤ 1

N1/3
< ε.

(Technically speaking, we should justify why n ≥ N implies n1/3 ≥ N1/3. By contradiction, suppose

m < M , where m = n1/3 and M = N1/3. Then m2 < mM < M2 by two applications of the axiom
which says that multiplication by positive elements preserves order, and likewise m3 < mM2 < M3,
which contradicts n ≥ N .)

(c) Given ε > 0, let N ≥ ε−1. Then for all n ≥ N ,∣∣∣∣2n− 1

3n + 2
− 2

3

∣∣∣∣ =

∣∣∣∣∣2n− 1− 2(n + 2
3)

3n + 2

∣∣∣∣∣ =

∣∣∣∣∣ −7
3

3n + 2

∣∣∣∣∣ =
7

9n + 6

≤ 7

9n
<

1

n
≤ 1

N
< ε.

(d) Note that if n > 5, then we have n + 6 < 2n and if n ≥ 4 then n2 − 6 ≥ 1
2n

2. Given ε > 0, choose

N ∈ N so that N > max
{
4
ε , 6

}
. Then for all n ≥ N ,∣∣∣∣ n + 6

n2 − 6
− 0

∣∣∣∣ =
n + 6

n2 − 6
≤ 2n

1
2n

2
=

4

n
≤ 4

N
< ε. �


